1
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
2
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
3
|
West CM, Wang ZA, van der Wel H. A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:160-71. [PMID: 19914348 PMCID: PMC2873859 DOI: 10.1016/j.bbagen.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/13/2022]
Abstract
The soil amoeba Dictyostelium is an obligate aerobe that monitors O(2) for informational purposes in addition to utilizing it for oxidative metabolism. Whereas low O(2) suffices for proliferation, a higher level is required for slugs to culminate into fruiting bodies, and O(2) influences slug polarity, slug migration, and cell-type proportioning. Dictyostelium expresses a cytoplasmic prolyl 4-hydroxylase (P4H1) known to mediate O(2)-sensing in animals, but lacks HIFalpha, a major hydroxylation target whose accumulation directly induces animal hypoxia-dependent transcriptional changes. The O(2)-requirement for culmination is increased by P4H1-gene disruption and reduced by P4H1 overexpression. A target of Dictyostelium P4H1 is Skp1, a subunit of the SCF-class of E3-ubiquitin ligases related to the VBC-class that mediates hydroxylation-dependent degradation of animal HIFalpha. Skp1 is a target of a novel cytoplasmic O-glycosylation pathway that modifies HyPro143 with a pentasaccharide, and glycosyltransferase mutants reveal that glycosylation intermediates have antagonistic effects toward P4H1 in O(2)-signaling. Current evidence indicates that Skp1 is the only glycosylation target in cells, based on metabolic labeling, biochemical complementation, and enzyme specificity studies. Bioinformatics studies suggest that the HyPro-modification pathway existed in the ancestral eukaryotic lineage and was retained in selected modern day unicellular organisms whose life cycles experience varying degrees of hypoxia. It is proposed that, in Dictyostelium and other protists including the agent for human toxoplasmosis Toxoplasma gondii, prolyl hydroxylation and glycosylation mediate O(2)-signaling in hierarchical fashion via Skp1 to control the proteome, directly via degradation rather than indirectly via transcription as found in animals.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 Northeast Tenth Street, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
4
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Garcia MXU, Alexander H, Mahadeo D, Cotter DA, Alexander S. The Dictyostelium discoideum prespore-specific catalase B functions to control late development and to protect spore viability. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:55-64. [PMID: 12788229 DOI: 10.1016/s0167-4889(03)00064-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in the levels of reactive oxygen species (ROS) have been associated previously with cell differentiation and development in several systems. Thus, there is interest in studying the developmental regulation of antioxidant enzymes, whose activities may modulate ROS levels and subsequent oxidant-mediated signal transduction events in specific tissues. Our recent identification in Dictyostelium discoideum of the prespore-specific catalase B (CatB) enzyme suggested (a) that the CatB enzyme functions to provide protection to the mature spores, and (b) that the CatB enzyme may have a regulatory role in cell differentiation and morphogenesis. We have now confirmed both these hypotheses. We specifically disrupted the catB gene by homologous recombination. The resulting catB null strain displays a 4-h delay in development at the time of normal catB gene expression, followed by slow and asynchronous development of fruiting bodies, taking 10 h longer than the isogenic parent strain. The expression of both prestalk- and prespore-specific genes was altered in the mutant both temporally and quantitatively, and the resultant mutant spores had increased sensitivity to H(2)O(2). This study supports the idea that CatB functions in the development of D. discoideum by regulating the level of ROS, and adds to the growing body of evidence for regulatory roles for ROS.
Collapse
Affiliation(s)
- Ma Xenia U Garcia
- Division of Biological Sciences, University of Missouri, 303 Tucker Hall, Columbia, MO 65211-7400, USA
| | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- John Tyler Bonner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
7
|
Sawai S, Hirano T, Maeda Y, Sawada Y. Rapid patterning and zonal differentiation in a two-dimensionalDictyosteliumcell mass: the role of pH and ammonia. J Exp Biol 2002; 205:2583-90. [PMID: 12151364 DOI: 10.1242/jeb.205.17.2583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYRecently it was demonstrated that a rapidly forming, self-organizing pattern that emerges within two-dimensional Dictyostelium discoideumcell cultures could later give rise to stripes of distinct zones, each comprising different cell types. Here we report physiological aspects of the initial rapid patterning and its relationship to cell differentiation. We found that as the temperature is lowered the characteristic length of the pattern increases. From this we estimated the activation energy of the patterning kinetics. Fluorescence of fluorescein-conjugated dextran revealed that the cytosolic pH of cells in the inside zone becomes lower than that in the outer zone facing the air. The patterning could be inhibited by addition of the plasma-membrane proton pump inhibitors diethystilbestrol (DES) or miconazole. Preincubation of cells with weak acid delayed the timing of the patterning, whereas weak base hastened it. A pH-indicating dye revealed localized accumulation of ammonia in the extracellular space. These results suggest that gradients of secreted metabolites may be directly responsible for the rapid patterning and its consequence on cell differentiation in a confined geometrical situation. Possible diffusible candidate molecules and a reaction scheme coupled to the imposed oxygen gradient are discussed.
Collapse
Affiliation(s)
- Satoshi Sawai
- Graduate School of Information Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
8
|
Brazill DT, Meyer LR, Hatton RD, Brock DA, Gomer RH. ABC transporters required for endocytosis and endosomal pH regulation inDictyostelium. J Cell Sci 2001; 114:3923-32. [PMID: 11719559 DOI: 10.1242/jcs.114.21.3923] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Dictyostelium, the RtoA protein links both initial cell-type choice and physiological state to cell-cycle phase. rtoA– cells (containing a disruption of the rtoA gene) generally do not develop past the mound stage, and have an abnormal ratio of prestalk and prespore cells. RtoA is also involved in fusion of endocytic/exocytic vesicles. Cells lacking RtoA, although having a normal endocytosis rate, have a decreased exocytosis rate and endosomes with abnormally low pHs. RtoA levels vary during the cell cycle, causing a cell-cycle-dependent modulation of parameters such as cytosolic pH (Brazill et al., 2000). To uncover other genes involved in the RtoA-mediated differentiation, we identified genetic suppressors of rtoA. One of these suppressors disrupted two genes, mdrA1 and mdrA2, a tandem duplication encoding two members of the ATP binding cassette (ABC) transporter superfamily. Disruption of mdrA1/mdrA2 results in release from the developmental block and suppression of the defect in initial cell type choice caused by loss of the rtoA gene. However, this is not accomplished by re-establishing the link between cell type choice and cell cycle phase. MdrA1 protein is localized to the endosome. mdrA1–/mdrA2– cells (containing a disruption of these genes) have an endocytosis rate roughly 70% that of wild-type or rtoA– cells, whereas mdrA1–/mdrA2–/rtoA– cells have an endocytosis rate roughly 20% that of wild-type. The exocytosis rates of mdrA1–/mdrA2– and mdrA1–/mdrA2–/rtoA– are roughly that of wild-type. mdrA1–/mdrA2– endosomes have an unusually high pH, whereas mdrA1–/mdrA2–/rtoA– endosomes have an almost normal pH. The ability of mdrA1/mdrA2 disruption to rescue the cell-type proportion, developmental defects, and endosomal pH defects caused by rtoA disruption, and the ability of rtoA disruption to exacerbate the endocytosis defects caused by mdrA1/mdrA2 disruption, suggest a genetic interaction between rtoA, mdrA1 and mdrA2.
Collapse
Affiliation(s)
- D T Brazill
- Howard Hughes Medical Institute, Houston, TX 77005-1892, USA
| | | | | | | | | |
Collapse
|
9
|
Ràfols I, Amagai A, Maeda Y, MacWilliams HK, Sawada Y. Cell type proportioning in Dictyostelium slugs: lack of regulation within a 2.5-fold tolerance range. Differentiation 2001; 67:107-16. [PMID: 11683494 DOI: 10.1046/j.1432-0436.2001.670403.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proportion of prestalk and prespore cells in Dictyostelium discoideum slugs is often cited as an example of "almost perfect" regulation. The pattern is similar over a very wide range of cell number; furthermore, removal of either of the cell types leads to compensatory transdifferentiation. Several studies of Dictyostelium fruiting bodies, however, have suggested that proportioning in Dictyostelium differs systematically from true constancy. We have confirmed this in the slug stage using a short-lived beta-galactosidase as a reporter of the prestalk specific ecmA gene expression: the prestalk proportion decreases from 24+/-5% in slugs of 10(3) cells to 10+/-3% when 10(5) cells are present. Regeneration experiments suggest that this difference is not due to a modulation of the proportioning set-point by size, as one might have expected; instead there appears to be a regulatory "tolerance zone" at all sizes. After amputation of the whole posterior region, transdifferentiation stops after the fraction of prestalk has been reduced from 100% to 28+/-20%, well above the initial value of 10+/-3%, while after anterior removal the transdifferentiation endpoint is about 10%. Most strikingly, we find no regulation at all after partial amputations of the prespore region. It seems that any prestalk proportion is stable between a approximately 10% lower threshold and a approximately 30% upper threshold. To explain this, we propose a regulation mechanism based on a negative feedback plus cell type bistability. In both intact and regenerating slugs we find that the slug morphology is regulated so that the length-to-width ratio of the anterior region is constant.
Collapse
Affiliation(s)
- I Ràfols
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
10
|
Hirano T, Sawai S, Sawada Y, Maeda Y. Rapid patterning in 2-D cultures of Dictyostelium cells and its relationship to zonal differentiation. Dev Growth Differ 2000; 42:551-60. [PMID: 11142677 DOI: 10.1046/j.1440-169x.2000.00541.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rapid patterning has been observed in confined 2-D cultures of Dictyostelium discoideum Ax-2 cells as an outer dark zone and a inner light zone. The width of outer zone was usually approximately100 microm, irrespective of the size of cell masses under atmospheric conditions. The width of the outer zone, however, changed depending on external O2 concentrations and reached up to 250 microm at 100% O2. A clear regional difference in tetramethyl rhodamine methyl ester (TMRM) staining was noticed between the outer zone and the inner zone: the inner zone was more strongly stained with TMRM than the outer zone, which faced the air. Using inhibitors of oxidative phosphorylation (dinitrophenol (DNP) or NaN3) and a specific inhibitor of CN-resistant respiration (benzohydroxamic acid (BHAM)), it has been demonstrated that the outer zone is basically formed by the O2 threshold for oxidative phosphorylation, while the inner cells mainly perform cyanide-resistant respiration. When cells around the early mound stage (just before prestalk and prespore differentiation) were cultured as 2-D cell masses, ecmA-expressing cells (pstA cells), ecmB-expressing cells (pstB cells) and D19-expressing cells (prespore; psp cells), arose in a position-dependent manner in the outer zone. In the inner zone, cell motility seemed to be markedly impaired and neither prestalk nor prespore differentiation occurred. In addition, once-differentiated prespore cells were found to dedifferentiate rapidly in the inner zone. The reason for dedifferentiation as well as for failure of cells to differentiate in the inner zone is discussed with reference to O2 radicals.
Collapse
Affiliation(s)
- T Hirano
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | | | | | |
Collapse
|
11
|
Brazill DT, Caprette DR, Myler HA, Hatton RD, Ammann RR, Lindsey DF, Brock DA, Gomer RH. A protein containing a serine-rich domain with vesicle fusing properties mediates cell cycle-dependent cytosolic pH regulation. J Biol Chem 2000; 275:19231-40. [PMID: 10747962 DOI: 10.1074/jbc.m000900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initial differentiation in Dictyostelium involves both asymmetric cell division and a cell cycle-dependent mechanism. We previously identified a gene, rtoA, which when disrupted randomizes the cell cycle-dependent mechanism without affecting either the underlying cell cycle or asymmetric differentiation. We find that in wild-type cells, RtoA levels vary during the cell cycle. Cytosolic pH, which normally varies with the cell cycle, is randomized in rtoA cells. The middle 60% of the RtoA protein is 10 tandem repeats of an 11 peptide-long serine-rich motif, which we find has a random coil structure. This domain catalyzes the fusion of phospholipid vesicles in vitro. Conversely, rtoA cells have a defect in the fusion of endocytic vesicles. They also have a decreased exocytosis rate, a decreased pH of endocytic/exocytic vesicles, and an increased average cytosolic pH. Our data indicate that the serine-rich domain of RtoA can mediate membrane fusion and that RtoA can increase the rate of vesicle fusion during processing of endoctyic vesicles. We hypothesize that RtoA modulates initial cell type choice by linking vegetative cell physiology to the cell cycle.
Collapse
Affiliation(s)
- D T Brazill
- Howard Hughes Medical Institute and the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This survey focuses on early or primitive developmental phenomena for which the location of a steady high calcium region or the direction of a calcium wave is critical and calcium is more than a trigger. It starts with the long studied roles of calcium in fucoid eggs and in Dictyostelium and progresses to newer work on high calcium regions in medaka fish, zebrafish, and Drosophila eggs. It then proposes that propagated, ultraslow developmental waves in six diverse systems indicate a new and important class of calcium waves. These include the morphogenetic furrow in Drosophila eye discs, floret formation in sunflowers, DNA replication waves in protozoan macronuclei, growth-cone like waves in hippocampal neurons, and two others. It then considers the possible organizing roles of slow calcium waves. Here, it emphasizes surface contractile waves during primary neural induction and elsewhere as well as the possibility of cellular peristalsis. Finally, it reviews the organizing roles of fast calcium waves in ascidian eggs.
Collapse
Affiliation(s)
- L F Jaffe
- Dept. OB/GYN, Women & Infants Hospital, Brown University, 101 Dudley Street, Providence, Rhode Island 01905, USA.
| |
Collapse
|
13
|
Bonner JT. A way of following individual cells in the migrating slugs of Dictyostelium discoideum. Proc Natl Acad Sci U S A 1998; 95:9355-9. [PMID: 9689084 PMCID: PMC21342 DOI: 10.1073/pnas.95.16.9355] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the development of the cellular slime mold Dictyostelium discoideum there is a stage in which the aggregated amoebae form a migrating slug that moves forward in a polar fashion, showing sensitive orientation to environmental cues, as well as early signs of differentiation into anterior prestalk and posterior prespore cells. Heretofore it has been difficult to follow the movement of the individual cells within the slug, but a new method is described in which small, flat (one cell thick) slugs are produced in a glass-mineral oil interface where one can follow the movement of all the cells. Observations of time-lapse videos reveal the following facts about slug migration: (i) While the posterior cells move straight forward, the anterior cells swirl about rapidly in a chaotic fashion. (ii) Turning involves shifting the high point of these hyperactive cells. (iii) Both the anterior and the posterior cells move forward on their own power as the slug moves forward. (iv) There are no visible regular oscillations within the slug. (v) The number of prestalk and prespore cells is proportional for a range of sizes of these mini-slugs. All of these observations on thin slugs are consistent with what one finds in normal, three-dimensional slugs.
Collapse
Affiliation(s)
- J T Bonner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton. NJ 08544, USA
| |
Collapse
|
14
|
Gomer RH. Antisense: a key tool for cell and developmental studies in Dictyostelium. GENETIC ENGINEERING 1998; 20:135-41. [PMID: 9666558 DOI: 10.1007/978-1-4899-1739-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R H Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77081, USA
| |
Collapse
|
15
|
Sawada Y, Maeda Y, Takeuchi I, Williams J, Maeda Y. Rapid patterning of Dictyostelium discoideum cells under confined geometry and its relation to differentiation. Dev Growth Differ 1998; 40:113-20. [PMID: 9563917 DOI: 10.1046/j.1440-169x.1998.t01-2-00013.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The following was recently reported by Bonner et al. (1995): (1) Rapid differentiation occurred into two zones in Dictyostelium discoideum cells confined in a fine glass capillary. The cells in the anterior zone exposed to the air appear similar to prestalk cells, while the posterior zone isolated from the air mimics prespore cells. (2) The volumes of the two zones are proportional to each other for different sized cell masses, and the proportion is the same as that in normal migrating slugs. We investigated the nature of this newly discovered rapid differentiation in a slightly modified geometry. Exponentially growing cells were harvested, washed to remove external nutrients, and pelleted by centrifugation. Subsequently, a small drop of the pelleted (starved) cells was placed on a slide glass and then confined in a two-dimensional space between the slide glass and a coverslip, with help of spacers whose thickness varied from 25 to 100 microm. As a result, a dark zone, which looked optically different, emerged within several minutes in the periphery of the disc of the confined cells, corresponding to the zonation in a capillary as previously reported. When the width of the peripheral zone was measured for more than 30 samples of different diameters for each thickness of the spacers, the width was found to be always about 100 microm, irrespective of the size difference of the cell mass placed. This seems to be contradictory to the previous observation made by Bonner et al. (1995). We also examined oxygen concentration dependence on the zone width. The zone width was found to be independent of the oxygen concentration at low concentrations, but increased rapidly at high concentrations. A reaction-diffusion mechanism for formation of the zone and possible involvement of atmospheric oxygen (O2) in the initial steps of cell differentiation and pattern formation is discussed.
Collapse
Affiliation(s)
- Y Sawada
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
16
|
Wood SA, Ammann RR, Brock DA, Li L, Spann T, Gomer RH. RtoA links initial cell type choice to the cell cycle in Dictyostelium. Development 1996; 122:3677-85. [PMID: 8951083 DOI: 10.1242/dev.122.11.3677] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Dictyostelium, initial cell type choice is correlated with the cell-cycle phase of the cell at the time of starvation. We have isolated a mutant, ratioA (rtoA), with a defect in this mechanism that results in an abnormally high percentage of prestalk cells. The rtoA gene has been cloned and sequenced and codes for a novel protein. The cell cycle is normal in rtoA. In the wild type, prestalk cells differentiate from those cells in S or early G2 phase at starvation and prespore cells from cells in late G2 or M phase at starvation. In rtoA mutants, both prestalk and prespore cells originate randomly from cells in any phase of the cell cycle at starvation.
Collapse
Affiliation(s)
- S A Wood
- Howard Hughes Medical Institute, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
A study of PstB cells during Dictyostelium migration and culmination reveals a unidirectional cell type conversion process. ACTA ACUST UNITED AC 1992; 201:354-363. [PMID: 28305854 DOI: 10.1007/bf00365123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/1992] [Indexed: 10/26/2022]
Abstract
The prestalk region of the Dictyostelium slug has recently been shown by Williams and his collaborators to consist of two distinct cell types, pstA and pstB cells. Here the movement of these cells in both the slug and culmination stages has been examined with the use of vital dyes. In the slug some of the pstB cells are continually lost from the prestalk region as small clusters of cells. These cells move through the prespore region and temporarily lie in the rearguard region at the posterior end of the slug. They are finally left in the slug's slime track as single cells or groups of a few cells. When culmination is initiated the pstB cells move as a whole from the prestalk region to the base where they join the rearguard cells to form the basal disc of the fruiting body. Transplantation experiments reveal that the rearguard cells form an outer ring portion of the basal disc and the pstB cells form an inner portion to which the stalk attaches. The continuous loss of one cell type during the slug stage without any change in cell type proportions suggests that cell types are redifferentiating. Grafting and transplantation experiments reveal that there is a unidirectional flow of cells through successive steps of cell type conversion. Prespore cells redifferentiate as anterior-like cells which migrate to the prestalk region and become pstA cells. The pstA cells then replace the pstB cells that are lost from the slug.
Collapse
|
20
|
|
21
|
Jain R, Yuen IS, Taphouse CR, Gomer RH. A density-sensing factor controls development in Dictyostelium. Genes Dev 1992; 6:390-400. [PMID: 1547939 DOI: 10.1101/gad.6.3.390] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For an unknown reason, several genes expressed during Dictyostelium development are regulated by cell density. This is mediated by an 80-kD glycoprotein, conditioned medium factor (CMF), which is slowly secreted and simultaneously sensed by starved cells. To examine further this eukaryotic cell density-sensing mechanism, we have isolated a cDNA encoding CMF. The derived amino acid sequence of CMF shows no obvious similarity to any known protein and thus may represent a new class of eukaryotic intercellular signal. CMF antisense transformants do not aggregate, whereas normal development is restored by the addition of purified CMF protein. This suggests that CMF might synchronize the onset of development in Dictyostelium by triggering aggregation when a majority of the cells in a given area have starved, as signaled by CMF secretion.
Collapse
Affiliation(s)
- R Jain
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77251-1892
| | | | | | | |
Collapse
|
22
|
Hansberg W, Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 1990; 142:201-21. [PMID: 2352433 DOI: 10.1016/s0022-5193(05)80222-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A general theory giving an explanation of microbial cell differentiation is presented. Based on experimental results, an unstable hyperoxidant state is postulated to trigger differentiation. Simple rules, involving the reduction of dioxygen and the isolation from dioxygen by diverse mechanisms, are proposed to govern transitions between the growth state and the differentiated states. With this view, common features of microbial differentiation processes, dimorphic growth, cell differentiation in dioxygen evolving phototrophs and in anaerobes are analyzed. The theory could have implications for understanding cell differentiation in higher organisms.
Collapse
Affiliation(s)
- W Hansberg
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | |
Collapse
|
23
|
Feit IN, Bonner JT, Suthers HB. Regulation of the anterior-like cell state by ammonia in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:442-6. [PMID: 2096019 DOI: 10.1002/dvg.1020110519] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ammonia appears to be an important regulatory signal for several aspects of the Dictyostelium life cycle. The postulated role of ammonia in the determination of the prespore pathway in cells of the slug stage has led us to examine the effect of ammonia on the prestalk/prespore ratio of migrating slugs. In the presence of 10(-3) M ammonium chloride, the volume of the prestalk region decreases by 40.8%. The kinetics of the process make it unlikely that this is due to a shift in the differentiation pathway. A test of the hypothesis that the decrease in volume of the prestalk region is due to the conversion of prestalk cells to anterior-like cells shows that the percent of anterior-like cells in the posterior region increases by the amount predicted by the hypothesis. This suggests that ammonia may be the molecular signal, produced by the tip, that prevents anterior-like cells from chemotactically migrating to the tip and thereby becoming anterior cells. The effect of enzymatic removal of ammonia from vitally stained migrating slugs is the appearance of a series of dark stripes beginning at the posterior end and progressing forward. We interpret this as a result of progressive removal of anterior-like cells from tip dominance and essentially as the formation of new potential tips. Indeed, in a few cases one or even two of the stripes separate from the posterior of the cell mass and form small fruiting bodies. We consider the phenomenon of stripe formation further evidence that the tip acts on anterior-like cells through ammonia.
Collapse
Affiliation(s)
- I N Feit
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | | | | |
Collapse
|