1
|
Luo X, Ye X, Ding L, Zhu W, Yi P, Zhao Z, Gao H, Shu Z, Li S, Sang M, Wang J, Zhong W, Chen Z. Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens. Front Microbiol 2021; 12:684591. [PMID: 34335511 PMCID: PMC8319832 DOI: 10.3389/fmicb.2021.684591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.
Collapse
Affiliation(s)
- Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangdong Ye
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Li Ding
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen Zhu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Pengcheng Yi
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Huanhuan Gao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhan Shu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Central Laboratory of Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Weihua Zhong
- Department of Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongyun Chen
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria. Toxins (Basel) 2021; 13:toxins13050343. [PMID: 34064808 PMCID: PMC8150835 DOI: 10.3390/toxins13050343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.
Collapse
Affiliation(s)
- Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: ; Tel.: +86-(0)-719-8469073
| |
Collapse
|
3
|
Zhao Z, Zhang K, Zhu W, Ye X, Ding L, Jiang H, Li F, Chen Z, Luo X. Two new cationic α-helical peptides identified from the venom gland of Liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021; 196:63-73. [PMID: 33836178 DOI: 10.1016/j.toxicon.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 μg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
PRESENTINI R, ANTONI G. Improved method for the synthesis of Nα-9-fluorenylmethyloxycarbonyl-Nδ,ω bis-adamantyloxycarbonyl-L-arginine. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1986.tb01801.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1990; 35:161-214. [PMID: 2191922 DOI: 10.1111/j.1399-3011.1990.tb00939.x] [Citation(s) in RCA: 1877] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
9-Fluorenylmethoxycarbonyl (Fmoc) amino acids were first used for solid phase peptide synthesis a little more than a decade ago. Since that time, Fmoc solid phase peptide synthesis methodology has been greatly enhanced by the introduction of a variety of solid supports, linkages, and side chain protecting groups, as well as by increased understanding of solvation conditions. These advances have led to many impressive syntheses, such as those of biologically active and isotopically labeled peptides and small proteins. The great variety of conditions under which Fmoc solid phase peptide synthesis may be carried out represents a truly "orthogonal" scheme, and thus offers many unique opportunities for bioorganic chemistry.
Collapse
Affiliation(s)
- G B Fields
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | |
Collapse
|
6
|
Affiliation(s)
- M Bodanszky
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
7
|
Pedroso E, Grandas A, de las Heras X, Eritja R, Giralt E. Diketopiperazine formation in solid phase peptide synthesis using p-alkoxybenzyl ester resins and Fmoc-amino acids. Tetrahedron Lett 1986. [DOI: 10.1016/s0040-4039(00)84089-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rink H, Sieber P, Raschdorf F. Conversion of NGurethane protected arginine to ornithine in peptide solid phase synthesis. Tetrahedron Lett 1984. [DOI: 10.1016/s0040-4039(00)99954-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Tessier M, Albericio F, Pedroso E, Grandas A, Eritja R, Giralt E, Granier C, Van Rietschoten J. Amino-acids condensations in the preparation of N alpha-9-fluorenylmethyloxycarbonylamino-acids with 9-fluorenylmethylchloroformate. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1983; 22:125-8. [PMID: 6885246 DOI: 10.1111/j.1399-3011.1983.tb02076.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthesis of N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) amino-acids by reaction of free amino-acids (glycine and alanine) with 9-fluorenylmethylchloroformate leads to formation of small amounts of Fmoc-dipeptide which are difficult to eliminate by crystallization. The alternative way to prepare Fmoc-amino-acids by reacting the Fmoc-chloride first with sodium azide and then with the free amino-acid eliminates this side reaction, at least for glycine and alanine.
Collapse
|
10
|
Colombo R, Atherton E, Sheppard RC, Woolley V. 4-Chloromethylphenoxyacetyl polystyrene and polyamide supports for solid-phase peptide synthesis. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1983; 21:118-26. [PMID: 6832887 DOI: 10.1111/j.1399-3011.1983.tb03085.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two functionalised supports for the solid-phase synthesis of peptides under mild reaction conditions were prepared: 4-chloromethylphenoxyacetamidomethyl-copoly (styrene-1%-divinylbenzene) and 4-chloromethylphenoxyacetyl-norleucyl-poly (dimethylacrylamide). They were devised in order to avoid the danger of racemization which exists during base-catalyzed esterification of the first protected amino acid to the 4-alkoxybenzyl alcohol resins formerly employed in combination with N alpha-9-fluorenylmethoxycarbonyl and tert.-butyl side-chain protecting groups. Esterification of N alpha-protected amino acids to the new resins can be achieved easily and without significant levels of racemization by means of their caesium salts, while cleavage from the supports is possible by treatment with trifluoroacetic acid. The 4-chloromethylphenoxyacetyl polystyrene resin was tested by the synthesis of Leu-enkephalin which was cleaved, at the end of the synthesis, from the solid support in 91% yield by 60% trifluoroacetic acid in methylene chloride, and was shown to be more than 99% pure by ion-exchange chromatography and reverse phase high pressure liquid chromatography.
Collapse
|
11
|
Colombo R. A new solid-phase synthesis of porcine vasoactive intestinal peptide using Nα-9-fluorenylmethyloxycarbonyl amino acids. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf01972263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|