1
|
do Amaral COF, Kantovitiz KR, de Araújo VC, Marega T, Teixeira LN, Martinez EF. Assessment of dental and periodontal indices and Streptococcus mutans virulence in fragile X syndrome patients. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:1026-1035. [PMID: 38717133 DOI: 10.1111/jir.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the most common cause of hereditary genetic disorder in a single gene characterised by intellectual disability. Behavioural features such as autism, hyperactivity and anxiety disorder may be present. Biofilm development and pathogenicity of Streptococcus mutans may be altered because FXS renders the dental approach and oral hygiene more complex. OBJECTIVES The purpose of this study was to compare the levels of transcripts for VicRK and CovR of S. mutans isolated from FXS patients with the levels of transcripts for VicRK and CovR of standard strain ATCC, using a quantitative polymerase chain reaction (qPCR). METHODS The caries experience index was assessed by the International Caries Detection and Assessment System (ICDAS), Periodontal Condition Index (PCI) and Invasive Dental Treatment Need Index (INI). RESULTS The clinical index findings revealed a high rate of caries cavities and bleeding on probing of FXS patients. When VicRK and CovR transcript levels were compared with the reference strain, Fragile X patients were found to have significantly higher values. CONCLUSION The present study demonstrated that FXS patients have more adverse clinical conditions, with increased biofilm accumulation and virulence. When combined with behavioural abnormalities, these patients become even more vulnerable to dental caries.
Collapse
Affiliation(s)
- Cristhiane Olivia Ferreira do Amaral
- Division of Special Care, Faculdade São Leopoldo Mandic, Campinas, Brazil
- Department of Special Care Dentistry, Dental School, Universidade do Oeste Paulista - UNOESTE, Presidente Prudente, Brazil
| | | | - V C de Araújo
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | - T Marega
- Division of Special Care, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | - L N Teixeira
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | - E F Martinez
- Division of Cell Biology, Faculdade São Leopoldo Mandic, Campinas, Brazil
| |
Collapse
|
2
|
Yu Y, Guo X, Chen J, Zhao Y, Song J, Alshawwa H, Zou X, Zhao H, Zhang Z. Biodegradation of Urethane Dimethacrylate-based materials (CAD/CAM resin-ceramic composites) and its effect on the adhesion and proliferation of Streptococcus mutans. J Mech Behav Biomed Mater 2024; 150:106280. [PMID: 38043260 DOI: 10.1016/j.jmbbm.2023.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE To investigate whether urethane dimethacrylate (UDMA) -based dental restorative materials biodegrade in the presence of Streptococcus mutans (S. mutans) and whether the monomers affect the adhesion and proliferation of S. mutans in turn. METHODS Cholesterol esterase and pseudocholinesterase-like activities in S. mutans were detected using p-nitrophenyl substrate. Two UDMA-based CAD/CAM resin-ceramic composites, Lava Ultimate (LU) and Vita Enamic (VE), and a light-cured UDMA resin block were co-cultured with S. mutans for 14 days. Their surfaces were characterized by scanning electron microscopy and laser microscopy, and the byproducts of biodegradation were examined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Then, the antimicrobial components (silver nanoparticles with quaternary ammonium salts) were added to the UDMA resin block to detect whether the biodegradation was restrained. Finally, the effect of UDMA on biofilm formation and virulence expression of S. mutans was assessed. RESULTS Following a 14-day immersion, the LU and UDMA resin blocks' surface roughness increased. The LU and VE groups had no UDMA or its byproducts discovered, according to the UPLC-MS/MS data, whereas the light-cured UDMA block group had UDMA, urethane methacrylate (UMA), and urethane detected. The addition of antimicrobial agents showed a significant reduction in the release of UDMA. Biofilm staining experiments showed that UDMA promoted the growth of S. mutans biofilm and quantitative real-time polymerase chain reaction results indicated that 50 μg/mL UDMA significantly increase the expression of gtfB, comC, comD, comE, and gbpB genes within the biofilm. CONCLUSIONS UDMA in the light-cured resin can be biodegraded to produce UMA and urethane under the influence of S. mutans. The formation of early biofilm can be promoted and the expression of cariogenic genes can be up-regulated by UDMA. CLINICAL SIGNIFICANCE This study focuses for the first time on whether UDMA-based materials can undergo biodegradation and verifies from a genetic perspective that UDMA can promote the formation of S. mutans biofilms, providing a reference for the rational use of UDMA-based materials in clinical practice.
Collapse
Affiliation(s)
- Yiyan Yu
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Xinwei Guo
- School of Stomatology, Peking University, Beijing, China
| | - Jiawen Chen
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Yuanhang Zhao
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Jiazhuo Song
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Hamed Alshawwa
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Xinying Zou
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Khalaf ME, Karched M, Shawaf NA, Qudeimat MA. In vitro investigation of the impact of contemporary restorative materials on cariogenic bacteria counts and gene expression. J Dent 2023; 133:104486. [PMID: 36997083 DOI: 10.1016/j.jdent.2023.104486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare the antibacterial effect of different fluoride-containing and bioactive restorative materials, and their effect on the expression of specific biofilm-associated genes and therefore the caries process. MATERIALS AND METHODS The restorative materials utilized in this study included: 1. Filtek Z250, 2. Fuji II LC, 3. Beautifil II, 4. ACTIVA, and 5. Biodentine. For each material, disc-shaped specimens were prepared. The inhibitory effects against Streptococcus mutans, Lactobacillus acidophilus, and Leptotrichia shahii were tested. After incubation for 24 hours and 1 week, colony-forming units (CFUs) were enumerated. From the plates dedicated for biomass quantification and RNA purification, the target glucosyltransferase B (gtfB) and glucan-binding protein B (gbpB) genes were chosen for S. mutans. For L. acidophilus, a gene involved in exopolysaccharide synthesis (epsB) was chosen. RESULTS Except for Filtek Z250, all four materials showed statistically significant inhibitory effects on the biofilms of all three species. When biofilms were grown in the presence of the same four materials, the expression of S. mutans gtfB and gbpB genes, was significantly reduced. For L. acidophilus, the decrease in the expression of gtfB gene in the presence of ACTIVA was the highest change seen. The epsB gene expression also decreased. Compared to fluoride-releasing materials, bioactive materials had more inhibitory effect against L. acidophilus, both at 24 hours and 1 week. CONCLUSIONS Both fluoride releasing and bioactive materials exhibited a significant inhibitory effect on the biofilm growth. The expression of the targeted biofilm-associated genes was downregulated by both material groups. CLINICAL SIGNIFICANCE The findings from this study give insight into the antibacterial effect of fluoride-containing and bioactive materials which would help to reduce the chances for secondary caries and therefore increase the lifetime of dental restorations placed for patients.
Collapse
|
4
|
Effect of Extracts, Fractions, and Isolated Molecules of Casearia sylvestris to Control Streptococcus mutans Cariogenic Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020329. [PMID: 36830240 PMCID: PMC9952592 DOI: 10.3390/antibiotics12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The effects of extracts, fractions, and molecules of Casearia sylvestris to control the cariogenic biofilm of Streptococcus mutans were evaluated. First, the antimicrobial and antibiofilm (initial and pre-formed biofilms) in prolonged exposure (24 h) models were investigated. Second, formulations (with and without fluoride) were assessed for topical effects (brief exposure) on biofilms. Third, selected treatments were evaluated via bacterium growth inhibition curves associated with gene expression and scanning electron microscopy. In initial biofilms, the ethyl acetate (AcOEt) and ethanolic (EtOH) fractions from Brasília (BRA/DF; 250 µg/mL) and Presidente Venceslau/SP (Water/EtOH 60:40 and Water/EtOH 40:60; 500 µg/mL) reduced ≥6-logs vs. vehicle. Only the molecule Caseargrewiin F (CsF; 125 µg/mL) reduced the viable cell count of pre-formed biofilms (5 logs vs. vehicle). For topical effects, no formulation affected biofilm components. For the growth inhibition assay, CsF yielded a constant recovery of surviving cells (≅3.5 logs) until 24 h (i.e., bacteriostatic), and AcOEt_BRA/DF caused progressive cell death, without cells at 24 h (i.e., bactericidal). CsF and AcOEt_BRA/DF damaged S. mutans cells and influenced the expression of virulence genes. Thus, an effect against biofilms occurred after prolonged exposure due to the bacteriostatic and/or bactericidal capacity of a fraction and a molecule from C. sylvestris.
Collapse
|
5
|
Gu M, Cheng J, Lee YG, Cho JH, Suh JW. Discovery of Novel Iminosugar Compounds Produced by Lactobacillus paragasseri MJM60645 and Their Anti-Biofilm Activity against Streptococcus mutans. Microbiol Spectr 2022; 10:e0112222. [PMID: 35863019 PMCID: PMC9431463 DOI: 10.1128/spectrum.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
The oral cavity contains a number of microbes. They interact with each other and play an important role in human health. Among oral cariogenic microbes, Streptococcus mutans is recognized a major etiological bacteria of dental caries. Lactobacilli strains have been promoted as possible probiotic agents against S. mutans. However, their inhibitory mechanism has not been well elucidated yet. In the present study, two new compounds with strong antibiofilm activities were purified from the culture supernatant of Lactobacillus paragasseri MJM60645, which was isolated from the human oral cavity. These compounds showed strong inhibitory activities against S. mutans biofilm formation, with IC50 (concentration at which 50% biofilm was inhibited) of 30.4 μM for compound 1 and 18.9 μM for compound 2. However, these compounds did not show bactericidal activities against S. mutans. Structure elucidation by nuclear magnetic resonance (NMR) and mass spectrometry showed that compound 1 was composed of two arabinofuranose iminosugars jointed with one glycerol and oleic acid, and compound 2 was composed of two arabinofuranose iminosugars jointed with one glycerol and nervonic acid. To the best of our knowledge, these structures were discovered for the first time in this study. Treatment of S. mutans with compound 1 strongly downregulated expression levels of genes related to biofilm formation, including gtfB, gtfC, gtfD, gbpB, brpA, spaP, ftf, and smu0630 without affecting the expression of comDE or relA. This study provides new insights into novel molecules produced by Lactobacillus to regulate the pathogenesis of S. mutans, facilitating a better understanding of the mechanism for interactions between Lactobacillus and S. mutans. IMPORTANCE In this study, we isolated lactic acid bacteria that inhibit streptococcal biofilm from the oral cavity of infants and identified two novel compounds from the supernatant of their culture broth. The two compounds are structurally similar, and both consist of iminosugars, glycerol, and unsaturated fatty acid. A search of the SciFinder database revealed that these structures are novel and were discovered for the first time in this study. Mechanism studies have shown that these compounds can inhibit the expression of biofilm synthesis-related genes. This is the first report that lactic acid bacteria inhibit streptococcal biofilms by small molecules with new chemical structures. This study not only expands the understanding of natural products derived from lactic acid bacteria but also provides a new paradigm for the understanding of the interaction of bacteria in the oral microbiota.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
6
|
Oliveira LT, Alves LA, Harth-Chu EN, Nomura R, Nakano K, Mattos-Graner RO. VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections. J Med Microbiol 2021; 70. [PMID: 34939562 DOI: 10.1099/jmm.0.001457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Collapse
Affiliation(s)
- Letícia T Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
7
|
The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism. Int J Oral Sci 2021; 13:45. [PMID: 34916484 PMCID: PMC8677823 DOI: 10.1038/s41368-021-00149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans (S. mutans) is generally regarded as a major contributor to dental caries because of its ability to synthesize extracellular polysaccharides (EPS) that aid in the formation of plaque biofilm. The VicRKX system of S. mutans plays an important role in biofilm formation. The aim of this study was to investigate the effects of vicK gene on specific characteristics of EPS in S. mutans biofilm. We constructed single-species biofilms formed by different mutants of vicK gene. Production and distribution of EPS were detected through atomic force microscopy, scanning electron microscopy and confocal laser scanning microscopy. Microcosmic structures of EPS were analyzed by gel permeation chromatography and gas chromatography-mass spectrometry. Cariogenicity of the vicK mutant was assessed in a specific pathogen-free rat model. Transcriptional levels of cariogenicity-associated genes were confirmed by quantitative real-time polymerase chain reaction. The results showed that deletion of vicK gene suppressed biofilm formation as well as EPS production, and EPS were synthesized mostly around the cells. Molecular weight and monosaccharide components underwent evident alterations. Biofilms formed in vivo were sparse and contributed a decreased degree of caries. Moreover, expressional levels of genes related to EPS synthesis were down-regulated, except for gtfB. Our report demonstrates that vicK gene enhances biofilm formation and subsequent caries development. And this may due to its regulations on EPS metabolism, like synthesis or microcosmic features of EPS. This study suggests that vicK gene and EPS can be considered as promising targets to modulate dental caries.
Collapse
|
8
|
Genetic and physiological effects of subinhibitory concentrations of oral antimicrobial agents on Streptococcus mutans biofilms. Microb Pathog 2020; 150:104669. [PMID: 33278519 DOI: 10.1016/j.micpath.2020.104669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
Streptococcus mutans is the main etiological agent of dental caries because of its capacity to adhere to enamel structure and form biofilms. This study aimed to evaluate the effects of the anticariogenic agents - sodium fluoride (NaF) and chlorhexidine (CHX) - at levels below minimum inhibitory concentrations (sub-MICs) on the growth of planktonic cells and biofilms and on the expression of vicR and covR genes associated with the regulation of biofilm formation. MICs and minimum bactericidal concentrations (MBCs) of NaF and CHX were determined for S. mutans strains ATCC25175, UA159 and 3VF2. Growth curves were constructed for planktonic cells cultured in brain heart infusion (BHI) broth supplemented with NaF (0.125-0.75MIC) or CHX (0.25-0.75MIC). Biofilm formation assays were performed in microplates containing CHX or NaF at 0.5-1.0MIC and stained with violet crystal. Quantitative polymerase chain reaction determined the alterations in covR and vicR expression in cells exposed to antimicrobials at sub-MIC levels. NaF and CHX at sub-MIC levels affected the growth of planktonic cells of all three S. mutans strains, depending on the concentration tested. The biofilm formation in UA159 and 3VF2 was reduced by NaF at concentrations ≥0.5 MIC, while that of ATCC 25175 was reduced significantly irrespective of dose. In contrast, UA159 and 3VF2 biofilms were not affected by CHX at these levels, whereas those of ATCC 25175 were reduced significantly at all concentrations tested. Under sub-MIC conditions, CHX and (to a lesser degree) NaF increased vicR and covR expression in all three strains, although there were large differences between strains and treatment conditions employed. CHX and NaF at sub-MIC levels influence on the growth of S. mutans in planktonic and biofilm conditions and on transcript levels of biofilm-associated genes vicR and covR, in a dose-dependent manner.
Collapse
|
9
|
Alves LA, Ganguly T, Harth-Chú ÉN, Kajfasz J, Lemos JA, Abranches J, Mattos-Graner RO. PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence 2020; 11:521-536. [PMID: 32427040 PMCID: PMC7239026 DOI: 10.1080/21505594.2020.1767377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans, a cariogenic species, is often associated with cardiovascular infections. Systemic virulence of specific S. mutans serotypes has been associated with the expression of the collagen- and laminin-binding protein Cnm, which is transcriptionally regulated by VicRK and CovR. In this study, we characterized a VicRK- and CovR-regulated gene, pepO, coding for a conserved endopeptidase. Transcriptional and protein analyses revealed that pepO is highly expressed in S. mutans strains resistant to complement immunity (blood isolates) compared to oral isolates. Gel mobility assay, transcriptional, and Western blot analyses revealed that pepO is repressed by VicR and induced by CovR. Deletion of pepO in the Cnm+ strain OMZ175 (OMZpepO) or in the Cnm- UA159 (UApepO) led to an increased susceptibility to C3b deposition, and to low binding to complement proteins C1q and C4BP. Additionally, pepO mutants showed diminished ex vivo survival in human blood and impaired capacity to kill G. mellonella larvae. Inactivation of cnm in OMZ175 (OMZcnm) resulted in increased resistance to C3b deposition and unaltered blood survival, although both pepO and cnm mutants displayed attenuated virulence in G. mellonella. Unlike OMZcnm, OMZpepO could invade HCAEC endothelial cells. Supporting these phenotypes, recombinant proteins rPepO and rCnmA showed specific profiles of binding to C1q, C4BP, and to other plasma (plasminogen, fibronectin) and extracellular matrix proteins (type I collagen, laminin). Therefore this study identifies a novel VicRK/CovR-target required for immune evasion and host persistence, pepO, expanding the roles of VicRK and CovR in regulating S. mutans virulence.
Collapse
Affiliation(s)
- Lívia A. Alves
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Érika N. Harth-Chú
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| | - Jessica Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
10
|
Akgül Ö, Topaloğlu Ak A, Zorlu S, Öner Özdaş D, Uslu M, Çayirgan D. Effects of short-term xylitol chewing gum on pro-inflammatory cytokines and Streptococcus mutans: A randomised, placebo-controlled trial. Int J Clin Pract 2020; 74:e13623. [PMID: 32729244 DOI: 10.1111/ijcp.13623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Dental caries is an infectious disease with predominantly of cariogenic bacteria such as Streptococcus mutans (S mutans). Xylitol is considered as one of the effective agents that can limit this dental infection. In this randomised, placebo-controlled trial, we aimed to evaluate the potential reflection of short-term xylitol consumption on pro-inflammatory cytokines (TNF-α, IL-6 and IL-8) and S mutans counts by ELISA and qPCR (Quantitative real-time PCR), respectively. METHODS In this study, 154 participants were assigned to two groups, control and xylitol. Dental examination, saliva and swab samples were done at baseline and at 3-week for clinical and microbiological assessment. RESULTS In xylitol group at the end of 3-week, gingival and plaque index scores were significantly decreased with respect to baseline values (P < .001 and P < .05, respectively). The salivary concentration of TNF-α, IL-6 and IL-8 were statistically declined at 3-week, more so than those at baseline in xylitol group (P < .001). S mutans expression was reduced about fivefold at 3-week use of xylitol and it was a statistically significant difference compared to baseline (P < .001). CONCLUSION Intriguingly, even short-term consumption of xylitol might play a favourable role in maintaining the oral health status, possibly as a result of decreasing the release of pro-inflammatory cytokines and the counts of S mutans. Nonetheless, this investigation warrants further endorsement.
Collapse
Affiliation(s)
- Özer Akgül
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Aslı Topaloğlu Ak
- Department of Pedodontics, School of Dentistry, Istanbul Aydin University, Istanbul, Turkey
| | - Sevgi Zorlu
- Department of Pedodontics, School of Dentistry, Istanbul Aydin University, Istanbul, Turkey
| | - Didem Öner Özdaş
- Department of Pedodontics, School of Dentistry, Istanbul Aydin University, Istanbul, Turkey
| | - Melisa Uslu
- Department of Pedodontics, School of Dentistry, Istanbul Aydin University, Istanbul, Turkey
| | - Dilara Çayirgan
- Department of Pedodontics, School of Dentistry, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
11
|
Harth-Chu EN, Alves LA, Theobaldo JD, Salomão MF, Höfling JF, King WF, Smith DJ, Mattos-Graner RO. PcsB Expression Diversity Influences on Streptococcus mitis Phenotypes Associated With Host Persistence and Virulence. Front Microbiol 2019; 10:2567. [PMID: 31798545 PMCID: PMC6861525 DOI: 10.3389/fmicb.2019.02567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
Collapse
Affiliation(s)
- Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Jéssica D Theobaldo
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Mariana F Salomão
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - William F King
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Daniel J Smith
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
12
|
Park M, Sutherland JB, Rafii F. Effects of nano-hydroxyapatite on the formation of biofilms by Streptococcus mutans in two different media. Arch Oral Biol 2019; 107:104484. [PMID: 31382161 DOI: 10.1016/j.archoralbio.2019.104484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of nano-hydroxyapatite (nHA) on biofilm formation by Streptococcus mutans, which is actively involved in the initiation of dental caries. DESIGN The effects of nHA on growth and biofilm formation by S. mutans were investigated in two media: a saliva analog medium, basal medium mucin (BMM); and a nutrient-rich medium, brain heart infusion (BHI); in the presence and absence of sucrose. RESULTS Sucrose enhanced the growth of S. mutans in both media. In the presence of sucrose, nHA enhanced bacterial growth and biofilm formation more in BMM medium than in BHI. nHA also affected the transcription of glucosyltransferase (gtf) genes and production of polysaccharide differently in the two media. In BHI medium, the transcription of all three gtf genes, coding for enzymes that synthesize soluble and insoluble glucans from sucrose, was increased more than 3-fold by nHA. However, in BMM medium, only the transcription of gtfB and gtfC, coding for insoluble glucans, was substantially enhanced by nHA. CONCLUSIONS nHA appeared to enhance biofilm formation by increasing glucosyltransferase transcription, which resulted in an increase in production of insoluble glucans. This effect was influenced by the growth conditions.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
13
|
Wang S, Wang Y, Wang Y, Duan Z, Ling Z, Wu W, Tong S, Wang H, Deng S. Theaflavin-3,3'-Digallate Suppresses Biofilm Formation, Acid Production, and Acid Tolerance in Streptococcus mutans by Targeting Virulence Factors. Front Microbiol 2019; 10:1705. [PMID: 31404326 PMCID: PMC6676744 DOI: 10.3389/fmicb.2019.01705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
As one of the most important cariogenic pathogens, Streptococcus mutans has strong abilities to form biofilms, produce acid and tolerate acid. In present study, we found that theaflavin-3,3′-digallate (TF3) had an inhibitory effect on S. mutans UA159 in vitro. Visualized by field emission-scanning electron microscopy, the suppressed formation of S. mutans biofilms grown with TF3 at sub-inhibitory concentrations could be attributed to the reduced biofilm matrix, which was proven to contain glucans and extracellular DNA (eDNA). Glucan-reduced effect of TF3 was achieved by down-regulating expression levels of gtfB, gtfC, and gtfD encoding glucosyltransferases. Besides, TF3 reduced eDNA formation of S. mutans by negatively regulating lrgA, lrgB, and srtA, which govern cell autolysis and membrane vesicle components. Furthermore, TF3 also played vital roles in antagonizing preformed biofilms of S. mutans. Bactericidal effects of TF3 became significant when its concentrations increased more than twofold of minimum inhibitory concentration (MIC). Moreover, the capacities of S. mutans biofilms to produce acid and tolerate acid were significantly weakened by TF3 at MIC. Based on real-time PCR (RT-PCR) analysis, the mechanistic effects of TF3 were speculated to comprise the inhibition of enolase, lactate dehydrogenase, F-type ATPase and the agmatine deiminase system. Moreover, TF3 has been found to downregulate LytST, VicRK, and ComDE two component systems in S. mutans, which play critical roles in the regulatory network of virulence factors. Our present study found that TF3 could suppress the formation and cariogenic capacities of S. mutans biofilms, which will provide new strategies for anti-caries in the future.
Collapse
Affiliation(s)
- Sa Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuhui Duan
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenzhi Wu
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Suman Tong
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuli Deng
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Bachtiar EW, Bachtiar BM. Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000Res 2018; 7:1645. [PMID: 30450201 PMCID: PMC6221075 DOI: 10.12688/f1000research.16275.2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 01/16/2023] Open
Abstract
Background: The aim of this study was to analyze the synergistic relationship between
Candida albicans and
Streptococcus mutans in children with early childhood caries (ECC) experience. Methods: Dental plaque and unstimulated saliva samples were taken from 30 subjects aged 3-5 years old, half with (n=15, dmft > 4) and half without (n=15) ECC. The abundance of
C. albicans and
S. mutans and relative to total bacteria load were quantify by real-time PCR (qPCR). This method was also employed to investigate the mRNA expression of glycosyltransferase (
gtfB) gene in dental plaque. Student’s t-test and Pearson’s correlation were used to perform statistical analysis. Results: Within the ECC group, the quantity of both microorganisms were higher in the saliva than in dental plaque. The ratio of
C. albicans to total bacteria was higher in saliva than in plaque samples (p < 0.05). We observed the opposite for
S. mutans (p < 0.05). The different value of
C. albicans and
S. mutans in saliva was positively correlated, and negatively correlated in dental plaque. Transcription level of
S. mutans gtfB showed a positive correlation with
C. albicans concentration in dental plaque. Conclusion:C. albicans has a positive correlation with cariogenic traits of
S. mutans in ECC-related biofilm of young children.
Collapse
Affiliation(s)
- Endang W Bachtiar
- Oral Biology and Oral Science Research Center Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Boy M Bachtiar
- Oral Biology and Oral Science Research Center Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
15
|
Novel Two-Component System of Streptococcus sanguinis Affecting Functions Associated with Viability in Saliva and Biofilm Formation. Infect Immun 2018; 86:IAI.00942-17. [PMID: 29339459 DOI: 10.1128/iai.00942-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.
Collapse
|
16
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
17
|
Zhu W, Liu S, Zhuang P, Liu J, Wang Y, Lin H. Characterization of acid‑tolerance‑associated small RNAs in clinical isolates of Streptococcus mutans: Potential biomarkers for caries prevention. Mol Med Rep 2017; 16:9242-9250. [PMID: 29039505 DOI: 10.3892/mmr.2017.7751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/18/2017] [Indexed: 11/05/2022] Open
Abstract
Streptococcus mutans is a cariogenic bacterium that contributes to dental caries due to its ability to produce lactic acid, which acidifies the local environment. The potential of S. mutans to respond to environmental stress and tolerate low pH is essential for its survival and predominance in caries lesions. Small noncoding RNAs (sRNAs) have been reported to be involved in bacterial stress and virulence. Few studies have investigated the sRNAs of S. mutans and the function of these sRNAs remains to be elucidated. In the present study, the association between sRNA133474 and acid tolerance, including potential underlying mechanisms, were investigated within clinical strains of S. mutans. From pediatric dental plaques, 20 strains of S. mutans were isolated. An acid killing assay was performed to analyze acid tolerance of S. mutans. Expression patterns of sRNA133474 were investigated during various growth phases under various acidic conditions via reverse transcription‑quantitative polymerase chain reaction. RNA predator and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict target mRNAs of sRNA133474 and to examine the involvement of putative pathways of target mRNAs, respectively. The results of the present study demonstrated that sRNA133474 activity was growth phase‑dependent, and two distinct expression patterns were identified in 10 clinical strains. At pH 5.5 and 7.5 the expression levels of sRNA133474 were significantly different, and high‑acid tolerant strains exhibited reduced expression levels of sRNA133474 compared with low‑acid tolerant strains. A correlation between sRNA133474 expression levels and acid tolerance was observed in 20 clinical isolates of S. mutans (r=‑0.6298, P<0.01). Finally, five target mRNAs (liaS, liaR, comE, covR and ciaR) involved in the two‑component system (TCS) were selected for further evaluation; the expression levels of three target mRNAs (liaR, ciaR and covR) were negatively correlated with sRNA133474 expression levels. In conclusion, the results of the present study suggested that S. mutans may utilize sRNA133474 to orchestrate TCSs for optimal adaption to acidic pH in clinical strains.
Collapse
Affiliation(s)
- Wenhui Zhu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Shanshan Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Peilin Zhuang
- Department of Stomatology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Huancai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
18
|
Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol 2017; 32:419-431. [PMID: 28382721 DOI: 10.1111/omi.12183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Collapse
Affiliation(s)
- Livia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thais H Palma
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry - University of Florida, Gainesville, FL, USA
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
19
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Merritt J, Santerre JP, Finer Y. Mechanistic, genomic and proteomic study on the effects of BisGMA-derived biodegradation product on cariogenic bacteria. Dent Mater 2016; 33:175-190. [PMID: 27919444 DOI: 10.1016/j.dental.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Investigate the effects of a Bis-phenyl-glycidyl-dimethacrylate (BisGMA) biodegradation product, bishydroxypropoxyphenyl-propane (BisHPPP), on gene expression and protein synthesis of cariogenic bacteria. METHODS Quantitative real-time polymerase chain reaction was used to investigate the effects of BisHPPP on the expression of specific virulence-associated genes, i.e. gtfB, gtfC, gbpB, comC, comD, comE and atpH in Streptococcus mutans UA159. Possible mechanisms for bacterial response to BisHPPP were explored using gene knock-out and associated complemented strains of the signal peptide encoding gene, comC. The effects of BisHPPP on global gene and protein expression was analyzed using microarray and quantitative proteomics. The role of BisHPPP in glucosyltransferase (GTF) enzyme activity of S. mutans biofilms was also measured. RESULTS BisHPPP (0.01, 0.1mM) up-regulated gtfB/C, gbpB, comCDE, and atpH most pronounced in biofilms at cariogenic pH (5.5). The effects of BisHPPP on the constructed knock-out and complemented strains of comC from quorum-sensing system, implicated this signaling pathway in up-regulation of the virulence-associated genes. Microarray and proteomics identified BisHPPP-regulated genes and proteins involved in biofilm formation, carbohydrate transport, acid tolerance and stress-response. GTF activity was higher in BisHPPP-exposed biofilms when compared to no-BisHPPP conditions. SIGNIFICANCE These findings provide insight into the genetic and physiological pathways and mechanisms that help explain S. mutans adaptation to restorative conditions that are conducive to increased secondary caries around resin composite restorations and may provide guidance to clinicians' decision on the selection of dental materials when considering the long term oral health of patients and the interactions of composite resins with oral bacteria.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - J Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Santerre JP, Finer Y. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans. PLoS One 2016; 11:e0165760. [PMID: 27820867 PMCID: PMC5098727 DOI: 10.1371/journal.pone.0165760] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023] Open
Abstract
Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected genes. These findings demonstrate a mechanistic pathway by which TEG derived from commercial resin materials in the oral cavity promote S. mutans pathogenicity, which is typically associated with secondary caries.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L. Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - J. Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
22
|
Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4302706. [PMID: 27110563 PMCID: PMC4821976 DOI: 10.1155/2016/4302706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans). Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD) and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition.
Collapse
|
23
|
Halistanol sulfate A and rodriguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infect Immun 2014; 82:4941-51. [PMID: 25183732 DOI: 10.1128/iai.01850-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Collapse
|
25
|
Silva ACBD, Stipp RN, Mattos-Graner RDO, Sampaio FC, Araújo DAMD. Influence of Sub-Lethal and Lethal Concentrations of Chlorhexidine on Morphology and Glucosyltransferase Genes Expression in <i>Streptococcus mutans</i> UA159. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.413105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Haynes E, Helgason T, Young JPW, Thwaites R, Budge GE. A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:525-529. [PMID: 23864566 DOI: 10.1111/1758-2229.12057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Melissococcus plutonius is the bacterial pathogen that causes European Foulbrood of honeybees, a globally important honeybee brood disease. We have used next-generation sequencing to identify highly polymorphic regions in an otherwise genetically homogenous organism, and used these loci to create a modified MLST scheme. This synthesis of a proven typing scheme format with next-generation sequencing combines reliability and low costs with insights only available from high-throughput sequencing technologies. Using this scheme we show that the global distribution of M.plutonius variants is not uniform. We use the scheme in epidemiological studies to trace movements of infective material around England, insights that would have been impossible to confirm without the typing scheme. We also demonstrate the persistence of local variants over time.
Collapse
Affiliation(s)
- Edward Haynes
- University of York, Wentworth Way, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
28
|
CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS One 2013; 8:e58271. [PMID: 23554881 PMCID: PMC3595261 DOI: 10.1371/journal.pone.0058271] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/04/2013] [Indexed: 01/31/2023] Open
Abstract
The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose.
Collapse
|
29
|
Regulation of d-alanylation of lipoteichoic acid in Streptococcus gordonii. Microbiology (Reading) 2011; 157:2248-2256. [DOI: 10.1099/mic.0.048140-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d-Alanyl esters on lipoteichoic acid (LTA) are involved in adhesion, biofilm formation, resistance to cationic antimicrobial peptides, and immune stimulation. There is evidence that bacteria can modulate the level of d-alanyl esters on LTA in response to challenge, but the mechanism of regulation appears to be different among bacteria. In this study, expression of the dlt operon responsible for d-alanylation of LTA was examined in the commensal bacterium Streptococcus gordonii. dlt expression was assessed using the dlt promoter–lacZ reporter gene assay, LTA d-alanine content measurements and dlt mRNA quantification. The results showed that dlt expression was growth phase-dependent, with the greatest expression at the mid-exponential phase of growth. In contrast to Staphylococcus aureus, dlt expression in Strep. gordonii was not affected by the exogenous addition of Mg2+ or K+. Interestingly, dlt expression was upregulated under acidic conditions or when cells were stressed with polymyxin B, indicating that cell envelope stress may be a signal for dlt expression. In view of these results, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The liaS and liaR mutants showed an increase in dlt expression over the parent strain at neutral pH. The mutants failed to respond to low pH and polymyxin B stress; dlt expression remained the same in the presence or absence of these stresses. These results suggest that dlt expression in Strep. gordonii is regulated by the LiaSR regulatory system in response to environmental signals such as pH and polymyxin B. The regulation appears to be complex, involving both repression and activation mechanisms.
Collapse
|
30
|
A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. Antimicrob Agents Chemother 2011; 55:2679-87. [PMID: 21402858 DOI: 10.1128/aac.01496-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a major cariogenic bacterium. It has adapted to the biofilm lifestyle, which is essential for pathogenesis of dental caries. We aimed to identify small molecules that can inhibit cariogenic S. mutans and to discover lead structures that could give rise to therapeutics for dental caries. In this study, we screened a focused small-molecule library of 506 compounds. Eight small molecules which inhibited S. mutans at a concentration of 4 μM or less but did not affect cell growth or biofilm formation of commensal bacteria, represented by Streptococcus sanguinis and Streptococcus gordonii, in monospecies biofilms were identified. The active compounds share similar structural properties, which are characterized by a 2-aminoimidazole (2-AI) or 2-aminobenzimidazole (2-ABI) subunit. In multispecies biofilm models, the most active compound also inhibited cell survival and biofilm formation of S. mutans but did not affect commensal streptococci. This inhibitor downregulated the expression of six biofilm-associated genes, ftf, pac, relA, comDE, gbpB, and gtfB, in planktonic S. mutans cells, while it downregulated the expression of only ftf, pac, and relA in the biofilm cells of S. mutans. The most potent compound also inhibited production of two key adhesins of S. mutans, antigen I/II and glucosyltransferase (GTF). However, the compound did not alter the expression of the corresponding genes in both S. sanguinis and S. gordonii, indicating that it possesses a selective inhibitory activity against S. mutans.
Collapse
|
31
|
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45:69-86. [PMID: 21346355 PMCID: PMC3068567 DOI: 10.1159/000324598] [Citation(s) in RCA: 696] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/26/2011] [Indexed: 12/18/2022] Open
Abstract
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
Collapse
Affiliation(s)
- W H Bowen
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA.
| | | |
Collapse
|
32
|
Parisotto T, King W, Duque C, Mattos-Graner R, Steiner-Oliveira C, Nobre-dos-Santos M, Smith D. Immunological and Microbiologic Changes during Caries Development in Young Children. Caries Res 2011; 45:377-85. [DOI: 10.1159/000330230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/06/2011] [Indexed: 11/19/2022] Open
|
33
|
Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii. Appl Environ Microbiol 2010; 77:1660-6. [PMID: 21193663 DOI: 10.1128/aem.02178-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The charge density in the cell wall microenvironment of Gram-positive bacteria is believed to influence the expression of heterologous proteins. To test this, the expression of a SpaP-S1 fusion protein, consisting of the surface protein SpaP of Streptococcus mutans and a pertussis toxin S1 fragment, was studied in the live vaccine candidate bacterium Streptococcus gordonii. Results showed that the parent strain PM14 expressed very low levels of SpaP-S1. By comparison, the dlt mutant strain, which has a mutation in the dlt operon preventing d-alanylation of the cell wall lipoteichoic acids, and another mutant strain, OB219(pPM14), which lacks the LPXTG major surface proteins SspA and SspB, expressed more SpaP-S1 than the parent. Both the dlt mutant and the OB219(pPM14) strain had a more negatively charged cell surface than PM14, suggesting that the negative charged cell wall played a role in the increase in SpaP-S1 production. Accordingly, the addition of Ca(2+), Mg(2+), and K(+), presumably increasing the positive charge of the cell wall, led to a reduction in SpaP-S1 production, while the addition of bicarbonate resulted in an increase in SpaP-S1 production. The level of SpaP-S1 production could be correlated with the level of PrsA, a peptidyl-prolyl cis/trans isomerase, in the cells. PrsA expression appears to be regulated by the cell envelope stress two-component regulatory system LiaSR. The results collectively indicate that the charge density of the cell wall microenvironment can modulate heterologous SpaP-S1 protein expression in S. gordonii and that this modulation is mediated by the level of PrsA, whose expression is regulated by the LiaSR two-component regulatory system.
Collapse
|
34
|
Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun 2010; 79:786-96. [PMID: 21078847 DOI: 10.1128/iai.00725-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.
Collapse
|
35
|
Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 2010; 10:78. [PMID: 20233397 PMCID: PMC2846920 DOI: 10.1186/1471-2180-10-78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 03/16/2010] [Indexed: 01/15/2023] Open
Abstract
Background Streptococcus gallolyticus subsp. gallolyticus is an important causative agent of infective endocarditis (IE) but the knowledge on virulence factors is limited and the pathogenesis of the infection is poorly understood. In the present study, we established an experimental in vitro IE cell culture model using EA.hy926 and HUVEC cells to investigate the adhesion and invasion characteristics of 23 Streptococcus gallolyticus subsp. gallolyticus strains from different origins (human IE-derived isolates, other human clinical isolates, animal isolates). Adhesion to eight components of the extracellular matrix (ECM) and the ability to form biofilms in vitro was examined in order to reveal features of S. gallolyticus subsp. gallolyticus endothelial infection. In addition, the strains were analyzed for the presence of the three virulence factors gtf, pilB, and fimB by PCR. Results The adherence to and invasion characteristics of the examined S. gallolyticus subsp. gallolyticus strains to the endothelial cell line EA.hy926 differ significantly among themselves. In contrast, the usage of three different in vitro models (EA.hy926 cells, primary endothelial cells (HUVECs), mechanical stretched cells) revealed no differences regarding the adherence to and invasion characteristics of different strains. Adherence to the ECM proteins collagen I, II and IV revealed the highest values, followed by fibrinogen, tenascin and laminin. Moreover, a strong correlation was observed in binding to these proteins by the analyzed strains. All strains show the capability to adhere to polystyrole surfaces and form biofilms. We further confirmed the presence of the genes of two known virulence factors (fimB: all strains, gtf: 19 of 23 strains) and demonstrated the presence of the gene of one new putative virulence factor (pilB: 9 of 23 strains) by PCR. Conclusion Our study provides the first description of S. gallolyticus subsp. gallolyticus adhesion and invasion of human endothelial cells, revealing important initial information of strain variability, behaviour and characteristics of this as yet barely analyzed pathogen.
Collapse
Affiliation(s)
- Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | | | | | | |
Collapse
|
36
|
DONG C, ZHANG FQ. Effect of denture base materials on mRNA expression of the adhesion-associated genes from theStreptococcus mutansbiofilms. J Oral Rehabil 2009; 36:894-901. [DOI: 10.1111/j.1365-2842.2009.02004.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Tremblay YDN, Lo H, Li YH, Halperin SA, Lee SF. Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology (Reading) 2009; 155:2856-2865. [DOI: 10.1099/mic.0.028456-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an inhabitant of the human oral cavity, Streptococcus mutans faces frequent environmental changes. Two-component regulatory systems (TCSs) play a critical role in responding to these changes. Recently, an essential TCS, VicRKX, has been identified. The objective of this study was to identify the environmental signal and bacterial factors regulating the expression of the vicRKX operon. The promoter of the vicRKX operon was fused to a promoterless lacZ reporter gene and introduced into S. mutans UA159. LacZ plate assay identified pH, vancomycin, ampicillin, penicillin G and polymyxin B, but not carbohydrates, as factors affecting expression. Using RNA dot-blotting, high levels of vicR transcript were observed in cells at the mid- and late-exponential phase of growth and in cells grown in media buffered at pH 7.8. Given that vicR expression was pH-dependent, the genes encoding a putative pH-sensing three-component regulatory system (LiaFSR) were deleted. The liaS mutant exhibited upregulation of vicR regardless of the growth condition. The role of VicK, VicX, and the competence-signal peptide (CSP) was also investigated; the results showed that vicR expression was not autoregulated and was downregulated by the CSP in a ComX-independent manner. In conclusion, the expression of vicRKX is influenced by culture pH, growth phase and antibiotic stress, and is regulated by LiaFRS.
Collapse
Affiliation(s)
- Yannick D. N. Tremblay
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Henry Lo
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Yung-Hua Li
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
| |
Collapse
|