1
|
Hauser M, Qian C, King ST, Kauffman S, Naider F, Hettich RL, Becker JM. Identification of peptide-binding sites within BSA using rapid, laser-induced covalent cross-linking combined with high-performance mass spectrometry. J Mol Recognit 2017; 31. [PMID: 28994207 DOI: 10.1002/jmr.2680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 11/07/2022]
Abstract
We are developing a rapid, time-resolved method using laser-activated cross-linking to capture protein-peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding-yeast mating pheromone (α-factor) and the decapeptide human gonadotropin-releasing hormone (GnRH). Cross-linking of α-factor, using a biotinylated, photoactivatable p-benzoyl-L-phenylalanine (Bpa)-modified analog, was energy-dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA-peptide complex. The cross-linked complex was trypsinized and then interrogated with nano-LC-MS/MS to identify the peptide cross-links. Cross-linking was greatly facilitated by Bpa in the peptide, but some cross-linking occurred at higher laser powers and high concentrations of a non-Bpa-modified α-factor. This was supported by experiments using GnRH, a peptide with sequence homology to α-factor, which was likewise found to be cross-linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α-factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser-activation to facilitate cross-linking of Bpa-containing molecules to proteins. The rapid cross-linking procedure and high performance of MS/MS to identify cross-links provides a method to interrogate protein-peptide interactions in a living cell in a time-resolved manner.
Collapse
Affiliation(s)
- Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Chen Qian
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Steven T King
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Fred Naider
- Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, CUNY, New York, NY, USA
- Programs in Biochemistry and Chemistry, Graduate Center, The City University of New York, New York, NY, USA
| | - Robert L Hettich
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Yang Y, Harmon CM. Molecular signatures of human melanocortin receptors for ligand binding and signaling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2436-2447. [PMID: 28478228 DOI: 10.1016/j.bbadis.2017.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 12/29/2022]
Abstract
Human melanocortin receptors (hMCRs) belong to the seven-transmembrane (TM) domain proteins. There are five hMCR subtypes and each of these receptor subtypes has different patterns of tissue expression and physiological function. The endogenous agonists for hMCRs are α-, β-, and γ-MSH and ACTH and endogenous antagonists are Agouti and AGRP which are the only known naturally occurring antagonists for the receptors. These peptides have their own profiles regarding the relative potency for specific hMCR subtype. Extensive studies have been performed to examine the molecular basis of the hMCRs for different ligand binding affinity and potency. Studies indicate that natural ligand α-MSH utilizes conserved amino acid residues for MCR specific binding (orthosteric binding) while synthetic ligands utilize non-conserved amino acid residues for receptor subtype specific binding (allosteric binding). ACTH is the only endogenous agonist for hMC2R and more amino acid residues at hMC2R are required for ACTH binding and signaling. HMCR computer modeling provides the detailed information of ligand and MCR interaction. This review provides the latest understanding of the molecular basis of the hMCRs for ligand binding and signaling. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States.
| | - Carroll M Harmon
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States
| |
Collapse
|
3
|
|
4
|
Ahn HJ, Kim HJ, Jin DH, Hong NJ. Spectrophotometric Determination of Affinities of α-Factors for Their G Protein-Coupled Receptors in Saccharomyces cerevisiae. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hee Jun Ahn
- School of Biotechnology; Yeungnam University; Gyungbuk 712-749 Korea
| | - Hyung Jin Kim
- School of Biotechnology; Yeungnam University; Gyungbuk 712-749 Korea
| | - Dong Hoon Jin
- Asan Institute for Life Science, Department of Convergence Medicine; College of Medicine, University of Ulsan, Asan Medical Center; Seoul 138-736 Korea
| | - Nam Joo Hong
- School of Biotechnology; Yeungnam University; Gyungbuk 712-749 Korea
| |
Collapse
|
5
|
Abstract
Experiments are described that allowed cross-linking of analogs of a 13-amino acid peptide into the binding site of a model G protein-coupled receptor. Syntheses of peptide analogs that were used for photochemical or chemical cross-linking were carried out using solid-phase peptide synthesis. Chemical cross-linking utilized 3,4-dihydroxy-l-phenylalanine-incorporated peptides and subsequent periodate-mediated activation, whereas photochemical cross-linking was mediated by p-benzoyl-l-phenylalanine (Bpa)-labeled peptides and UV-initiated activation. Mass spectrometry was employed to locate the site(s) in the receptor that formed the cross-links to the ligand. We also describe a method called unnatural amino acid replacement that allowed capture of a peptide ligand into the receptor. In this method, the receptor was genetically modified by replacement of a natural amino acid with Bpa. The modified receptor was UV-irradiated to capture the ligand. The approaches described are applicable to other peptide-binding proteins and can reveal the ligand-binding site in atomic detail.
Collapse
Affiliation(s)
| | - Fred Naider
- Chemistry Department, College of Staten Island, City University of New York
| |
Collapse
|
6
|
Ahn HJ, Hong EY, Jin DH, Hong NJ. Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
|
8
|
Umanah GKE, Huang LY, Maccarone JM, Naider F, Becker JM. Changes in conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Biochemistry 2011; 50:6841-54. [PMID: 21728340 DOI: 10.1021/bi200254h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The third intracellular loop (IL3) of G protein-coupled receptors (GPCRs) is an important contact domain between GPCRs and their G proteins. Previously, the IL3 of Ste2p, a Saccharomyces cerevisiae GPCR, was suggested to undergo a conformational change upon activation as detected by differential protease susceptibility in the presence and absence of ligand. In this study using disulfide cross-linking experiments we show that the Ste2p cytoplasmic ends of helix 5 (TM5) and helix 6 (TM6) that flank the amino and carboxyl sides of IL3 undergo conformational changes upon ligand binding, whereas the center of the IL3 loop does not. Single Cys substitution of residues in the middle of IL3 led to receptors that formed high levels of cross-linked Ste2p, whereas Cys substitution at the interface of IL3 and the contiguous cytoplasmic ends of TM5 and TM6 resulted in minimal disulfide-mediated cross-linked receptor. The alternating pattern of residues involved in cross-linking suggested the presence of a 3(10) helix in the middle of IL3. Agonist (WHWLQLKPGQPNleY) induced Ste2p activation reduced cross-linking mediated by Cys substitutions at the cytoplasmic ends of TM5 and TM6 but not by residues in the middle of IL3. Thus, the cytoplasmic ends of TM5 and TM6 undergo conformational change upon ligand binding. An α-factor antagonist (des-Trp, des-His-α-factor) did not influence disulfide-mediated Ste2p cross-linking, suggesting that the interaction of the N-terminus of α-factor with Ste2p is critical for inducing conformational changes at TM5 and TM6. We propose that the changes in conformation revealed for residues at the ends of TM5 and TM6 are affected by the presence of G protein but not G protein activation. This study provides new information about role of specific residues of a GPCR in signal transduction and how peptide ligand binding activates the receptor.
Collapse
Affiliation(s)
- George K E Umanah
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | | | | | |
Collapse
|
9
|
Mathew E, Bajaj A, Connelly SM, Sargsyan H, Ding FX, Hajduczok AG, Naider F, Dumont ME. Differential interactions of fluorescent agonists and antagonists with the yeast G protein coupled receptor Ste2p. J Mol Biol 2011; 409:513-28. [PMID: 21477594 DOI: 10.1016/j.jmb.2011.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/10/2023]
Abstract
We describe a rapid method to probe for mutations in cell surface ligand-binding proteins that affect the environment of bound ligand. The method uses fluorescence-activated cell sorting to screen randomly mutated receptors for substitutions that alter the fluorescence emission spectrum of environmentally sensitive fluorescent ligands. When applied to the yeast α-factor receptor Ste2p, a G protein-coupled receptor, the procedure identified 22 substitutions that red shift the emission of a fluorescent agonist, including substitutions at residues previously implicated in ligand binding and at additional sites. A separate set of substitutions, identified in a screen for mutations that alter the emission of a fluorescent α-factor antagonist, occurs at sites that are unlikely to contact the ligand directly. Instead, these mutations alter receptor conformation to increase ligand-binding affinity and provide signaling in response to antagonists of normal receptors. These results suggest that receptor--agonist interactions involve at least two sites, of which only one is specific for the activated conformation of the receptor.
Collapse
Affiliation(s)
- Elizabeth Mathew
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Umanah GKE, Huang L, Ding FX, Arshava B, Farley AR, Link AJ, Naider F, Becker JM. Identification of residue-to-residue contact between a peptide ligand and its G protein-coupled receptor using periodate-mediated dihydroxyphenylalanine cross-linking and mass spectrometry. J Biol Chem 2010; 285:39425-36. [PMID: 20923758 DOI: 10.1074/jbc.m110.149500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fundamental knowledge about how G protein-coupled receptors and their ligands interact is important for understanding receptor-ligand binding and the development of new drug discovery strategies. We have used cross-linking and tandem mass spectrometry analyses to investigate the interaction of the N terminus of the Saccharomyces cerevisiae tridecapeptide pheromone, α-factor (WHWLQLKPGQPMY), and Ste2p, its cognate G protein-coupled receptor. The Trp(1) residue of α-factor was replaced by 3,4-dihydroxyphenylalanine (DOPA) for periodate-mediated chemical cross-linking, and biotin was conjugated to Lys(7) for detection purposes to create the peptide [DOPA(1),Lys(7)(BioACA),Nle(12)]α-factor, called Bio-DOPA(1)-α-factor. This ligand analog was a potent agonist and bound to Ste2p with ∼65 nanomolar affinity. Immunoblot analysis of purified Ste2p samples that were treated with Bio-DOPA(1)-α-factor showed that the peptide analog cross-linked efficiently to Ste2p. The cross-linking was inhibited by the presence of either native α-factor or an α-factor antagonist. MALDI-TOF and immunoblot analyses revealed that Bio-DOPA(1)-α-factor cross-linked to a fragment of Ste2p encompassing residues Ser(251)-Met(294). Fragmentation of the cross-linked fragment and Ste2p using tandem mass spectrometry pinpointed the cross-link point of the DOPA(1) of the α-factor analog to the Ste2p Lys(269) side chain near the extracellular surface of the TM6-TM7 bundle. This conclusion was confirmed by a greatly diminished cross-linking of Bio-DOPA(1)-α-factor into a Ste2p(K269A) mutant. Based on these and previously obtained binding contact data, a mechanism of α-factor binding to Ste2p is proposed. The model for bound α-factor shows how ligand binding leads to conformational changes resulting in receptor activation of the signal transduction pathway.
Collapse
Affiliation(s)
- George K E Umanah
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Leckie BJ, Bottrill AR. A specific binding site for the prorenin propart peptide Arg10-Arg20 does not occur on human endothelial cells. J Renin Angiotensin Aldosterone Syst 2010; 12:36-41. [PMID: 20826507 DOI: 10.1177/1470320310370610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION We looked for novel binding sites for the human prorenin 'decoy peptide' sometimes called 'handle region peptide' on human endothelial cells. METHOD The biotinylated peptide biotin-Acp-RIFLKRMPSIR (B-PR), an unlabelled peptide PR1 (RIFLKRMPSIR) and a scrambled peptide scPR1 (SRRMIFPIKLR) were synthesized. B-PR was added to human umbilical cord endothelial cells (HUVECs) maintained in serum-free medium, with or without excess unlabelled peptide or 'scrambled' peptide as blocker. Biotin-labelled HUVEC proteins were extracted, the amount of bound tracer was measured, and the identity of the binding proteins was analysed by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). RESULTS Biotinylated peptide bound to the HUVEC proteins with a major labelled band at 68,600 ± 1503 kDa (mean ± SEM, n = 5 runs). Unlabelled peptide and scrambled peptide equally displaced the labelled peptide, indicating that the binding was non-specific for amino acid sequence. LC-MS/MS showed that binding was mainly to cytoskeletal proteins. CONCLUSION The binding of the human prorenin peptide R¹⁰IFLKRMPSIR²⁰ to HUVEC proteins is not specific for amino acid sequence and probably involves a general peptide/protein uptake mechanism. We could not detect a specific prorenin propart binding site in these cells.
Collapse
Affiliation(s)
- Brenda J Leckie
- Vascular Medicine Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | | |
Collapse
|
12
|
Umanah GKE, Son C, Ding F, Naider F, Becker JM. Cross-linking of a DOPA-containing peptide ligand into its G protein-coupled receptor. Biochemistry 2009; 48:2033-44. [PMID: 19152328 DOI: 10.1021/bi802061z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between a 3,4-dihydroxyphenylalanine (DOPA) labeled analogue of the tridecapeptide alpha-factor (W-H-W-L-Q-L-K-P-G-Q-P-M-Y) and Ste2p, a Saccharomyces cerevisiae model G protein-coupled receptor (GPCR), has been analyzed by periodate-mediated cross-linking. Chemically synthesized alpha-factor with DOPA substituting for tyrosine at position 13 and biotin tagged onto lysine(7)([Lys(7)(BioACA),Nle(12),DOPA(13)]alpha-factor; Bio-DOPA-alpha-factor) was used for cross-linking into Ste2p. The biological activity of Bio-DOPA-alpha-factor was about one-third that of native alpha-factor as determined by growth arrest assay and exhibited about a 10-fold lower binding affinity to Ste2p. Bio-DOPA-alpha-factor cross-linked into Ste2p as demonstrated by Western blot analysis using a neutravidin-HRP conjugate to detect Bio-DOPA-alpha-factor. Cross-linking was inhibited by excess native alpha-factor and an alpha-factor antagonist. The Ste2p-ligand complex was purified using a metal ion affinity column, and after cyanogen bromide treatment, avidin affinity purification was used to capture Bio-DOPA-alpha-factor-Ste2p cross-linked peptides. MALDI-TOF spectrometric analyses of the cross-linked fragments showed that Bio-DOPA-alpha-factor reacted with the Phe(55)-Met(69) region of Ste2p. Cross-linking of Bio-DOPA-alpha-factor was reduced by 80% using a cysteine-less Ste2p (Cys59Ser). These results suggest an interaction between position 13 of alpha-factor and residue Cys(59) of Ste2p. This study is the first to report DOPA cross-linking of a peptide hormone to a GPCR and the first to identify a residue-to-residue cross-link between Ste2p and alpha-factor, thereby defining a specific contact point between the bound ligand and its receptor.
Collapse
Affiliation(s)
- George K E Umanah
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
13
|
Sansuk K, Balog CIA, van der Does AM, Booth R, de Grip WJ, Deelder AM, Bakker RA, Leurs R, Hensbergen PJ. GPCR proteomics: mass spectrometric and functional analysis of histamine H1 receptor after baculovirus-driven and in vitro cell free expression. J Proteome Res 2008; 7:621-9. [PMID: 18177001 DOI: 10.1021/pr7005654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human histamine H1 Receptor (hH1R) belongs to the family of G-protein coupled receptors (GPCRs), an attractive and proven class of drug targets in a wide range of therapeutic areas. However, due to the low amount of available purified protein and the hydrophobic nature of GPCRs, limited structural information is available on ligand-receptor interaction especially for the transmembrane (TM) domain regions where the majority of ligand-receptor interactions occur. During the last decades, proteomic techniques have increasingly become an important tool to reveal detailed information on the individual GPCR class, including post-translational modifications and characterizations of GPCRs binding pocket. Herein, we report the successful functional production and mass spectrometric characterization of the hH1R, after baculovirus-driven and in vitro cell-free expression. Using only MALDI-ToF, sequence coverage of more than 80%, including five hydrophobic TM domains was achieved. Moreover, we have identified an asparagine residue in the hH1R protein that is subject to N-linked glycosylation. This information would be valuable for drug discovery efforts by allowing us to further study H1R-ligand interactions using histaminergic ligands that covalently bind the hH1R, and eventually revealing binding sites of hH1R and other GPCRs.
Collapse
Affiliation(s)
- Kamonchanok Sansuk
- Leiden/Amsterdam Center for Drug Research (LACDR), Vrije Universiteit Amsterdam, Department of Medicinal Chemistry, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qvit N, Monderer-Rothkoff G, Ido A, Shalev DE, Amster-Choder O, Gilon C. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates. Biopolymers 2008; 90:526-36. [DOI: 10.1002/bip.21010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Naider F, Becker JM, Lee YH, Horovitz A. Double-mutant cycle scanning of the interaction of a peptide ligand and its G protein-coupled receptor. Biochemistry 2007; 46:3476-81. [PMID: 17298081 PMCID: PMC2590777 DOI: 10.1021/bi602415u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between the yeast G protein-coupled receptor (GPCR), Ste2p, and its alpha-factor tridecapeptide ligand was subjected to double-mutant cycle scanning analysis by which the pairwise interaction energy of each ligand residue with two receptor residues, N205 and Y266, was determined. The mutations N205A and Y266A were previously shown to result in deficient signaling but cause only a 2.5-fold and 6-fold decrease, respectively, in the affinity for alpha-factor. The analysis shows that residues at the amine terminus of alpha-factor interact strongly with N205 and Y266 whereas residues in the center and at the carboxyl terminus of the peptide interact only weakly if at all with these receptor residues. Multiple-mutant thermodynamic cycle analysis was used to assess whether the energies of selected pairwise interactions between residues of the alpha-factor peptide changed upon binding to Ste2p. Strong positive cooperativity between residues 1 through 4 of alpha-factor was observed during receptor binding. In contrast, no thermodynamic evidence was found for an interaction between a residue near the carboxyl terminus of alpha-factor (position 11) and one at the N-terminus (position 3). The study shows that multiple-mutant cycle analyses of the binding of an alanine-scanned peptide to wild-type and mutant GPCRs can provide detailed information on contributions of inter- and intramolecular interactions to the binding energy and potentially prove useful in developing 3D models of ligand docked to its receptor.
Collapse
Affiliation(s)
- Fred Naider
- The College of Staten Island and Macromolecular Assemblies Institute of the City University of New York, Staten Island, New York 10314, USA.
| | | | | | | |
Collapse
|
16
|
Hauser M, Kauffman S, Lee BK, Naider F, Becker JM. The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding. J Biol Chem 2007; 282:10387-97. [PMID: 17293349 DOI: 10.1074/jbc.m608903200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the alpha-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr(101) through Gln(135) of EL1 in the presence and absence of the tridecapeptide alpha-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with alpha-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the alpha-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding.
Collapse
Affiliation(s)
- Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|