1
|
Carley LN, Morris WF, Walsh R, Riebe D, Mitchell‐Olds T. Are genetic variation and demographic performance linked? Evol Appl 2022; 15:1888-1906. [PMID: 36426131 PMCID: PMC9679243 DOI: 10.1111/eva.13487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Quantifying relationships between genetic variation and population viability is important from both basic biological and applied conservation perspectives, yet few populations have been monitored with both long-term demographic and population genetics approaches. To empirically test whether and how genetic variation and population dynamics are related, we present one such paired approach. First, we use eight years of historical demographic data from five populations of Boechera fecunda (Brassicaceae), a rare, self-compatible perennial plant endemic to Montana, USA, and use integral projection models to estimate the stochastic population growth rate (λ S) and extinction risk of each population. We then combine these demographic estimates with previously published metrics of genetic variation in the same populations to test whether genetic diversity within populations is linked to demographic performance. Our results show that in this predominantly inbred species, standing genetic variation and demography are weakly positively correlated. However, the inbreeding coefficient was not strongly correlated with demographic performance, suggesting that more inbred populations are not necessarily less viable or at higher extinction risk than less inbred populations. A contemporary re-census of these populations revealed that neither genetic nor demographic parameters were consistently strong predictors of current population density, although populations showing lower probabilities of extinction in demographic models had larger population sizes at present. In the absence of evidence for inbreeding depression decreasing population viability in this species, we recommend conservation of distinct, potentially locally adapted populations of B. fecunda rather than alternatives such as translocations or reintroductions.
Collapse
Affiliation(s)
- Lauren N. Carley
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | | | - Roberta Walsh
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Donna Riebe
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tom Mitchell‐Olds
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
2
|
Abstract
SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.
Collapse
|
3
|
López-Cortegano E, Moreno E, García-Dorado A. Genetic purging in captive endangered ungulates with extremely low effective population sizes. Heredity (Edinb) 2021; 127:433-442. [PMID: 34584227 PMCID: PMC8551332 DOI: 10.1038/s41437-021-00473-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Inbreeding threatens the survival of small populations by producing inbreeding depression, but also exposes recessive deleterious effects in homozygosis allowing for genetic purging. Using inbreeding-purging theory, we analyze early survival in four pedigreed captive breeding programs of endangered ungulates where population growth was prioritized so that most adult females were allowed to contribute offspring according to their fitness. We find evidence that purging can substantially reduce inbreeding depression in Gazella cuvieri (with effective population size Ne = 14) and Nanger dama (Ne = 11). No purging is detected in Ammotragus lervia (Ne = 4), in agreement with the notion that drift overcomes purging under fast inbreeding, nor in G. dorcas (Ne = 39) where, due to the larger population size, purging is slower and detection is expected to require more generations. Thus, although smaller populations are always expected to show smaller fitness (as well as less adaptive potential) than larger ones due to higher homozygosis and deleterious fixation, our results show that a substantial fraction of their inbreeding load and inbreeding depression can be purged when breeding contributions are governed by natural selection. Since management strategies intended to maximize the ratio from the effective to the actual population size tend to reduce purging, the search for a compromise between these strategies and purging could be beneficial in the long term. This could be achieved either by allowing some level of random mating and some role of natural selection in determining breeding contributions, or by undertaking reintroductions into the wild at the earliest opportunity.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- grid.4305.20000 0004 1936 7988Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| | - Eulalia Moreno
- grid.466639.80000 0004 0547 1725Estación Experimental de Zonas Áridas (CSIC), 04120 Almería, Spain
| | | |
Collapse
|
4
|
Pérez-Pereira N, Pouso R, Rus A, Vilas A, López-Cortegano E, García-Dorado A, Quesada H, Caballero A. Long-term exhaustion of the inbreeding load in Drosophila melanogaster. Heredity (Edinb) 2021; 127:373-383. [PMID: 34400819 PMCID: PMC8478893 DOI: 10.1038/s41437-021-00464-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125-234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.
Collapse
Affiliation(s)
- Noelia Pérez-Pereira
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ramón Pouso
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Rus
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Vilas
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Eugenio López-Cortegano
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain ,grid.4305.20000 0004 1936 7988Present Address: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aurora García-Dorado
- grid.4795.f0000 0001 2157 7667Facultad de Ciencias Biológicas, Departamento de Genética, Universidad Complutense, Madrid, Spain
| | - Humberto Quesada
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
5
|
Arauco-Shapiro G, Schumacher KI, Boersma D, Bouzat JL. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS One 2020; 15:e0226439. [PMID: 31910443 PMCID: PMC6946592 DOI: 10.1371/journal.pone.0226439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022] Open
Abstract
Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.
Collapse
Affiliation(s)
- Gabriella Arauco-Shapiro
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Katelyn I. Schumacher
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Dee Boersma
- Center for Ecosystem Sentinels and Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Juan L. Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
6
|
Gibert P, Debat V, Ghalambor CK. Phenotypic plasticity, global change, and the speed of adaptive evolution. CURRENT OPINION IN INSECT SCIENCE 2019; 35:34-40. [PMID: 31325807 DOI: 10.1016/j.cois.2019.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The role phenotypic plasticity might play in adaptation to the ongoing climate changes is unclear. Plasticity allows for the production of a diversity of intra-generational responses, whose inter-generational evolutionary consequences are difficult to predict. In this article, we review theory and empirical studies addressing this question in insects by considering three scenarios. The first scenario corresponds to adaptive plasticity that should lead to slow or no evolution. The second scenario is the case of non-adaptive phenotypic plasticity to new environmental conditions that should lead either to extinction or, on the contrary, to rapid evolutionary change. The third scenario deals with how plasticity alters the variance selection acts upon. These scenarios are then discussed by highlighting examples of empirical studies on insects. We conclude that more studies are needed to better understand the relationship between phenotypic plasticity and evolutionary processes in insects.
Collapse
Affiliation(s)
- Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France.
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Edwards CE, Albrecht MA, Bassüner B, Yatskievych GA. Population genetic analysis reveals a predominantly selfing mating system and strong genetic structuring in a naturally fragmented, threatened plant. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01226-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics 2017; 206:557-572. [PMID: 28592496 DOI: 10.1534/genetics.116.199596] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.
Collapse
|
9
|
Nguyen TTX, Moehring AJ. Cross-generational comparison of reproductive success in recently caught strains of Drosophila melanogaster. BMC Evol Biol 2017; 17:41. [PMID: 28166714 PMCID: PMC5294731 DOI: 10.1186/s12862-017-0887-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023] Open
Abstract
Background Males and females often have opposing strategies for increasing fitness. Males that out-compete others will acquire more mating opportunities and thus have higher lifetime reproductive success. Females that mate with a high quality male receive either direct benefits through productivity or acquisition of additional resources or indirect benefits through the increased fitness of offspring. These components may be in conflict: factors that increase offspring fitness may decrease a female’s productivity, and alleles that are beneficial in one sex may be detrimental in the opposite sex. Here, we use a multigenerational study with recently caught strains of Drosophila melanogaster to examine the relationship between parental, male offspring, and female offspring fitness when fitness is measured in a basal non-competitive environment. Results We find synergy between parental and offspring lifetime reproductive success, indicating a lack of parent-offspring conflict, and a synergy between son and daughter reproductive success, indicating a lack of intersexual conflict. Interestingly, inbreeding significantly reduced the lifetime reproductive success of daughters, but did not have a significant effect on short-term productivity measures of daughters, sons or parents. Conclusions In wild-caught flies, there appears to be no parent-offspring conflict or intersexual conflict for loci influencing offspring production in a anon-competitive environment. Further, there may not be a biologically relevant selection pressure for avoidance of inbreeding depression in wild-type individuals of this short-lived species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0887-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trinh T X Nguyen
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
10
|
Caballero A, Bravo I, Wang J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity (Edinb) 2017; 118:177-185. [PMID: 27624114 PMCID: PMC5234482 DOI: 10.1038/hdy.2016.80] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Using computer simulations, we evaluate the effects of genetic purging of inbreeding load in small populations, assuming genetic models of deleterious mutations which account for the typical amount of load empirically observed. Our results show that genetic purging efficiently removes the inbreeding load of both lethal and non-lethal mutations, reducing the amount of inbreeding depression relative to that expected without selection. We find that the minimum effective population size to avoid severe inbreeding depression in the short term is of the order of Ne≈70 for a wide range of species' reproductive rates. We also carried out simulations of captive breeding populations where two contrasting management methods are performed, one avoiding inbreeding (equalisation of parental contributions (EC)) and the other forcing it (circular sib mating (CM)). We show that, for the inbreeding loads considered, CM leads to unacceptably high extinction risks and, as a result, to lower genetic diversity than EC. Thus we conclude that methods aimed at enhancing purging by intentional inbreeding should not be generally advised in captive breeding conservation programmes.
Collapse
Affiliation(s)
- A Caballero
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo (Pontevedra), Spain
| | - I Bravo
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo (Pontevedra), Spain
| | - J Wang
- Institute of Zoology, Zoological Society of London, London, UK
| |
Collapse
|
11
|
Goryacheva II, Blekhman AV. Genetic structure of native and invasive populations of Harmonia axyridis Pall. in the light of global invasion. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795416120048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Heritable bacterial endosymbionts in native and invasive populations of Harmonia axyridis. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1298-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
López-Cortegano E, Vilas A, Caballero A, García-Dorado A. Estimation of genetic purging under competitive conditions. Evolution 2016; 70:1856-70. [PMID: 27302839 DOI: 10.1111/evo.12983] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 11/27/2022]
Abstract
Inbreeding depression for fitness traits is a key issue in evolutionary biology and conservation genetics. The magnitude of inbreeding depression, though, may critically depend on the efficiency of genetic purging, the elimination or recessive deleterious mutations by natural selection after they are exposed by inbreeding. However, the detection and quantification of genetic purging for nonlethal mutations is a rather difficult task. Here, we present two comprehensive sets of experiments with Drosophila aimed at detecting genetic purging in competitive conditions and quantifying its magnitude. We obtain, for the first time in competitive conditions, an estimate for the predictive parameter, the purging coefficient (d), that quantifies the magnitude of genetic purging, either against overall inbreeding depression (d ≈ 0.3), or against the component ascribed to nonlethal alleles (dNL ≈ 0.2). We find that competitive fitness declines at a high rate when inbreeding increases in the absence of purging. However, in moderate size populations under competitive conditions, inbreeding depression need not be too dramatic in the medium to short term, as the efficiency of purging is also very high. Furthermore, we find that purging occurred under competitive conditions also reduced the inbreeding depression that is expressed in the absence of competition.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, España
| | - Ana Vilas
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo (Pontevedra), España
| | - Armando Caballero
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo (Pontevedra), España
| | - Aurora García-Dorado
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, España.
| |
Collapse
|
14
|
Laugier GJM, Le Moguédec G, Su W, Tayeh A, Soldati L, Serrate B, Estoup A, Facon B. Reduced population size can induce quick evolution of inbreeding depression in the invasive ladybird Harmonia axyridis. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1179-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Gibert P, Hill M, Pascual M, Plantamp C, Terblanche JS, Yassin A, Sgrò CM. Drosophila as models to understand the adaptive process during invasion. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1087-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kristensen TN, Hoffmann AA, Pertoldi C, Stronen AV. What can livestock breeders learn from conservation genetics and vice versa? Front Genet 2015; 6:38. [PMID: 25713584 PMCID: PMC4322732 DOI: 10.3389/fgene.2015.00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Ary A. Hoffmann
- Department of Zoology and Department of Genetics, Bio21 Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
- Aalborg ZooAalborg, Denmark
| | - Astrid V. Stronen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
17
|
Garrick RC, Kajdacsi B, Russello MA, Benavides E, Hyseni C, Gibbs JP, Tapia W, Caccone A. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecol Evol 2015; 5:676-94. [PMID: 25691990 PMCID: PMC4328771 DOI: 10.1002/ece3.1388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (N e ) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical N e of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary N e were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, N e generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should facilitate prioritization of management action.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Michael A Russello
- Department of Biology, University of British ColumbiaOkanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Chaz Hyseni
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New YorkSyracuse, New York, 13210
| | - Washington Tapia
- Department of Applied Research, Galápagos National Park ServicePuerto Ayora, Galápagos, Ecuador
- Biodiver S.A. ConsultoresKm 5 Vía a Baltra, Isla Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| |
Collapse
|
18
|
Inbreeding depression and purging in a haplodiploid: gender-related effects. Heredity (Edinb) 2014; 114:327-32. [PMID: 25407077 DOI: 10.1038/hdy.2014.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022] Open
Abstract
Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother-son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.
Collapse
|
19
|
Lohr JN, David P, Haag CR. Reduced lifespan and increased ageing driven by genetic drift in small populations. Evolution 2014; 68:2494-508. [PMID: 24897994 DOI: 10.1111/evo.12464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation.
Collapse
Affiliation(s)
- Jennifer N Lohr
- Department of Biology, Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland; Tvärminne Zoological Station, FIN-10900, Hanko, Finland.
| | | | | |
Collapse
|
20
|
Kennedy ES, Grueber CE, Duncan RP, Jamieson IG. SEVERE INBREEDING DEPRESSION AND NO EVIDENCE OF PURGING IN AN EXTREMELY INBRED WILD SPECIES-THE CHATHAM ISLAND BLACK ROBIN. Evolution 2013; 68:987-95. [DOI: 10.1111/evo.12315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Euan S. Kennedy
- Science and Capability; Department of Conservation; PO Box 4715 Christchurch 8140 New Zealand
| | - Catherine E. Grueber
- Department of Zoology and Allan Wilson Centre for Molecular Ecology and Evolution; University of Otago; PO Box 56 Dunedin New Zealand
| | - Richard P. Duncan
- Institute for Applied Ecology; University of Canberra; ACT 2601 Australia
| | - Ian G. Jamieson
- Department of Zoology and Allan Wilson Centre for Molecular Ecology and Evolution; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
21
|
Bechsgaard JS, Hoffmann AA, Sgró C, Loeschcke V, Bilde T, Kristensen TN. A comparison of inbreeding depression in tropical and widespread Drosophila species. PLoS One 2013; 8:e51176. [PMID: 23460779 PMCID: PMC3584098 DOI: 10.1371/journal.pone.0051176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022] Open
Abstract
The evolutionary history of widespread and specialized species is likely to cause a different genetic architecture of key ecological traits in the two species groups. This may affect how these two groups respond to inbreeding. Here we investigate inbreeding effects in traits related to performance in 5 widespread and 5 tropical restricted species of Drosophila with the aim of testing whether the two species groups suffered differently from inbreeding depression. The traits investigated were egg-to-adult viability, developmental time and resistance to heat, cold and desiccation. Our results showed that levels of inbreeding depression were species and trait specific and did not differ between the species groups for stress resistance traits. However, for the life history traits developmental time and egg-to adult viability, more inbreeding depression was observed in the tropical species. The results reported suggest that for life history traits tropical species of Drosophila will suffer more from inbreeding depression than widespread species in case of increases in the rate of inbreeding e.g. due to declines in population sizes.
Collapse
Affiliation(s)
| | - Ary A. Hoffmann
- Department of Genetics and Bio21 Institute, Melbourne University, Melbourne, Australia
| | - Carla Sgró
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | | - Trine Bilde
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Torsten N. Kristensen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- NordGen - Nordic Genetic Resource Center, Ås, Norway
| |
Collapse
|
22
|
Loyau A, Cornuau JH, Clobert J, Danchin E. Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS One 2012; 7:e51293. [PMID: 23251487 PMCID: PMC3519633 DOI: 10.1371/journal.pone.0051293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/01/2012] [Indexed: 11/20/2022] Open
Abstract
The literature is full of examples of inbreeding avoidance, while recent mathematical models predict that inbreeding tolerance or even inbreeding preference should be expected under several realistic conditions like e.g. polygyny. We investigated male and female mate preferences with respect to relatedness in the fruit fly D. melanogaster. Experiments offered the choice between a first order relative (full-sibling or parent) and an unrelated individual with the same age and mating history. We found that females significantly preferred mating with their brothers, thus supporting inbreeding preference. Moreover, females did not avoid mating with their fathers, and males did not avoid mating with their sisters, thus supporting inbreeding tolerance. Our experiments therefore add empirical evidence for inbreeding preference, which strengthens the prediction that inbreeding tolerance and preference can evolve under specific circumstances through the positive effects on inclusive fitness.
Collapse
Affiliation(s)
- Adeline Loyau
- CNRS, Station d'Ecologie Expérimentale du CNRS à Moulis, USR 2936, Saint Girons, France.
| | | | | | | |
Collapse
|
23
|
Bersabé D, García-Dorado A. On the genetic parameter determining the efficiency of purging: an estimate for Drosophila egg-to-pupae viability. J Evol Biol 2012. [PMID: 23199278 DOI: 10.1111/jeb.12054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The consequences of inbreeding on fitness can be crucial in evolutionary and conservation grounds and depend upon the efficiency of purging against deleterious recessive alleles. Recently, analytical expressions have been derived to predict the evolution of mean fitness, taking into account both inbreeding and purging, which depend on an 'effective purging coefficient (d(e) )'. Here, we explore the validity of that predictive approach and assay the strength of purging by estimating d(e) for egg-to-pupae viability (EPV) after a drastic reduction in population size in a recently captured base population of Drosophila melanogaster. For this purpose, we first obtained estimates of the inbreeding depression rate (δ) for EPV in the base population, and we found that about 40% was due to segregating recessive lethals. Then, two sets of lines were founded from this base population and were maintained with different effective size throughout the rest of the experiment (N = 6; N = 12), their mean EPV being assayed at different generations. Due to purging, the reductions in mean EPV experienced by these lines were considerably smaller than the corresponding neutral predictions. For the 60% of δ attributable to nonlethal deleterious alleles, our results suggest an effective purging coefficient d(e) > 0.02. Similarly, we obtain that d(e) > 0.09 is required to roughly account for purging against the pooled inbreeding depression from lethal and nonlethal deleterious alleles. This implies that purging should be efficient for population sizes of the order of a few tens and larger, but might be inefficient against nonlethal deleterious alleles in smaller populations.
Collapse
Affiliation(s)
- D Bersabé
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
24
|
Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 2012; 99:779-88. [DOI: 10.1007/s00114-012-0961-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 11/26/2022]
|
25
|
Pekkala N, Emily Knott K, Kotiaho JS, Puurtinen M. Inbreeding rate modifies the dynamics of genetic load in small populations. Ecol Evol 2012; 2:1791-804. [PMID: 22957182 PMCID: PMC3433984 DOI: 10.1002/ece3.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/30/2022] Open
Abstract
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.
Collapse
Affiliation(s)
- Nina Pekkala
- Department of Biological and Environmental Science, University of JyväskyläFinland
| | - K Emily Knott
- Department of Biological and Environmental Science, University of JyväskyläFinland
| | - Janne S Kotiaho
- Department of Biological and Environmental Science, University of JyväskyläFinland
- Natural History Museum, University of JyväskyläFinland
| | - Mikael Puurtinen
- Department of Biological and Environmental Science, University of JyväskyläFinland
- Centre of Excellence in Biological Interactions, University of JyväskyläFinland
| |
Collapse
|
26
|
Booth W, Saenz VL, Santangelo RG, Wang C, Schal C, Vargo EL. Molecular markers reveal infestation dynamics of the bed bug (Hemiptera: Cimicidae) within apartment buildings. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:535-46. [PMID: 22679860 DOI: 10.1603/me11256] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), has experienced an extraordinary global resurgence in recent years, the reasons for which remain poorly understood. Once considered a pest of lower socioeconomic classes, bed bugs are now found extensively across all residential settings, with widespread infestations established in multiapartment buildings. Within such buildings, understanding the population genetic structure and patterns of dispersal may prove critical to the development of effective control strategies. Here, we describe the development of 24 high-resolution microsatellite markers through next generation 454 pyrosequencing and their application to elucidate infestation dynamics within three multistory apartment buildings in the United States. Results reveal contrasting characteristics potentially representative of geographic or locale differences. In Raleigh, NC, an infestation within an apartment building seemed to have started from a single introduction followed by extensive spread. In Jersey City, NJ, two or more introductions followed by spread are evident in two buildings. Populations within single apartments in all buildings were characterized by high levels of relatedness and low levels of diversity, indicative of foundation from small, genetically depauperate propagules. Regardless of the number of unique introductions, genetic data indicate that spread within buildings is extensive, supporting both active and human-mediated dispersal within and between adjacent rooms or apartments spanning multiple floors.
Collapse
Affiliation(s)
- Warren Booth
- Department of Entomology and W. M. Keck Center for Behavioral Biology, Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Fournier D, Tindo M, Kenne M, Mbenoun Masse PS, Van Bossche V, De Coninck E, Aron S. Genetic structure, nestmate recognition and behaviour of two cryptic species of the invasive big-headed ant Pheidole megacephala. PLoS One 2012; 7:e31480. [PMID: 22371822 PMCID: PMC3284284 DOI: 10.1371/journal.pone.0031480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022] Open
Abstract
Background Biological invasions are recognized as a major cause of biodiversity decline and have considerable impact on the economy and human health. The African big-headed ant Pheidole megacephala is considered one of the world's most harmful invasive species. Methodology/Principal Findings To better understand its ecological and demographic features, we combined behavioural (aggression tests), chemical (quantitative and qualitative analyses of cuticular lipids) and genetic (mitochondrial divergence and polymorphism of DNA microsatellite markers) data obtained for eight populations in Cameroon. Molecular data revealed two cryptic species of P. megacephala, one inhabiting urban areas and the other rainforests. Urban populations belong to the same phylogenetic group than those introduced in Australia and in other parts of the world. Behavioural analyses show that the eight populations sampled make up four mutually aggressive supercolonies. The maximum distance between nests from the same supercolony was 49 km and the closest distance between two nests belonging to two different supercolonies was 46 m. The genetic data and chemical analyses confirmed the behavioural tests as all of the nests were correctly assigned to their supercolony. Genetic diversity appears significantly greater in Africa than in introduced populations in Australia; by contrast, urban and Australian populations are characterized by a higher chemical diversity than rainforest ones. Conclusions/Significance Overall, our study shows that populations of P. megacephala in Cameroon adopt a unicolonial social structure, like invasive populations in Australia. However, the size of the supercolonies appears several orders of magnitude smaller in Africa. This implies competition between African supercolonies and explains why they persist over evolutionary time scales.
Collapse
Affiliation(s)
- Denis Fournier
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Langen K, Schwarzer J, Kullmann H, Bakker TCM, Thünken T. Microsatellite support for active inbreeding in a cichlid fish. PLoS One 2011; 6:e24689. [PMID: 21980351 PMCID: PMC3184091 DOI: 10.1371/journal.pone.0024689] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/18/2011] [Indexed: 11/21/2022] Open
Abstract
In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences.
Collapse
Affiliation(s)
- Kathrin Langen
- Institute for Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
29
|
Ala-Honkola O, Manier MK, Lüpold S, Pitnick S. No evidence for postcopulatory inbreeding avoidance in Drosophila melanogaster. Evolution 2011; 65:2699-705. [PMID: 21884066 DOI: 10.1111/j.1558-5646.2011.01317.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selection to avoid inbreeding is predicted to vary across species due to differences in population structure and reproductive biology. Over the past decade, there have been numerous investigations of postcopulatory inbreeding avoidance, a phenomenon that first requires discrimination of mate (or sperm) relatedness and then requires mechanisms of male ejaculate tailoring and/or cryptic female choice to avoid kin. The number of studies that have found a negative association between male-female genetic relatedness and competitive fertilization success is roughly equal to the number of studies that have not found such a relationship. In the former case, the underlying mechanisms are largely unknown. The present study was undertaken to verify and expand upon a previous report of postcopulatory inbreeding avoidance in D. melanogaster, as well as to resolve underlying mechanisms of inbreeding avoidance using transgenic flies that express a sperm head-specific fluorescent tag. However, siblings did not have a lower fertilization success as compared to unrelated males in either the first (P(1) ) or second (P(2) ) mate role in sperm competition with a standard unrelated competitor male in our study population of D. melanogaster. Analyses of mating latency, copulation duration, egg production rate, and remating interval further revealed no evidence for inbreeding avoidance.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biology, Syracuse University, Syracuse, New York 13244-1270, USA.
| | | | | | | |
Collapse
|
30
|
Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster. Genetica 2011; 139:525-33. [PMID: 21505760 DOI: 10.1007/s10709-011-9574-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
Abstract
Because of their decreased overall fitness and genetic variability inbred individuals are expected to show reduced survival and lifespan under most environmental conditions as compared with outbred individuals. Whereas evidence for the deleterious effects of inbreeding on lifespan has been previously provided, only a few studies have investigated effects of inbreeding on survival under starved conditions. In the present study we compared the abilities of inbred and outbred adult Drosophila melanogaster to survive under starved and fed conditions. We found that inbreeding reduced lifespan but had no effect on starvation resistance. The results indicate highly trait specific consequences of inbreeding. Possible mechanisms behind the observed results are discussed.
Collapse
|
31
|
Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions. Genetica 2011; 139:441-51. [PMID: 21416261 DOI: 10.1007/s10709-011-9563-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.
Collapse
|
32
|
Facon B, Hufbauer R, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren J, Estoup A. Inbreeding Depression Is Purged in the Invasive Insect Harmonia axyridis. Curr Biol 2011; 21:424-7. [DOI: 10.1016/j.cub.2011.01.068] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
|
33
|
Larsen LK, Pélabon C, Bolstad GH, Viken A, Fleming IA, Rosenqvist G. Temporal change in inbreeding depression in life-history traits in captive populations of guppy (Poecilia reticulata): evidence for purging? J Evol Biol 2011; 24:823-34. [PMID: 21276111 DOI: 10.1111/j.1420-9101.2010.02224.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inbreeding depression, which generally affects the fitness of small populations, may be diminished by purging recessive deleterious alleles when inbreeding persists over several generations. Evidence of purging remains rare, especially because of the difficulties of separating the effects of various factors affecting fitness in small populations. We compared the expression of life-history traits in inbred populations of guppy (Poecilia reticulata) with contemporary control populations over 10 generations in captivity. We estimated inbreeding depression as the difference between the two types of populations at each generation. After 10 generations, the inbreeding coefficient reached a maximum value of 0.56 and 0.16 in the inbred and control populations, respectively. Analysing changes in the life-history traits across generations showed that inbreeding depression in clutch size and offspring survival increased during the first four to six generations in the populations from the inbred treatment and subsequently decreased as expected if purging occurred. Inbreeding depression in two other traits was weaker but showed similar changes across generations. The loss of six populations in the inbred treatment indicates that removal of deleterious alleles also occurred by extinction of populations that presumably harboured high genetic load.
Collapse
Affiliation(s)
- L-K Larsen
- Department of Biology, Centre for Conservation Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
34
|
Avila V, Amador C, García-Dorado A. The purge of genetic load through restricted panmixia in a Drosophila experiment. J Evol Biol 2010; 23:1937-46. [PMID: 20695969 DOI: 10.1111/j.1420-9101.2010.02058.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using Drosophila melanogaster, we explore the consequences of restricted panmixia (RP) on the genetic load caused by segregating deleterious recessive alleles in a population where females mate a full sib with probability about (1/2) and mate randomly otherwise. We find that this breeding structure purges roughly half the load concealed in heterozygous condition. Furthermore, fitness did not increase after panmixia was restored, implying that, during RP, the excess of expressed load induced by inbreeding had also been efficiently purged. We find evidences for adaptation to laboratory conditions and to specific selective pressures imposed by the RP protocol. We discuss some of the consequences of these results, both for the evolution of population breeding structures and for the design of conservation programmes.
Collapse
Affiliation(s)
- V Avila
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
35
|
Zajitschek SRK, Brooks RC. Inbreeding depression in male traits and preference for outbred males in Poecilia reticulata. Behav Ecol 2010. [DOI: 10.1093/beheco/arq077] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Guevara-Fiore P, Rosenqvist G, Watt PJ. Inbreeding level does not induce female discrimination between sibs and unrelated males in guppies. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0973-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
|
38
|
Trait specific consequences of fast and slow inbreeding: lessons from captive populations of Drosophila melanogaster. CONSERV GENET 2009. [DOI: 10.1007/s10592-009-0030-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Zajitschek SRK, Zajitschek F, Brooks RC. Demographic costs of inbreeding revealed by sex-specific genetic rescue effects. BMC Evol Biol 2009; 9:289. [PMID: 20003302 PMCID: PMC2797806 DOI: 10.1186/1471-2148-9-289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies. RESULTS Populations established from pairs of full siblings that were descended either from two generations of full-sibling inbreeding or unrelated outbred guppies did not grow at different rates initially, but when the first generation offspring started breeding, outbred-founded populations grew more slowly than inbred-founded populations. In a second experiment, adding two outbred males to the inbred populations resulted in significantly faster population growth than in control populations where no immigrants were added. Adding females resulted in growth at a rate intermediate to the control and male-immigrant treatments. CONCLUSION The slower growth of the outbred-founded than inbred-founded populations is the opposite of what would be expected under inbreeding depression unless many deleterious recessive alleles had already been selectively purged in the inbreeding that preceded the start of the experiment, and that significant inbreeding depression occurred when the first generation offspring in outbred-founded populations started to inbreed. The second experiment revealed strong inbreeding depression in the inbred founded populations, despite the apparent lack thereof in these populations earlier on. Moreover, the fact that the addition of male immigrants resulted in the highest levels of population growth suggests that sex-specific genetic rescue may occur in promiscuous species, with male rescue resulting in higher levels of outbreeding than female rescue.
Collapse
Affiliation(s)
- Susanne RK Zajitschek
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Station d'Ecologie Expérimentale du CNRS à Moulis, USR 2936, 09200 Moulis, France
| | - Felix Zajitschek
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Station d'Ecologie Expérimentale du CNRS à Moulis, USR 2936, 09200 Moulis, France
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
40
|
Zajitschek S, Brooks R. Distinguishing the Effects of Familiarity, Relatedness, and Color Pattern Rarity on Attractiveness and Measuring Their Effects on Sexual Selection in Guppies (Poecilia reticulata). Am Nat 2008; 172:843-54. [DOI: 10.1086/593001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Palstra FP, Ruzzante DE. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 2008; 17:3428-47. [PMID: 19160474 DOI: 10.1111/j.1365-294x.2008.03842.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Friso P Palstra
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Canada B3H 4J1.
| | | |
Collapse
|
42
|
Leberg PL, Firmin BD. Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol Ecol 2008; 17:334-43. [PMID: 18173505 DOI: 10.1111/j.1365-294x.2007.03433.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inbreeding depression is a major force affecting the evolution and viability of small populations in captive breeding and restoration programmes. Populations that experience small sizes may be less susceptible to future inbreeding depression because they have been purged of deleterious recessive alleles. We review issues related to purging, as they apply to the management of small populations, and discuss an experiment we conducted examining purging in populations of mosquitofish (Gambusia affinis). Purging is an important process in many small populations, but the literature contains a diversity of responses to purging both within and among studies. With the exception that slow inbreeding results in more purging and less threat to population viability, there seem to be few consistent trends that aid in prediction of how a purging event will affect a population. In our examination of purging on population viability in mosquitofish, single or multiple bottlenecks do not appear to have resulted in any purging of the influence of genetic load on population growth. Rather, serial bottlenecks resulted in a marked decline in population growth and an increase in extinction. Our results, taken together with those of reviewed studies, suggest that in small populations there is great uncertainty regarding the success of any single purging event in eliminating inbreeding depression, together with the high likelihood that purging will depress population viability through the fixation of deleterious alleles. In management of captive breeding and restoration programmes, the common practice of avoiding inbreeding and small population sizes should be followed whenever possible.
Collapse
Affiliation(s)
- Paul L Leberg
- Department of Biology, University of Louisiana-Lafayette, Lafayette, LA 70503-2451, USA.
| | | |
Collapse
|
43
|
Effects of population size on performance and inbreeding depression in Lupinus perennis. Oecologia 2007; 154:651-61. [DOI: 10.1007/s00442-007-0861-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|
44
|
|
45
|
Milot E, Weimerskirch H, Duchesne P, Bernatchez L. Surviving with low genetic diversity: the case of albatrosses. Proc Biol Sci 2007; 274:779-87. [PMID: 17251114 PMCID: PMC2093973 DOI: 10.1098/rspb.2006.0221] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84 Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival.
Collapse
Affiliation(s)
- Emmanuel Milot
- Département de biologie, Québec Océan, Université Laval, Québec, Canada G1K 7P4.
| | | | | | | |
Collapse
|
46
|
Thünken T, Bakker TCM, Baldauf SA, Kullmann H. Active Inbreeding in a Cichlid Fish and Its Adaptive Significance. Curr Biol 2007; 17:225-9. [PMID: 17276915 DOI: 10.1016/j.cub.2006.11.053] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/30/2006] [Accepted: 11/13/2006] [Indexed: 11/30/2022]
Abstract
Levels of inbreeding are highly variable in natural populations. Inbreeding can be due to random factors (like population size), limited dispersal, or active mate choice for relatives. Because of inbreeding depression, mating with kin is often avoided, although sometimes intermediately related individuals are preferred (optimal outbreeding). However, theory predicts that the advantages of mating with close kin can override the effects of inbreeding depression, but in the animal kingdom, empirical evidence for this is scarce. Here we show that both sexes of Pelvicachromis taeniatus, an African cichlid with biparental brood care, prefer mating with unfamiliar close kin over nonkin, suggesting inclusive fitness advantages for inbreeding individuals. Biparental care requires synchronous behavior among parents. Since parental care is costly, there is a conflict between parents over care, which can reduce offspring fitness. Relatedness is expected to enhance cooperation among individuals. The comparison of the parental behavior of in- and outbreeding pairs showed that related parents were more cooperative and invested more than unrelated parents. Since we found no evidence for inbreeding depression, our results suggest that in P. taeniatus, inbreeding is an advantageous strategy.
Collapse
Affiliation(s)
- Timo Thünken
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany.
| | | | | | | |
Collapse
|