1
|
Scott C, Dias AP, De Buck J. Adherence and metal-ion acquisition gene expression increases during infection with Treponema phagedenis strains from bovine digital dermatitis. Infect Immun 2024; 92:e0011724. [PMID: 38940601 PMCID: PMC11320908 DOI: 10.1128/iai.00117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Digital dermatitis (DD) is an ulcerative foot lesion on the heel bulbs of dairy cattle. DD is a polymicrobial disease with no precise etiology, although Treponema spirochetes are found disproportionally abundant in diseased tissue. Within Treponema, several different species are found in DD; however, the species Treponema phagedenis is uniformly found in copious quantities and deep within the skin layers of the active, ulcerative stages of disease. The pathogenic mechanisms these bacteria use to persist in the skin and the precise role they play in the pathology of DD are widely unknown. To explore the pathogenesis and virulence of Treponema phagedenis, newly isolated strains of this species were investigated in a subcutaneous murine abscess model. In the first trial, a dosage study was conducted to compare the pathogenicity of different strains across three different treponemes per inoculum (TPI) doses based on abscess volumes. In the second trial, the expression levels of 11 putative virulence genes were obtained to gain insight into their involvement in pathogenesis. During the RT-qPCR analysis, it was determined that genes encoding for two metal-ion import lipoproteins and two adherence genes were found highly upregulated during infection. Conversely, two genes involved in motility and chemotaxis were found to not be significantly upregulated or utilized during infection. These results were supported by gene expression data from natural M2 lesions of dairy cattle. This gene expression analysis could highlight the preference in strategy for T. phagedenis to persist and adhere in the host rather than engage in motility and disseminate.
Collapse
Affiliation(s)
- Colton Scott
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angelica P. Dias
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Kokubu E, Kikuchi Y, Okamoto-Shibayama K, Nakamura S, Ishihara K. Crawling motility of Treponema denticola modulated by outer sheath protein. Microbiol Immunol 2021; 65:551-558. [PMID: 34499368 DOI: 10.1111/1348-0421.12940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Treponema denticola, a helically shaped motile microorganism, is a major pathogen of chronic periodontitis. Major surface protein (Msp) and dentilisin are virulence factors of T. denticola that are located on the outer sheath. The motility of T. denticola is deeply involved in colonization on and invasion into the host tissue. The outer sheath is located at the interface between the environment and T. denticola, and its components may also contribute to its motility via interaction with the materials outside the cells. The study aimed to clarify whether Msp or dentilisin contributes to the motility of T. denticola on solid surfaces, termed crawling, by investigating their effects using Msp-deficient and dentilisin-deficient T. denticola strains. Motility was analyzed by measuring the colony size in agar plates and velocity was analyzed using dark-field microscopy. The colony area of the mutant strains was smaller than that of the wild-type strain. The crawling velocity of the mutant strains was lower than that of the wild-type strain, with the lowest velocity observed in the dentilisin-deficient strain. Additionally, the ratio of the crawling distance by one revolution to the protoplasmic cylinder pitch (an indicator of the crawling efficiency) in the dentilisin mutant was significantly lower than that in the wild type strain and the Msp mutant. Together, these results indicate that dentilisin facilitates the crawling-dependent surface spreading of T. denticola.
Collapse
Affiliation(s)
- Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Kazuko Okamoto-Shibayama
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
3
|
Tanno-Nakanishi M, Kikuchi Y, Kokubu E, Yamada S, Ishihara K. Treponema denticola transcriptional profiles in serum-restricted conditions. FEMS Microbiol Lett 2019; 365:5049473. [PMID: 29982599 DOI: 10.1093/femsle/fny171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Treponema denticola is a major pathogen in periodontal disease and is frequently isolated from the lesions of patients with chronic periodontitis. Treponema denticola utilizes serum components as nutrient sources so as to colonize and proliferate in the gingival crevice. However, the mechanisms of serum utilization remain unclear. Therefore, the aim of the present study was to identify T. denticola serum utilization genes. Precultured T. denticola cells were suspended in a tryptone-yeast extract-gelatin-volatile fatty acids medium containing 0, 1% and 10% serum, respectively, and incubated anaerobically for 17 h. Total RNA was isolated, and T. denticola gene expression was compared by microarray and reverse transcription-polymerase chain reaction. In serum-depleted conditions, the expression levels of a potential hydroxylamine reductase, several ABC transporters, and phosphoenolpyruvate synthase were increased, while those of genes encoding methyl-accepting chemotaxis proteins and a transcriptional regulator were decreased. These results suggest that T. denticola may uptake serum components mainly through the action of ABC transporters. In particular, the decrease in the dmcA expression level with decreasing serum concentration suggests its involvement in chemotaxis toward serum-rich environments.
Collapse
Affiliation(s)
- Mariko Tanno-Nakanishi
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.,Oral Health Science Center, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.,Oral Health Science Center, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Satoru Yamada
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.,Oral Health Science Center, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
4
|
A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc Natl Acad Sci U S A 2019; 116:14955-14960. [PMID: 31270241 DOI: 10.1073/pnas.1904234116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to β-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable μ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O2 2-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.
Collapse
|
5
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
6
|
Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog 2016; 94:60-9. [DOI: 10.1016/j.micpath.2015.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
7
|
Prevalence of Treponema Species Detected in Endodontic Infections: Systematic Review and Meta-regression Analysis. J Endod 2015; 41:579-87. [DOI: 10.1016/j.joen.2015.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/25/2014] [Accepted: 01/17/2015] [Indexed: 11/20/2022]
|
8
|
Kanamycin Resistance Cassette for Genetic Manipulation of Treponema denticola. Appl Environ Microbiol 2015; 81:4329-38. [PMID: 25888173 DOI: 10.1128/aem.00478-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022] Open
Abstract
Treponema denticola has been recognized as an important oral pathogen of the "red complex" bacterial consortium that is associated with the pathogenesis of endodontal and periodontal diseases. However, little is known about the virulence of T. denticola due to its recalcitrant genetic system. The difficulty in genetically manipulating oral spirochetes is partially due to the lack of antibiotic resistance cassettes that are useful for gene complementation following allelic replacement mutagenesis. In this study, a kanamycin resistance cassette was identified and developed for the genetic manipulation of T. denticola ATCC 35405. Compared to the widely used ermF-ermAM cassette, the kanamycin cassette used in the transformation experiments gave rise to additional antibiotic-resistant T. denticola colonies. The kanamycin cassette is effective for allelic replacement mutagenesis as demonstrated by inactivation of two open reading frames of T. denticola, TDE1430 and TDE0911. In addition, the cassette is also functional in trans-chromosomal complementation. This was determined by functional rescue of a periplasmic flagellum (PF)-deficient mutant that had the flgE gene coding for PF hook protein inactivated. The integration of the full-length flgE gene into the genome of the flgE mutant rescued all of the defects associated with the flgE mutant that included the lack of PF filament and spirochetal motility. Taken together, we demonstrate that the kanamycin resistance gene is a suitable cassette for the genetic manipulation of T. denticola that will facilitate the characterization of virulence factors attributed to this important oral pathogen.
Collapse
|
9
|
Abiko Y, Nagano K, Yoshida Y, Yoshimura F. Major membrane protein TDE2508 regulates adhesive potency in Treponema denticola. PLoS One 2014; 9:e89051. [PMID: 24586498 PMCID: PMC3931704 DOI: 10.1371/journal.pone.0089051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022] Open
Abstract
The cultivation and genetic manipulation of Treponema denticola, a Gram-negative oral spirochaeta associated with periodontal diseases, is still challenging. In this study, we formulated a simple medium based on a commercially available one, and established a transformation method with high efficiency. We then analyzed proteins in a membrane fraction in T. denticola and identified 16 major membrane-associated proteins, and characterized one of them, TDE2508, whose biological function was not yet known. Although this protein, which exhibited a complex conformation, was presumably localized in the outer membrane, we did not find conclusive evidence that it was exposed on the cell surface. Intriguingly, a TDE2508-deficient mutant exhibited significantly increased biofilm formation and adherent activity on human gingival epithelial cells. However, the protein deficiency did not alter autoaggregation, coaggregation with Porphyromonas gingivalis, hemagglutination, cell surface hydrophobicity, motility, or expression of Msp which was reported to be an adherent molecule in this bacteria. In conclusion, the major membrane protein TDE2508 regulates biofilm formation and the adhesive potency of T. denticola, although the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Yuki Abiko
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Inactivation of cyclic Di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J Bacteriol 2013; 195:3897-905. [PMID: 23794624 DOI: 10.1128/jb.00610-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a ubiquitous second messenger, cyclic dimeric GMP (c-di-GMP) has been studied in numerous bacteria. The oral spirochete Treponema denticola, a periodontal pathogen associated with human periodontitis, has a complex c-di-GMP signaling network. However, its function remains unexplored. In this report, a PilZ-like c-di-GMP binding protein (TDE0214) was studied to investigate the role of c-di-GMP in the spirochete. TDE0214 harbors a PilZ domain with two signature motifs: RXXXR and DXSXXG. Biochemical studies showed that TDE0214 binds c-di-GMP in a specific manner, with a dissociation constant (Kd) value of 1.73 μM, which is in the low range compared to those of other reported c-di-GMP binding proteins. To reveal the role of c-di-GMP in T. denticola, a TDE0214 deletion mutant (TdΔ214) was constructed and analyzed in detail. First, swim plate and single-cell tracking analyses showed that TdΔ214 had abnormal swimming behaviors: the mutant was less motile and reversed more frequently than the wild type. Second, we found that biofilm formation of TdΔ214 was substantially repressed (∼6.0-fold reduction). Finally, in vivo studies using a mouse skin abscess model revealed that the invasiveness and ability to induce skin abscesses and host humoral immune responses were significantly attenuated in TdΔ214, indicative of the impact that TDE0214 has on the virulence of T. denticola. Collectively, the results reported here indicate that TDE0214 plays important roles in motility, biofilm formation, and virulence of the spirochete. This report also paves a way to further unveil the roles of the c-di-GMP signaling network in the biology and pathogenicity of T. denticola.
Collapse
|
11
|
Porphyromonas gingivalis Outer Membrane Vesicles Mediate Coaggregation and Piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Int J Dent 2013; 2013:305476. [PMID: 23365576 PMCID: PMC3556864 DOI: 10.1155/2013/305476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/28/2012] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis sheds outer membrane vesicles that contain several virulence factors, including adhesins. In this study, we investigated the ability of P. gingivalis outer membrane vesicles to mediate the coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Marked coaggregation between T. denticola and L. saburreum occurred in the presence of P. gingivalis outer membrane vesicles. Sucrose was an effective chemoattractant for the motile species T. denticola. The addition of outer membrane vesicles to a mixture of T. denticola and L. saburreum significantly increased the number of nonmotile bacteria that migrated into a sucrose-filled capillary tube immersed in the bacterial mixture. Under optimal conditions, the number of nonmotile L. saburreum in the capillary tube increased approximately 5-fold, whereas no increase occurred when boiled vesicles were used. This study showed that P. gingivalis outer membrane vesicles mediate coaggregation between T. denticola and L. saburreum and that nonmotile bacteria can be translocated by piggybacking on spirochetes.
Collapse
|
12
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Visser M, Ellen R. New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect 2011; 17:502-12. [DOI: 10.1111/j.1469-0691.2011.03460.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Frederick JR, Sarkar J, McDowell JV, Marconi RT. Molecular signaling mechanisms of the periopathogen, Treponema denticola. J Dent Res 2011; 90:1155-63. [PMID: 21447698 DOI: 10.1177/0022034511402994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the healthy subgingiva, oral treponemes account for a small percentage of the total bacteria. However, in diseased periodontal pockets, treponemes thrive and become a dominant component of the bacterial population. Oral treponemes are uniquely adept at capitalizing on the environmental conditions that develop with periodontal disease. The molecular basis of adaptive responses of oral treponemes is just beginning to be investigated and defined. The completion of several treponeme genome sequences and the characterization of global regulatory systems provide an important starting point in the analysis of signaling and adaptive responses. In this review, we discuss existing literature focused on the genetic regulatory mechanisms of Treponema denticola and present an overview of the possible roles of regulatory proteins identified through genome analyses. This information provides insight into the possible molecular mechanisms utilized by oral spirochetes to survive in the periodontal pocket and transition from a minor to a dominant organism.
Collapse
Affiliation(s)
- J R Frederick
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|
15
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|