1
|
Sahay P, Behbehani M, Filippini P, Bruti G, Townsend M, McKean R, Dua HS. A Biosynthetic Alternative to Human Amniotic Membrane for Use in Ocular Surface Surgery. Transl Vis Sci Technol 2024; 13:3. [PMID: 38696180 PMCID: PMC11077906 DOI: 10.1167/tvst.13.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose The biosynthetic Symatix membrane (SM) was developed to replace fresh human amniotic membrane (hAM) in ocular surgical applications. The purpose of this study was to test the biocompatibility of the SM with human limbus-derived epithelial cells with regard to their physical and biological properties. Methods Different physical properties of SM were tested ex vivo by simulation on human corneas. In vitro, primary limbal epithelial cells from limbal explants were used to test biological properties such as cell migration, proliferation, metabolic activity, and limbal epithelial cell markers on the SM, hAM, and freeze-dried amniotic membrane (FDAM). Results The surgical handleability of the SM was equivalent to that of the hAM. Ultrastructural and histological studies demonstrated that epithelial cells on the SM had the typical tightly apposed, polygonal, corneal epithelial cell morphology. The epithelial cells were well stratified on the SM, unlike on the hAM and FDAM. Rapid wound healing occurred on the SM within 3 days. Immunofluorescence studies showed positive expression of CK-19, Col-1, laminin, ZO-1, FN, and p-63 on the SM, plastic, and FDAM compared to positive expression of ZO-1, Col-1, laminin, FN, and p63 and negative expression of CK-19 in the hAM. Conclusions These results indicate that the SM is a better substrate for limbal epithelial cell migration, proliferation, and tight junction formation. Altogether, the SM can provide a suitable alternative to the hAM for surgical application in sight-restoring operations. Translational Relevance The hAM, currently widely used in ocular surface surgery, has numerous variations and limitations. The biocompatibility of corneal epithelial cells with the SM demonstrated in this study suggests that it can be a viable substitute for the hAM.
Collapse
Affiliation(s)
- Prity Sahay
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| | | | - Perla Filippini
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| | | | | | - Rob McKean
- The Electrospinning Company, Oxfordshire, UK
| | - Harminder S. Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| |
Collapse
|
2
|
García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020; 12:E1215. [PMID: 33333869 PMCID: PMC7765302 DOI: 10.3390/pharmaceutics12121215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, the establishment of complex three-dimensional (3D) models of tissues has allowed researchers to perform high-quality studies and to not only advance knowledge of the physiology of these tissues but also mimic pathological conditions to test novel therapeutic strategies. The main advantage of 3D models is that they recapitulate the spatial architecture of tissues and thereby provide more physiologically relevant information. The eye is an extremely complex organ that comprises a large variety of highly heterogeneous tissues that are divided into two asymmetrical portions: the anterior and posterior segments. The anterior segment consists of the cornea, conjunctiva, iris, ciliary body, sclera, aqueous humor, and the lens. Different diseases in these tissues can have devastating effects. To study these pathologies and develop new treatments, the use of cell culture models is instrumental, and the better the model, the more relevant the results. Thus, the development of sophisticated 3D models of ocular tissues is a significant challenge with enormous potential. In this review, we present a comprehensive overview of the latest advances in the development of 3D in vitro models of the anterior segment of the eye, with a special focus on those that use human primary cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Yolanda Diebold
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Barut Selver Ö, Yağcı A, Eğrilmez S, Gürdal M, Palamar M, Çavuşoğlu T, Ateş U, Veral A, Güven Ç, Wolosin JM. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation. Turk J Ophthalmol 2017; 47:285-291. [PMID: 29109898 PMCID: PMC5661179 DOI: 10.4274/tjo.72593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/01/2022] Open
Abstract
The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using xenobiotic-free systems is becoming widely accepted both in Turkey and worldwide.
Collapse
Affiliation(s)
- Özlem Barut Selver
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Ayşe Yağcı
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Sait Eğrilmez
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Mehmet Gürdal
- Ege University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Turkey
| | - Melis Palamar
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Türker Çavuşoğlu
- Ege University Faculty of Medicine, Department of Histology and Embriology, İzmir, Turkey
| | - Utku Ateş
- İstanbul Bilim University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Ali Veral
- Ege University Faculty of Medicine, Department of Pathology, İzmir, Turkey
| | - Çağrı Güven
- Ege University Faculty of Medicine, Department of Gynecology and Obstetrics, İzmir, Turkey
| | - Jose Mario Wolosin
- Icahn Faculty of Medicine at Mount Sinai, Department of Ophthalmology and Black Family Stem Cell Institute, New York, USA
| |
Collapse
|
4
|
Poon MW, He J, Fang X, Zhang Z, Wang W, Wang J, Qiu F, Tse HF, Li W, Liu Z, Lian Q. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming. PLoS One 2015; 10:e0131288. [PMID: 26131692 PMCID: PMC4489496 DOI: 10.1371/journal.pone.0131288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.
Collapse
Affiliation(s)
- Ming-Wai Poon
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; The HKU Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia He
- The HKU Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaowei Fang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, China
| | - Zhao Zhang
- The HKU Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weixin Wang
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junwen Wang
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fangfang Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, China
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361005, China
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; The HKU Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp Eye Res 2014; 121:178-93. [PMID: 24607489 DOI: 10.1016/j.exer.2014.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Ophthalmology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | - James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114-2500, USA
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Briana M Kyne
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
6
|
Mei H, González S, Nakatsu MN, Baclagon ER, Lopes VS, Williams DS, Deng SX. A three-dimensional culture method to expand limbal stem/progenitor cells. Tissue Eng Part C Methods 2013; 20:393-400. [PMID: 24047104 DOI: 10.1089/ten.tec.2013.0246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The current standard method to culture human limbal stem/progenitor cells (LSCs) in vitro is to culture limbal epithelial cells directly on a layer of murine 3T3 feeder cells (standard method). The direct contact between human cells and murine feeder cells poses the potential risk of incomplete removal of feeder cells after culture and cross-contamination in clinical applications. We present here a novel three-dimensional (3D) sandwich method in which LSCs and feeder cells were separately cultured on opposite sides of a porous membrane. Limbal epithelial cells in the form of single-cell suspensions, cell clusters, and tissue explants were subjected to standard culture or to a 3D sandwich culture method. The 3D sandwich method consistently yielded LSCs derived from cell clusters and tissue explants. The expanded LSCs exhibited a small, compact, cuboidal stem-cell morphology and stem cell phenotypes comparable to those of LSCs derived from the standard culture method. Limbal epithelial cell clusters cultured with the sandwich method had a significantly higher proliferation rate than did those cultured with the standard method. The 3D sandwich method did not favor the propagation of single LSCs. In summary, the 3D sandwich method permits complete separation between cultured cells and feeder cells, while providing an even and maximal proximity between them. This alternative method permits culturing of LSCs without the risk of feeder cell contamination.
Collapse
Affiliation(s)
- Hua Mei
- Department of Ophthalmology, Jules Stein Eye Institute, University of California , Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
7
|
Schulz S, Beck D, Laird D, Steinberg T, Tomakidi P, Reinhard T, Eberwein P. Natural corneal cell-based microenvironment as prerequisite for balanced 3D corneal epithelial morphogenesis: a promising animal experiment-abandoning tool in ophthalmology. Tissue Eng Part C Methods 2013; 20:297-307. [PMID: 23886248 DOI: 10.1089/ten.tec.2013.0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To achieve durable recognition as a promising animal experiment-abandoning tool in ophthalmology, in vitro engineered tissue equivalents of the human cornea should exhibit proper morphogenesis. Regarding this issue, we were seeking for the natural cell microenvironment fulfilling the minimum requirements to allow human corneal keratinocytes to develop a balanced epithelial morphology with regular spatial appearance of tissue homeostatic biomarkers. Hence, we established cocultures of 3D cell-based collagen scaffolds comprising immortalized corneal keratinocytes combined with a gradual cornea-derived in vivo-like cell microenvironment, together with immortalized stromal fibroblasts alone (nonholistic) or fibroblasts and immortalized endothelial cells (holistic). With matched non-holistic microenvironments revealing mostly flattened cells and putative apical cell ablation foci at day 6, and 9 in HE stains, holistic counterparts yielded proper epithelial stratification with cell flattening restricted to apical layers. Concordantly, RT(2)-PCR showed a tremendous increase in gene expression for progressive and terminal biomarkers of corneal keratinocyte differentiation, cytokeratin (CK) 12, and filaggrin (FIL), in response to nonholistic environments, while involucrin (INV) was moderately but significantly upregulated. Although visible, this increase was moderate in corneal keratinocytes with a holistic environment. On the protein level, indirect immunofluorescence revealed that only epithelia of holistic environments showed diminishment in CK19, counteracted by CK12 rising over time. This time-dependent progression in differentiation coincided with declined proliferation and tissue-regular focus of differentiation biomarkers inv and fil to suprabasal and apical cell layers. Our novel findings suggest the interplay of native tissue forming cell entities, important for balanced corneal epithelial morphogenesis. In addition, they provide evidence for a holistic cell microenvironment as a prerequisite for development of an in vitro engineered corneal epithelial tissue equivalent, exhibiting a regular appearance of tissue homeostatic biomarkers. Such equivalents will be promising tools in ophthalmology, for example, for mechanistic studies in basic research and/or testing of generics or preclinical validation of innovative cornea-tailored biomaterials, desired for regenerative strategies.
Collapse
Affiliation(s)
- Simon Schulz
- 1 Department of Oral Biotechnology, Dental School, University Hospital of Freiburg , Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
The isolation and in situ identification of MSCs residing in loose connective tissues using a niche-preserving organ culture system. Biomaterials 2012; 33:4469-79. [DOI: 10.1016/j.biomaterials.2012.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/03/2012] [Indexed: 11/19/2022]
|
9
|
Eberwein P, Steinberg T, Schulz S, Zimmermann D, Accardi R, Beck D, Reinhard T, Tomakidi P. Expression of keratinocyte biomarkers is governed by environmental biomechanics. Eur J Cell Biol 2011; 90:1029-40. [DOI: 10.1016/j.ejcb.2011.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/16/2022] Open
|
10
|
Yang YI, Kim HI, Shelby J, Choi MY, Jang SH, Kim JT, Jang WH, Choi CS, Cheong SH. Fibrin matrix-supported three-dimensional organ culture of adipose tissue for selective outgrowth, expansion, and isolation of adipose-derived stem cells. Acta Biomater 2011; 7:4109-19. [PMID: 21839865 DOI: 10.1016/j.actbio.2011.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 01/22/2023]
Abstract
Conventional systems for isolating adipose-derived stem cells (ASC) require enzymatic digestion of adipose tissue (AT), followed by monolayer culture to the enrich the stem cell population. However, these systems are hindered by low cell yields and a lack of reproducibility. The present study was aimed at developing a unique strategy for isolating ASC based on fibrin matrix-supported three-dimensional (3-D) organ culture of native AT. Furthermore, we tried to optimize the fibrin composition by adjusting the fibrinogen and thrombin concentrations to allow rapid outgrowth and proliferation of ASC in the 3-D fibrin matrix. Human cutaneous AT fragments were encapsulated within the fibrin matrix to construct a 3-D environment and cultured under dynamic conditions. During in vitro culture the fibrin matrix provided physical support for the AT and also allowed selective outgrowth of ASC from embedded AT fragments. In situ expanded outgrown cells were recovered from the fibrin matrix by selective fibrinolysis and propagated under monolayer culture conditions. The cultured cells fulfilled the following criteria for ASC: adhesion to culture plastic, multipotent differentiation, correct immunophenotypic profile. Fibrin matrix-supported 3-D organ culture produced ASC that with high competency in terms of growth and differentiation capabilities, and resulted in a larger and more consistent cell yield than obtained with conventional culture systems. The fibrinogen and thrombin concentrations inversely affected spreading, migration, and ASC outgrowth from native AT. Our results indicate that this 3-D organ culture system for AT can be used as an efficient and reproducible method for ASC isolation.
Collapse
|
11
|
Yang YI, Kim HI, Choi MY, Son SH, Seo MJ, Seo JY, Jang WH, Youn YC, Choi KJ, Cheong SH, Shelby J. Ex vivo organ culture of adipose tissue for in situ mobilization of adipose-derived stem cells and defining the stem cell niche. J Cell Physiol 2010; 224:807-16. [PMID: 20578248 DOI: 10.1002/jcp.22188] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In spite of the advances in the knowledge of adipose-derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix-supported three-dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and alpha-smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31(-)/CD34(-)/CD146(+)/SMA(+) interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix-supported 3D environment can recapitulate the ASC niche in vitro.
Collapse
Affiliation(s)
- Young-Il Yang
- Deptartment of Pathology, Inje University School of Medicine, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology 2009; 270:18-34. [PMID: 19948204 DOI: 10.1016/j.tox.2009.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/23/2009] [Indexed: 12/15/2022]
Abstract
Given the reality of the inadequacies of current concepts of the mechanisms of chemical toxicities, of the various assays to predict toxicities from current molecular, biochemical, in vitro and animal bioassays, and of the failure to generate efficacious and safe chemicals for medicines, food supplements, industrial, consumer and agricultural chemicals, the recent NAS Report, "Toxicity Testing in the 21st Century: A Vision and a Strategy", has drawn attention to a renewed examination of what needs to be done to improve our current approach for better assessment of potential risk to human health. This "Commentary" provides a major paradigm challenge to the current concepts of how chemicals induce toxicities and how these various mechanisms of toxicities can contribute to the pathogenesis of some human diseases, such as birth defects and cancer. In concordance with the NAS Report to take "... advantage of the on-going revolution in biology and biotechnology", this "Commentary" supports the use of human embryonic and adult stem cells, grown in vitro under simulated "in vivo niche conditions". The human being should be viewed "as greater than the sum of its parts". Homeostatic control of the "emergent properties" of the human hierarchy, needed to maintain human health, requires complex integration of endogenous and exogenous signaling molecules that control cell proliferation, differentiation, apoptosis and senescence of stem, progenitor and differentiated cells. Currently, in vitro toxicity assays (mutagenesis, cytotoxicity, epigenetic modulation), done on 2-dimensional primary rodent or human cells (which are always mixtures of cells), on immortalized or tumorigenic rodent or human cell lines do not represent normal human cells in vivo [which do not grow on plastic and which are in micro-environments representing 3 dimensions and constantly interacting factors]. In addition, with the known genetic, gender, and developmental state of cells in vivo, any in vitro toxicity assay will need to mimic these conditions in vitro. More specifically, while tissues contain a few stem cells, many progenitor/transit cells and terminally differentiated cells, it should be obvious that both embryonic and adult stem cells would be critical "target" cells for toxicity testing. The ultimate potential for in vitro testing of human stem cells will to try to mimic a 3-D in vitro micro-environment on multiple "organ-specific and multiple genotypic/gender "adult stem cells. The role of stem cells in many chronic diseases, such as cancer, birth defects, and possibly adult diseases after pre-natal and early post-natal exposures (Barker hypothesis), demands toxicity studies of stem cells. While alteration of gene expression ("toxico-epigenomics") is a legitimate endpoint of these toxicity studies, alteration of the quantity of stem cells during development must be serious considered. If the future utility of human stem cells proves to be valid, the elimination of less relevant, expensive and time-consuming rodent and 2-D human in vitro assays will be eliminated.
Collapse
Affiliation(s)
- James Edward Trosko
- Center for Integrative Toxicology, Food Safety and Toxicology Center, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
13
|
Bolenz C, Ikinger EM, Ströbel P, Trojan L, Steidler A, Fernández MI, Honeck P, Gabriel U, Weiss C, Grobholz R, Alken P, Michel MS. Topical chemotherapy in human urothelial carcinoma explants: a novel translational tool for preclinical evaluation of experimental intravesical therapies. Eur Urol 2008; 56:504-11. [PMID: 18691807 DOI: 10.1016/j.eururo.2008.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/18/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) is associated with a high local recurrence rate despite intravesical therapy. There is a lack of representative preclinical models for standardized testing of novel experimental therapies. OBJECTIVE To develop an ex vivo model for human UC and to evaluate its ability to generate reproducible and reliable results when testing cytotoxic agents. DESIGN, SETTING, AND PARTICIPANTS Normal human urothelium (NHU) and bladder UC explants were collected from patients treated at our institution. A total of 195 surgical explants were cultured on a gelatine matrix. Tissue viability was regularly assessed using nicotinamide adenine dinucleotide (NADH) diaphorase enzymehistochemistry. Topical paclitaxel (PTX) or mitomycin C (MMC) chemotherapy was performed in a subset of 45 UC specimens. INTERVENTION All patients underwent radical cystectomy (RC) or primary transurethral resection (TUR) of a bladder UC. MEASUREMENTS Triple immunofluorescence (pan-cytokeratin [pan-CK]; 4',6-diamidin-2'-phenylindol-dihydrochloride [DAPI]; terminal deoxynucleotidyl transferase biotin-dUTP nick-end labelling [TUNEL]) and caspase-3 staining of paraffin sections was performed. Proliferation rates were assessed using Ki-67 labelling indices. Apoptosis (percent) was quantified in representative tissue areas to characterize culture stability and to assess antineoplastic effects. RESULTS AND LIMITATIONS No signs of necrosis and no significant changes in apoptosis were observed during the first 12 d of culture. Of all explants, 88.5% were vital after 20 d. In a highly reproducible fashion, topical chemotherapy resulted in significantly increased apoptosis (37.4% [19.0-75.0%] for PTX and 36.2% [18.8-46.7%] for MMC) compared with controls (7.5% [3.0-26.8%]; p<0.001]). No statistically significant difference was observed regarding the effects of the two chemotherapeutic agents (p=0.119). CONCLUSIONS The presented human ex vivo model takes UC heterogeneity into account and serves as a valuable translational tool. It offers an attractive alternative to preclinical cell line experiments or animal models and may even be used for prospective toxicity and drug efficacy tests in individual patients.
Collapse
Affiliation(s)
- Christian Bolenz
- Department of Urology, Mannheim Medical Centre, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Heyl J, Mehregan D. Immunolabeling pattern of cytokeratin 19 expression may distinguish sebaceous tumors from basal cell carcinomas. J Cutan Pathol 2008; 35:40-5. [PMID: 18095993 DOI: 10.1111/j.1600-0560.2007.00777.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Distinction between sebaceous tumors and basal cell carcinomas can often pose diagnostic problems. Recent work with the antibody to cytokeratin 19 (CK 19) has shown that this marker has high specificity for undifferentiated basaloid cells. Our aim was to evaluate the use of CK 19 staining patterns in differentiating between sebaceous tumors and basal cell carcinomas. The sebaceous tumors that were examined in this study included sebaceous adenomas, sebaceous epitheliomas (sebaceomas) and sebaceous carcinomas. METHODS Thirty-seven cases including 5 sebaceous adenomas, 16 sebaceous epitheliomas, 6 sebaceous carcinomas and 14 basal cell carcinomas (7 being of the morpheaform type and 7 nodular basal cell carcinomas) were tested with a monoclonal mouse antibody to human CK 19. RESULTS CK 19 was focally positive in 1/5 (20%) sebaceous adenomas, 8/16 (50%) of sebaceous epitheliomas and 1/6 (17%) of sebaceous carcinomas. Strongly positive expression of CK 19 was not seen in any of the sebaceous adenoma, sebaceous epithelioma or sebaceous carcinoma specimens. CK 19 was found to be strongly positive in 9/14 (64%) and focally positive in 2/14 (14%) of basal cell carcinomas. CONCLUSION CK 19 expression can be helpful in differentiating sebaceous tumors (including sebaceous adenomas, sebaceous epitheliomas and sebaceous carcinomas) from basal cell carcinomas and may be a useful adjunct when these entities are included in the differential diagnosis.
Collapse
Affiliation(s)
- Jennifer Heyl
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
15
|
Schneider RKM, Neuss S, Stainforth R, Laddach N, Bovi M, Knuechel R, Perez-Bouza A. Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function. Differentiation 2008; 76:156-67. [PMID: 17634073 DOI: 10.1111/j.1432-0436.2007.00204.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human mesenchymal stem cells (hMSC) are able to differentiate into mature cells of various mesenchymal tissues. Recent studies have reported that hMSC may even give rise to cells of ectodermal origin. This indication of plasticity makes hMSC a promising donor source for cell-based therapies. This study explores the differentiation potential of hMSC in a tissue-specific microenvironment simulated in vitro. HMSC were cultured air-exposed on dermal equivalents (DEs) consisting of collagen types I and III with dermal fibroblasts and subjected to conditions similar to those used for tissue engineering of skin with keratinocytes. Culture conditions were additionally modified by pre-treating the cells with 5-azacytidine or supplementing the medium with all trans retinoic acid (RA). HMSC were capable of adaptation to epidermis-specific conditions without losing their mesenchymal multipotency. However, despite the viability and evident three-dimensional epidermis-like growth pattern, hMSC showed a persistent expression of mesenchymal but not of epithelial markers, thus indicating a lack of epidermal (trans) differentiation. Further, electron microscopy and immunohistochemical analyses demonstrated that hMSC cultured under epidermis-specific conditions adopted a myofibroblastic phenotype and function, promoted in particular by air exposure. In conclusion, multipotent hMSC failed to differentiate into E-cadherin- or cytokeratin-expressing cells under optimized organotypic culture conditions for keratinocytes but differentiated into myofibroblast-like cells contracting the extracellular matrix, a phenomenon that was enhanced by RA and 5-azacytidine. These results indicate that hMSC might contribute to wound-healing processes by extracellular matrix reorganization and wound contraction but not by differentiation into keratinocytes.
Collapse
Affiliation(s)
- Rebekka K M Schneider
- Institute of Pathology, RWTH Aachen University, Pauwelsstr, 35, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Revoltella RP, Papini S, Rosellini A, Michelini M. Epithelial stem cells of the eye surface. Cell Prolif 2007; 40:445-61. [PMID: 17635514 PMCID: PMC6495997 DOI: 10.1111/j.1365-2184.2007.00450.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/03/2007] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Epithelial stem cells of the eye surface, of the cornea and of the conjunctiva, have the ability to give rise to self renewal and progeny production of differentiated cells with no apparent limit. The two epithelia are separated from each other by the transition zone of the limbus. The mechanisms adopted by stem cells of the two epithelia to accomplish their different characteristics, and how their survival, replacement and unequal division that generates differentiated progeny formation are controlled, are complex and still poorly understood. They can be learned only by understanding how stem cells/progenitors are regulated by their neighbouring cells, that may themselves be differently unspecialised, forming particular microenvironments, known as 'niches'. Stem cells operate by signals and a variety of intercellular interactions and extracellular substrates with adjacent cells in the niche. Technical advances are now making it possible to identify zones in the corneal limbus and conjunctiva that can house stem cells, to isolate and expand them ex vivo and to control their behaviour creating optimal niche conditions. With improvements in biotechnology, regenerative cornea and conjunctiva transplantation using adult epithelial stem cells becomes now a reality. RESULTS AND CONCLUSIONS Here we review our current understanding of stem cell niches and illustrate recent significant progress for identification and characterization of adult epithelial stem cells/progenitors at cellular, molecular and mechanistic levels, improvement in cell culture techniques for their selective expansion ex vivo and prospects for a variety of therapeutic applications.
Collapse
Affiliation(s)
- R P Revoltella
- Institute of Biomedical Technologies, National Research Council of Italy, Pisa, Italy.
| | | | | | | |
Collapse
|
17
|
Papini S, Rosellini A, De Matteis A, Campani D, Selli C, Caporali A, Bettuzzi S, Revoltella RP. Establishment of an organotypic in vitro culture system and its relevance to the characterization of human prostate epithelial cancer cells and their stromal interactions. Pathol Res Pract 2007; 203:209-16. [PMID: 17442502 DOI: 10.1016/j.prp.2007.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/29/2007] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
Human prostatic adenocarcinoma fragments (1-6mm) were cultured on collagen sponges in medium supplemented or not supplemented with 4,5alpha-dihydrotesterone (DHT) until 3 weeks, maintaining the three-dimensional (3D) epithelial and stromal organization present in the tumor in vivo. With time, in the presence of DHT, locally progressive cribriform nests of neoplastic cells with proliferative rates higher than those inside the fragment developed on the surface, while the stroma became more dissociated, and fibrosis replaced the muscular component. The 3D-culture provides a promising approach for studying the development and phenotype of prostate epithelial tumor progenitor cells and their stromal interactions.
Collapse
Affiliation(s)
- Sandra Papini
- Institute of Biomedical Technologies, National Research Council of Italy, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|