1
|
Cooper DKC, Foote JB, Javed M, Nguyen HQ, Bikhet MH, Hansen-Estruch C, Ayares D, Hara H. Initial evidence that blockade of the CD40/CD154 costimulation pathway alone is sufficient as maintenance therapy in xenotransplantation. Xenotransplantation 2021; 28:e12721. [PMID: 34850468 DOI: 10.1111/xen.12721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Affiliation(s)
- David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mariyam Javed
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huy Q Nguyen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed H Bikhet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Hidetaka Hara
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Nauman G, Borsotti C, Danzl N, Khosravi-Maharlooei M, Li HW, Chavez E, Stone S, Sykes M. Reduced positive selection of a human TCR in a swine thymus using a humanized mouse model for xenotolerance induction. Xenotransplantation 2020; 27:e12558. [PMID: 31565822 PMCID: PMC7007369 DOI: 10.1111/xen.12558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tolerance-inducing approaches to xenotransplantation would be optimal and may be necessary for long-term survival of transplanted pig organs in human patients. The ideal approach would generate donor-specific unresponsiveness to the pig organ without suppressing the patient's normal immune function. Porcine thymus transplantation has shown efficacy in promoting xenotolerance in humanized mice and large animal models. However, murine studies demonstrate that T cells selected in a swine thymus are positively selected only by swine thymic epithelial cells, and therefore, cells expressing human HLA-restricted TCRs may not be selected efficiently in a transplanted pig thymus. This may lead to suboptimal patient immune function. METHODS To assess human thymocyte selection in a pig thymus, we used a TCR transgenic humanized mouse model to study positive selection of cells expressing the MART1 TCR, a well-characterized human HLA-A2-restricted TCR, in a grafted pig thymus. RESULTS Positive selection of T cells expressing the MART1 TCR was inefficient in both a non-selecting human HLA-A2- or swine thymus compared with an HLA-A2+ thymus. Additionally, CD8 MART1 TCRbright T cells were detected in the spleens of mice transplanted with HLA-A2+ thymi but were significantly reduced in the spleens of mice transplanted with swine or HLA-A2- thymi. [Correction added on October 15, 2019, after first online publication: The missing superscript values +, -, and bright have been included in the Results section.] CONCLUSIONS: Positive selection of cells expressing a human-restricted TCR in a transplanted pig thymus is inefficient, suggesting that modifications to improve positive selection of cells expressing human-restricted TCRs in a pig thymus may be necessary to support development of a protective human T-cell pool in future patients.
Collapse
Affiliation(s)
- Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Chiara Borsotti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Hao-Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Estefania Chavez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Samantha Stone
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Liu L, He C, Liu J, Lv Z, Wang G, Gao H, Dai Y, Cooper DKC, Cai Z, Mou L. Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Arch Immunol Ther Exp (Warsz) 2018; 66:355-364. [PMID: 29992337 DOI: 10.1007/s00005-018-0517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Xenotransplantation is an attractive solution to the problem of allograft shortage. However, transplants across discordant species barriers are subject to vigorous immunologic and pathobiologic hurdles, some of which might be overcome with the induction of immunologic tolerance. Several strategies have been designed to induce tolerance to a xenograft at both the central (including induction of mixed chimerism and thymic transplantation) and peripheral (including adoptive transfer of regulatory cells and blocking T cell costimulation) levels. Currently, xenograft tolerance has been well-established in rodent models, but these protocols have not yet achieved similar success in nonhuman primates. This review will discuss the major barriers that impede the establishment of immunological tolerance across xenogeneic barriers and the potential solution to these challenges, and provide a perspective on the future of the development of novel tolerance-inducing strategies.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Jintao Liu
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Zhiwu Lv
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Ganlu Wang
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - David K C Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
4
|
Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, Ramsoondar J, Ayares D, Cooper DKC. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation 2016; 23:137-50. [PMID: 26988899 DOI: 10.1111/xen.12229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The impact that the absence of expression of NeuGc in pigs might have on pig organ or cell transplantation in humans has been studied in vitro, but only using red blood cells (pRBCs) and peripheral blood mononuclear cells (pPBMCs) as the target cells for immune assays. We have extended this work in various in vitro models and now report our initial results. METHODS The models we have used involve GTKO/hCD46 and GTKO/hCD46/NeuGcKO pig aortas and corneas, and pRBCs, pPBMCs, aortic endothelial cells (pAECs), corneal endothelial cells (pCECs), and isolated pancreatic islets. We have investigated the effect of the absence of NeuGc expression on (i) human IgM and IgG binding, (ii) the T-cell proliferative response, (iii) human platelet aggregation, and (iv) in an in vitro assay of the instant blood-mediated inflammatory reaction (IBMIR) following exposure of pig islets to human blood/serum. RESULTS The lack of expression of NeuGc on some pig tissues (aortas, corneas) and cells (RBCs, PBMCs, AECs) significantly reduces the extent of human antibody binding. In contrast, the absence of NeuGc expression on some pig tissues (CECs, isolated islet cells) does not reduce human antibody binding, possibly due to their relatively low NeuGc expression level. The strength of the human T-cell proliferative response may also be marginally reduced, but is already weak to GTKO/hCD46 pAECs and islet cells. We also demonstrate that the absence of NeuGc expression on GTKO/hCD46 pAECs does not reduce human platelet aggregation, and nor does it significantly modify the IBMIR to pig islets. CONCLUSION The absence of NeuGc on some solid organs from GTKO/hCD46/NeuGcKO pigs should reduce the human antibody response after clinical transplantation when compared to GTKO/hCD46 pig organs. However, the clinical benefit of using certain tissue (e.g., cornea, islets) from GTKO/hCD46/NeuGcKO pigs is questionable.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Abstract
The shortage of human organs for transplantation has focused research on the possibility of transplanting pig organs into humans. Many factors contribute to the failure of a pig organ graft in a primate. A rapid innate immune response (natural anti-pig antibody, complement activation, and an innate cellular response; e.g., neutrophils, monocytes, macrophages, and natural killer cells) is followed by an adaptive immune response, although T-cell infiltration of the graft has rarely been reported. Other factors (e.g., coagulation dysregulation and inflammation) appear to play a significantly greater role than in allotransplantation. The immune responses to a pig xenograft cannot therefore be controlled simply by suppression of T-cell activity. Before xenotransplantation can be introduced successfully into the clinic, the problems of the innate, coagulopathic, and inflammatory responses will have to be overcome, most likely by the transplantation of organs from genetically engineered pigs. Many of the genetic manipulations aimed at protecting against these responses also reduce the adaptive response. The T-cell and elicited antibody responses can be prevented by the biological and/or pharmacologic agents currently available, in particular, by costimulation blockade-based regimens. The exogenous immunosuppressive regimen may be significantly reduced by the presence of a graft from a pig transgenic for a mutant (human) class II transactivator gene, resulting in down-regulation of swine leukocyte antigen class II expression, or from a pig with "local" vascular endothelial cell expression of an immunosuppressive gene (e.g., CTLA4-Ig). The immunomodulatory efficacy of regulatory T cells or mesenchymal stromal cells has been demonstrated in vitro but not yet in vivo.
Collapse
|
6
|
Ekser B, Cooper DKC. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol 2010; 6:219-30. [PMID: 20402385 PMCID: PMC2857338 DOI: 10.1586/eci.09.81] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cross-species transplantation (xenotransplantation) has immense potential to solve the critical need for organs, tissues and cells for clinical transplantation. The increasing availability of genetically engineered pigs is enabling progress to be made in pig-to-nonhuman primate experimental models. Potent pharmacologic immunosuppressive regimens have largely prevented T-cell rejection and a T-cell-dependent elicited antibody response. However, coagulation dysfunction between the pig and primate is proving to be a major problem, and this can result in life-threatening consumptive coagulopathy. This complication is unlikely to be overcome until pigs expressing a human 'antithrombotic' or 'anticoagulant' gene, such as thrombomodulin, tissue factor pathway inhibitor or CD39, become available. Progress in islet xenotransplantation has been more encouraging, and diabetes has been controlled in nonhuman primates for periods in excess of 6 months, although this has usually been achieved using immunosuppressive protocols that might not be clinically applicable. Further advances are required to overcome the remaining barriers.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, and Department of Surgery and Organ Transplantation, University of Padua, Padua, Italy
| | - David KC Cooper
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA, Tel.: +1 412 383 6961, Fax: +1 412 624 1172,
| |
Collapse
|
7
|
Cozzi E, Bosio E, Seveso M, Rubello D, Ancona E. Xenotransplantation as a model of integrated, multidisciplinary research. Organogenesis 2009; 5:288-96. [PMID: 19568350 PMCID: PMC2659370 DOI: 10.4161/org.7578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/19/2022] Open
Abstract
Xenotransplantation was proposed a long time ago as a possible solution to the world-wide shortage of human organs. For years, researchers in this field have almost exclusively directed their efforts towards combating the immunological barrier that precluded long-term xenograft survival. Studies have been conducted in both small and large animal models and the most relevant results have been obtained in pre-clincal studies, specifically those utilising the pig-to-nonhuman primate combination. In this context, a better understanding of the immunological mechanisms underlying the rejection of a xenograft have allowed the identification of specific targets of intervention that have resulted in considerable improvements in survival of porcine organs or cells in nonhuman primates. However it has also become apparent that if xenotransplantation has to enter the clinical arena, a multidisciplinary approach will be needed to comprehensively tackle the different issues related to the use of a xenograft to cure human disease.In this regard, the safety, ethics and regulatory aspects of xenotransplantation are currently being aggressively addressed to enable the initiation of xenotransplantation with a favourable risk/benefit ratio.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Erika Bosio
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Michela Seveso
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Domenico Rubello
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Ermanno Ancona
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| |
Collapse
|
8
|
Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Transplantation 2008; 86:1452-62. [PMID: 19034017 DOI: 10.1097/tp.0b013e318188acb0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An understanding of the mechanisms that suppress the human anti-pig cellular response is key for xenotransplantation. We have compared the ability of human regulatory T cells (Tregs) to suppress xenogeneic and allogeneic responses in vitro. METHODS Human peripheral blood mononuclear cells (PBMC), CD4+ T cells, or CD4+ CD25- T cells were stimulated with irradiated human or wild type (WT) or alpha1,3-galactosyltransferase gene-knockout (GT-KO) pig PBMC in the presence or absence of human CD4+ CD25 high Tregs. In separate experiments, 5- (and 6)-carboxyfluorescein diacetate succinimidyl ester-labeled human CD4+ T cells were stimulated with human or pig PBMC. The expansion and precursor frequencies of allo- and xenoreactive Tregs were assessed by labeling with FoxP3 mAb and flow cytometric analysis. RESULTS The responses of human PBMC, CD4+ T cells, and CD4+ CD25- T cells to pig PBMC were stronger than to human PBMC (P<0.05). Human anti-GT-KO responses were weaker than anti-WT responses (P<0.05). Human CD4+ CD25 high Tregs suppressed proliferation of CD4+ CD25- T cells to both human and pig PBMC stimulator cells with the same efficiency. Alloreactive CD4+ CD25+ FoxP3 high responder T cells proliferated more than their xenoreactive counterparts (P<0.05), although xenoreactive CD4+ CD25+ T cells proliferated more than alloreactive cells (P<0.05). There was no difference in precursor frequency between allo- and xeno-reactive CD4+ CD25+ FoxP3 high cells. CONCLUSIONS Human T-cell responses to pig cells are stronger than to allogeneic cells. The human response to GT-KO PBMC is weaker than to WT PBMC. Although human Tregs can suppress both responses, expansion of CD4+ CD25+ FoxP3 high cells against pig PBMC is weaker than against human PBMC. More human Tregs may be required to suppress the stronger xenogeneic response.
Collapse
|
9
|
Cozzi E, Seveso M, Hutabba S, Fabris S, Cavicchioli L, Ancona E. An Update on Xenotransplantation. Vet Res Commun 2007; 31 Suppl 1:15-25. [PMID: 17682842 DOI: 10.1007/s11259-007-0002-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Xenotransplantation is one of the possible avenues currently being explored to address the shortage problem of human organs. With this in mind, this article will briefly review the current situation with respect to the immunological, physiological and biosafety aspects related to the transplantation of pig organs into primates. Acute humoral xenograft rejection (AHXR) currently remains the central immunological obstacle and the development of strategies for both a better control of the elicited anti-pig humoral immune response or the prevention of the onset of coagulation disorders that accompany AHXR are the two primary focuses of research. To date, porcine xenografts have been shown to sustain the life of nonhuman primates for several months. Such preclinical studies have also demonstrated the absence of insurmountable physiological incompatibilities between pig and primate. In addition, reassuring findings regarding biosafety aspects have been generated and pro-active research aimed at the identification of an organ source with a higher safety profile is also underway. These advancements, in conjunction with ongoing research in pig genetic engineering, immunosuppression and tolerance are expected to further extend the survival of porcine xenografts transplanted into primates. However, until further physiological, efficacy and safety data are generated in relevant primate models, clinical xenotransplantation should not be considered.
Collapse
Affiliation(s)
- E Cozzi
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Pierson RN. Primate T-cell responses to porcine antigens: implications for clinical xenotransplantation. Xenotransplantation 2006; 13:14-8. [PMID: 16497208 DOI: 10.1111/j.1399-3089.2005.00268.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard N Pierson
- Department of Surgery, University of Maryland Medical System Staff Surgeon, Baltimore VAMC, Baltimore, MD, USA.
| |
Collapse
|
11
|
Davila E, Byrne GW, LaBreche PT, McGregor HCJ, Schwab AK, Davies WR, Rao VP, Oi K, Tazelaar HD, Logan JS, McGregor CGA. T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation 2006; 13:31-40. [PMID: 16497210 DOI: 10.1111/j.1399-3089.2005.00258.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED Xenotransplantation using porcine organs may resolve a chronic shortage of donor organs for clinical transplantation if significant immunological barriers can be overcome. To determine the potential role of T lymphocytes in Xenograft (Xg) rejection, we transplanted transgenic hCD46 porcine hearts heterotopically into baboon recipients. METHODS Recipients were treated to deplete anti-Gal antibody with a non-antigenic alpha-Gal polyethylene glycol polymer (TPC) (n = 2), TPC plus rituximab (anti-CD20) (n = 1) or were untreated (n = 1). None of the recipients received T-cell immunosuppression. RESULTS All Xgs failed within 7 days and showed evidence of a mixed humoral and cellular rejection process. Cellular infiltration consisting primarily of CD4+ T cells and few CD8+ T cells. Proliferation and cytotoxicity assays showed sensitization of CD4+ and CD8+ T cells that reacted with porcine IFN-gamma (pIFN-gamma)-stimulated porcine aortic endothelial cells (PAEC). The CD4+ lymphocytes displayed greater cytotoxicity than CD8+ cells. An increased frequency of PAEC-specific interleukin (IL) 2 and IFN-gamma-secreting T cells was observed, suggesting a Th1 cytokine bias. An increase in the percentage of circulating CD4+CD28- cells was observed at the time of rejection and over 50% of the CD4+ cells recovered from residual pig tissue at necropsy lacked CD28 expression. CONCLUSIONS These findings show that lymphocytes are efficiently stimulated by PAEC antigens and can mediate direct tissue destruction. These studies (1) provide an insight into the potential of cellular-mediated cardiac Xg rejection, (2) show for the first time the induction of cytotoxic pig-specific CD4+CD28- lymphocytes and (3) provide a rational basis for determining different modes of immunosuppression to treat Xg rejection.
Collapse
Affiliation(s)
- Eduardo Davila
- Department of Pediatrics, Louisiana State University Health Science Center, Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Current World Literature. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218938.96009.b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Histopathology of discordant xenotransplantation. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218931.19773.f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Cozzi E, Bosio E, Seveso M, Vadori M, Ancona E. Xenotransplantation-current status and future perspectives. Br Med Bull 2005; 75-76:99-114. [PMID: 16723634 DOI: 10.1093/bmb/ldh061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Research efforts have shed light on the immunological obstacles to long-term survival of pig organs transplanted into primates and allowed the identification of targets for specific immune intervention. Accordingly, the development of genetically engineered animals has overcome the hyperacute rejection barrier, with acute humoral xenograft rejection (AHXR) currently remaining the most important immunological obstacle. At this stage, a better control of the elicited anti-pig humoral immune response and avoidance of coagulation disorders are the two primary research fronts being pursued in order to overcome AHXR. Nonetheless, it is encouraging that porcine xenografts can sustain the life of non-human primates for several months. Proactive research aimed at the development of a safer organ source is also underway. It is anticipated that ongoing research in several fields, including accommodation, tolerance, immune suppression and genetic engineering, will result in further improvements in non-human primate survival. However, until convincing efficacy data and a more favourable risk/benefit ratio can be established in relevant animal models, progression to the clinic should not be viewed as an option.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Medical and Surgical Sciences, University of Padua, Clinica Chirurgica III, Via Giustiniani, 2, 35128 Padova, Italy.
| | | | | | | | | |
Collapse
|