1
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
2
|
Sarwar MT, Ohara-Nemoto Y, Kobayakawa T, Naito M, Nemoto TK. Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia. Biol Chem 2021; 401:629-642. [PMID: 31913843 DOI: 10.1515/hsz-2019-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
Abstract
Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.
Collapse
Affiliation(s)
- Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
3
|
Kushkevych I, Cejnar J, Treml J, Dordević D, Kollar P, Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells 2020; 9:E698. [PMID: 32178484 PMCID: PMC7140700 DOI: 10.3390/cells9030698] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jiří Cejnar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| |
Collapse
|
4
|
Alzoman H. The association between periodontal diseases and halitosis among Saudi patients. Saudi Dent J 2020; 33:34-38. [PMID: 33473240 PMCID: PMC7801244 DOI: 10.1016/j.sdentj.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Objectives To assess the relationship between the presence of periodontal disease and halitosis. Methods A total of 120 patients were enrolled and divided into 2 groups, 60 patients with probing depth (PD) > 3.0 mm (group 1) and 60 patients with PD ≤ 3.0 mm (group 2). Clinical parameters including, plaque index (PI), bleeding index (BI), and PD were obtained. Breath samples were collected and analyzed using a portable gas chromatograph to measure the concentration of volatile sulfur compounds (VSC). Results Halitosis was found to affect 58.3% of the total patients. The means of PI, BI, and VSC were significantly higher in group 1 (PD > 3.0 mm) than in group 2 (PD ≤ 3 mm). Conclusions The percentage of patients suffering from halitosis in the Saudi population are comparatively high. In addition, there was a positive association between periodontal disease and halitosis.
Collapse
Affiliation(s)
- Hamad Alzoman
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Xu S, Luo X, Xing Y, Liu S, Huang Q, Chen W. Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech 2019; 9:120. [PMID: 30854280 DOI: 10.1007/s13205-019-1649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
Abstract
A novel cadmium-resistant bacterium, Raoultella sp. strain X13, recently isolated from heavy metal-contaminated soil, and this strain can synthesize CdS quantum dots using cadmium nitrate [Cd(NO4)2] and l-cysteine. Biomineralization of CdS by strain X13 can efficiently remove cadmium from aqueous solution. To illuminate the molecular mechanisms for the biosynthesis of CdS nanoparticle, the complete genome of Raoultella sp. strain X13 was sequenced. The whole genome sequence comprises a circular chromosome and a circular plasmid. Cysteine desulfhydrase smCSE has been previously found to be associated with the synthesis of CdS quantum dots. Bioinformatics analysis indicated that the genome of Raoultella sp. strain X13 encodes five putative cysteine desulfhydrases and all of them are located in the chromosome. The genome information may help us to determine the molecular mechanisms of the synthesis of CdS quantum dots and potentially enable us to engineer this microorganism for applications in biotechnology.
Collapse
|
6
|
Basic A, Blomqvist M, Dahlén G, Svensäter G. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiol 2017; 17:61. [PMID: 28288582 PMCID: PMC5348791 DOI: 10.1186/s12866-017-0967-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H2S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H2S-producing enzymes; Sulfide from H2S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). RESULTS Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H2S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H2S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. CONCLUSIONS Numerous enzymes, identified as cysteine synthase, were involved in the production of H2S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H2S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.
Collapse
Affiliation(s)
- Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Madeleine Blomqvist
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
7
|
Wadsworth WD, Argiento R, Guindani M, Galloway-Pena J, Shelburne SA, Vannucci M. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data. BMC Bioinformatics 2017; 18:94. [PMID: 28178947 PMCID: PMC5299727 DOI: 10.1186/s12859-017-1516-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Background The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. Results In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. Conclusions Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1516-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Raffaele Argiento
- ESOMAS Department, University of Torino and Collegio Carlo Alberto, Torino, Italy
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, CA, USA
| | - Jessica Galloway-Pena
- Department of Infectious Disease, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Samuel A Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proc Natl Acad Sci U S A 2016; 113:5275-80. [PMID: 27118834 DOI: 10.1073/pnas.1523633113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.
Collapse
|
9
|
Cao X, Xu H, Ding S, Ye Y, Ge X, Yu L. Electrochemical determination of sulfide in fruits using alizarin–reduced graphene oxide nanosheets modified electrode. Food Chem 2016; 194:1224-9. [DOI: 10.1016/j.foodchem.2015.08.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/23/2015] [Accepted: 08/29/2015] [Indexed: 12/18/2022]
|
10
|
Großhennig S, Ischebeck T, Gibhardt J, Busse J, Feussner I, Stülke J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol 2016; 100:42-54. [PMID: 26711628 DOI: 10.1111/mmi.13300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Mycoplasma pneumoniae is a human pathogen causing atypical pneumonia with a minimalized and highly streamlined genome. So far, hydrogen peroxide production, cytadherence, and the ADP-ribosylating CARDS toxin have been identified as pathogenicity determinants. We have studied haemolysis caused by M. pneumoniae, and discovered that hydrogen peroxide is responsible for the oxidation of heme, but not for lysis of erythrocytes. This feature could be attributed to hydrogen sulfide, a compound that has previously not been identified as virulence factor in lung pathogens. Indeed, we observed hydrogen sulfide production by M. pneumoniae. The search for a hydrogen sulfide-producing enzyme identified HapE, a protein with similarity to cysteine desulfurases. In contrast to typical cysteine desulfurases, HapE is a bifunctional enzyme: it has both the cysteine desulfurase activity to produce alanine and the cysteine desulfhydrase activity to produce pyruvate and hydrogen sulfide. Experiments with purified HapE showed that the enzymatic activity of the protein is responsible for haemolysis, demonstrating that HapE is a novel potential virulence factor of M. pneumoniae.
Collapse
Affiliation(s)
- Stephanie Großhennig
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Julia Busse
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| |
Collapse
|
11
|
Cao X, Gao J, Ye Y, Wang P, Ding S, Ye Y, Sun H. Amperometric Determination of Sulfide by Glassy Carbon Electrode Modified with Hemin Functionalized Reduced Graphene Oxide. ELECTROANAL 2015. [DOI: 10.1002/elan.201500508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Scheperjans F. Reply to letter to the editor by Assoc. Prof. Yusuf Ozgur Cakmak, MD, PhD. Mov Disord 2015; 30:1151-3. [PMID: 26095591 DOI: 10.1002/mds.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Cakmak YO. Provotella-derived hydrogen sulfide, constipation, and neuroprotection in Parkinson's disease. Mov Disord 2015; 30:1151. [PMID: 25970839 DOI: 10.1002/mds.26258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yusuf Ozgur Cakmak
- Non-Invasive Brain Stimulation Lab, Department of Anatomy, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Santiago M, Gardner RC. TheIRC7gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source. Yeast 2015; 32:519-32. [DOI: 10.1002/yea.3076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Margarita Santiago
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| | - Richard C. Gardner
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| |
Collapse
|
15
|
Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 2012; 3:448. [PMID: 23226130 PMCID: PMC3508456 DOI: 10.3389/fphys.2012.00448] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022] Open
Abstract
Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary amino acids and host mucins) origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria (SRB), which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to SRB or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases (IBDs) and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the SRB. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.
Collapse
Affiliation(s)
- Franck Carbonero
- Department of Animal Sciences, University of Illinois Urbana, IL, USA
| | | | | | | |
Collapse
|
16
|
Kezuka Y, Yoshida Y, Nonaka T. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus. Proteins 2012; 80:2447-58. [DOI: 10.1002/prot.24129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 11/11/2022]
|
17
|
Suzuki N, Fukamachi H, Arimoto T, Yamamoto M, Igarashi T. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia. Anaerobe 2012; 18:350-6. [PMID: 22554902 DOI: 10.1016/j.anaerobe.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.
Collapse
Affiliation(s)
- Naoko Suzuki
- Department of Periodontology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|