1
|
Rebeis ES, Albuquerque-Souza E, Paulino da Silva M, Giudicissi M, Mayer MPA, Saraiva L. Effect of periodontal treatment onAggregatibacter actinomycetemcomitanscolonization and serum IgG levels againstA. actinomycetemcomitansserotypes and Omp29 of aggressive periodontitis patients. Oral Dis 2018; 25:569-579. [DOI: 10.1111/odi.13010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Estela Sanches Rebeis
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Maike Paulino da Silva
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Marcela Giudicissi
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Marcia P. A. Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Luciana Saraiva
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
2
|
Karched M, Bhardwaj RG, Asikainen SE. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol 2015; 15:114. [PMID: 26025449 PMCID: PMC4448563 DOI: 10.1186/s12866-015-0439-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/08/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Members of fastidious Granulicatella and Aggregatibacter genera belong to normal oral flora bacteria that can cause serious infections, such as infective endocarditis. Aggregatibacter actinomycetemcomitans has long been implicated in aggressive periodontitis, whereas DNA-based methods only recently showed an association between Granulicatella spp. and dental diseases. As bacterial coaggregation is a key phenomenon in the development of oral and nonoral multispecies bacterial communities it would be of interest knowing coaggregation pattern of Granulicatella species with A. actinomycetemcomitans in comparison with the multipotent coaggregator Fusobacterium nucleatum. The aim was to investigate coaggregation and biofilm formation of Granulicatella elegans and Granulicatella adiacens with A. actinomycetemcomitans and F. nucleatum strains. RESULTS F. nucleatum exhibited significantly (p < 0.05) higher autoaggregation than all other test species, followed by A. actinomycetemcomitans SA269 and G. elegans. A. actinomycetemcomitans CU1060 and G. adiacens did not autoaggregate. G. elegans with F. nucleatum exhibited significantly (p < 0.05) higher coaggregation than most others, but failed to grow as biofilm together or separately. With F. nucleatum as partner, A. actinomycetemcomitans strains SA269, a rough-colony wild-type strain, and CU1060, a spontaneous smooth-colony laboratory variant, and G. adiacens were the next in coaggregation efficiency. These dual species combinations also were able to grow as biofilms. While both G. elegans and G. adiacens coaggregated with A. actinomycetemcomitans strain SA269, but not with CU1060, they grew as biofilms with both A. actinomycetemcomitans strains. CONCLUSIONS G. elegans failed to form biofilm with F. nucleatum despite the strongest coaggregation with it. The ability of Granulicatella spp. to coaggregate and/or form biofilms with F. nucleatum and A. actinomycetemcomitans strains suggests that Granulicatella spp. have the potential to integrate into dental plaque biofilms.
Collapse
Affiliation(s)
- Maribasappa Karched
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Radhika G Bhardwaj
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Sirkka E Asikainen
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| |
Collapse
|
3
|
Takasaki K, Fujise O, Miura M, Hamachi T, Maeda K. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm. J Periodontal Res 2012; 48:286-92. [PMID: 23033940 DOI: 10.1111/jre.12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. MATERIAL AND METHODS P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. RESULTS Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. CONCLUSION These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance.
Collapse
Affiliation(s)
- K Takasaki
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
4
|
Lang ML, Zhu L, Kreth J. Keeping the bad bacteria in check: interactions of the host immune system with oral cavity biofilms. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
The major autolysin of Streptococcus gordonii is subject to complex regulation and modulates stress tolerance, biofilm formation, and extracellular-DNA release. J Bacteriol 2011; 193:2826-37. [PMID: 21478346 DOI: 10.1128/jb.00056-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A gene, designated atlS, encoding a major autolysin from Streptococcus gordonii, was identified and characterized. The predicted AtlS protein is 1,160 amino acids and 127 kDa and has a conserved β1,4-N-acetylmuramidase domain. Zymographic analysis of wild-type S. gordonii revealed peptidoglycan hydrolase activities with molecular masses of 130 and 90 kDa that were absent in an atlS deletion mutant. Western blotting revealed that the 90-kDa band was derived from the 130-kDa protein. Inactivation of atlS resulted in formation of long chains by the cells, markedly decreased autolytic capacity, poor biofilm formation, diminished tolerance of acid and oxidative stress, and decreased production of extracellular DNA (eDNA). The biofilm-forming capacity of the atlS mutant could be almost completely restored to that of the wild-type strain by adding purified recombinant AtlA autolysin of S. mutans but was only partially restored by addition of eDNA. Autolysis, eDNA release, and atlS expression increased sharply when cells entered stationary phase and were greatly enhanced in cells growing with aeration. The LytST and VicRK two-component systems were both required for the induction of atlS by aeration, and purified LytT was able to bind to the promoter region of atlS in vitro. Thus, AtlS and its associated regulatory cascade dominantly control phenotypes of S. gordonii that are critical to colonization, persistence, and competition with other commensal and pathogenic oral bacteria in response to the redox environment and growth domain.
Collapse
|
6
|
Kanasi E, Doğan B, Karched M, Thay B, Oscarsson J, Asikainen S. Lack of Serotype Antigen in A. actinomycetemcomitans. J Dent Res 2010; 89:292-6. [DOI: 10.1177/0022034509358865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is divided into 6 serotypes. Occurrence of non-serotypeable strains is known, but background reasons are unclear. We hypothesized that non-serotypeable strains represent new serotypes or have altered expression of serotype-specific polysaccharide antigen (S-PA). We first characterized 311 strains from 189 individuals using both immunoassay- and PCR-based serotyping. Next, using natural human infection and rabbit immunization approaches, we clarified whether the phenotypically non-serotypeable strains expressed S-PA. Immunoassay identified serotypes a–f among 216 strains from 159 individuals. The remaining 95 strains from 30 individuals were phenotypically non-serotypeable. Yet, all these strains were identified by PCR-typing as serotype a-, b-, c-, or f. Non-serotypeability was confirmed by Western immunoblot with respective rabbit antisera. Patient sera remained non-reactive with autologous non-serotypeable strains at the serotype-specific region. Rabbit immunization with a phenotypically non-serotypeable strain induced no antibody production against S-PA. Thus, phenotypically non-serotypeable strains did not include novel serotypes, but lacked S-PA expression.
Collapse
Affiliation(s)
- E. Kanasi
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - B. Doğan
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - M. Karched
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - B. Thay
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - J. Oscarsson
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - S. Asikainen
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| |
Collapse
|
7
|
Rupani D, Izano EA, Schreiner HC, Fine DH, Kaplan JB. Aggregatibacter actinomycetemcomitans serotype f O-polysaccharide mediates coaggregation with Fusobacterium nucleatum. ACTA ACUST UNITED AC 2008; 23:127-30. [PMID: 18279180 DOI: 10.1111/j.1399-302x.2007.00399.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS Intergeneric bacterial coaggregation may play an important role in plaque development. METHODS In this study we investigated the coaggregation reaction between two periodontal pathogens, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum. RESULTS Previous studies showed that A. actinomycetemcomitans serotype b strains coaggregate with F. nucleatum strain PK1594, and that A. actinomycetemcomitans serotype b O-polysaccharide (O-PS) is the receptor responsible for coaggregation between A. actinomycetemcomitans and F. nucleatum. A. actinomycetemcomitans serotype f O-PS has been shown to be structurally and antigenically related to serotype b O-PS. In the present study we show that A. actinomycetemcomitans strain CU1060N, a serotype f strain, also coaggregated with F. nucleatum PK1594. Like coaggregation between serotype b strains and F. nucleatum, coaggregation between CU1060N and F. nucleatum was inhibited by galactose. An O-PS mutant of CU1060N failed to coaggregate with F. nucleatum. CONCLUSION We concluded that A. actinomycetemcomitans serotype f O-PS, like serotype b O-PS, mediates coaggregation between A. actinomycetemcomitans and fusobacteria.
Collapse
Affiliation(s)
- D Rupani
- Department of Oral Biology, New Jersey Dental School, Newark, NJ, USA
| | | | | | | | | |
Collapse
|