1
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
2
|
Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells. Emerg Top Life Sci 2021; 5:49-59. [PMID: 33856021 DOI: 10.1042/etls20200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Genes are expressed to proteins for a wide variety of fundamental biological processes at the cellular and organismal levels. However, a protein rarely functions alone, but rather acts through interactions with other proteins to maintain normal cellular and organismal functions. Therefore, it is important to analyze the protein-protein interactions to determine functional mechanisms of proteins, which can also guide to develop therapeutic targets for treatment of diseases caused by altered protein-protein interactions leading to cellular/organismal dysfunctions. There is a large number of methodologies to study protein interactions in vitro, in vivo and in silico, which led to the development of many protein interaction databases, and thus, have enriched our knowledge about protein-protein interactions and functions. However, many of these interactions were identified in vitro, but need to be verified/validated in living cells. Furthermore, it is unclear whether these interactions are direct or mediated via other proteins. Moreover, these interactions are representative of cell- and time-average, but not a single cell in real time. Therefore, it is crucial to detect direct protein-protein interactions in a single cell during biological processes in vivo, towards understanding the functional mechanisms of proteins in living cells. Importantly, a fluorescence resonance energy transfer (FRET)-based methodology has emerged as a powerful technique to decipher direct protein-protein interactions at a single cell resolution in living cells, which is briefly described in a limited available space in this mini-review.
Collapse
|
3
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
4
|
Song X, Guo C, Zheng Y, Wang Y, Jin Z, Yin Y. Post-transcriptional regulation of cancer/testis antigen MAGEC2 expression by TRIM28 in tumor cells. BMC Cancer 2018; 18:971. [PMID: 30309319 PMCID: PMC6182782 DOI: 10.1186/s12885-018-4844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer/testis antigen MAGEC2 (also known as HCA587) is highly expressed in a wide variety of tumors and plays an active role in promoting growth and metastasis of tumor cells. However, little is known for the regulation of MAGEC2 expression in cancer cells. METHODS Western blotting and quantitative RT-PCR were performed to analyze MAGEC2 expression. Co-immunoprecipitation assay was applied for detecting the endogenous interaction of MAGEC2 and TRIM28 in tumor cells. Overexpression and knockdown assays were used to examine the effects of TRIM28 on the expression of MAGEC2 protein. Immunohistochemistry (IHC) staining was performed in hepatocellular carcinoma patients to evaluate the association between the expression of MAGEC2 and TRIM28. Proteasome inhibitors MG132 or PS-341 and lysosome inhibitor Chloroquine (CQ) were used to inhibit proteasomal or lysosomal-mediated protein degradation respectively. RESULTS We demonstrate that MAGEC2 interacts with TRIM28 in melanoma cells and MAGEC2 expression in tumor cells depends on the expression of TRIM28. The expression level of MAGEC2 protein was significantly reduced when TRIM28 was depleted in tumor cells, and no changes were observed in MAGEC2 mRNA level. Furthermore, expression levels of MAGEC2 and TRIM28 are positively correlated in MAGEC2-positive human hepatocellular carcinoma tissues (p = 0.0011). Mechanistic studies indicate that the regulatory role of TRIM28 on MAGEC2 protein expression in tumor cells depends on proteasome-mediated pathway. CONCLUSIONS Our findings show that TRIM28 is necessary for MAGEC2 expression in cancer cells, and TRIM28 may serve as a new potential target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Chengli Guo
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Zhongtian Jin
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Cheng CT, Kuo CY, Ann DK. KAPtain in charge of multiple missions: Emerging roles of KAP1. World J Biol Chem 2014; 5:308-320. [PMID: 25225599 PMCID: PMC4160525 DOI: 10.4331/wjbc.v5.i3.308] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/21/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023] Open
Abstract
KAP1/TRIM28/TIF1β was identified nearly twenty years ago as a universal transcriptional co-repressor because it interacts with a large KRAB-containing zinc finger protein (KRAB-ZFP) transcription factor family. Many studies demonstrate that KAP1 affects gene expression by regulating the transcription of KRAB-ZFP-specific loci, trans-repressing as a transcriptional co-repressor or epigenetically modulating chromatin structure. Emerging evidence suggests that KAP1 also functions independent of gene regulation by serving as a SUMO/ubiquitin E3 ligase or signaling scaffold protein to mediate signal transduction. KAP1 is subjected to multiple post-translational modifications (PTMs), including serine/tyrosine phosphorylation, SUMOylation, and acetylation, which coordinately regulate KAP1 function and its protein abundance. KAP1 is involved in multiple aspects of cellular activities, including DNA damage response, virus replication, cytokine production and stem cell pluripotency. Moreover, knockout of KAP1 results in embryonic lethality, indicating that KAP1 is crucial for embryonic development and possibly impacts a wide-range of (patho)physiological manifestations. Indeed, studies from conditional knockout mouse models reveal that KAP1-deficiency significantly impairs vital physiological processes, such as immune maturation, stress vulnerability, hepatic metabolism, gamete development and erythropoiesis. In this review, we summarize and evaluate current literatures involving the biochemical and physiological functions of KAP1. In addition, increasing studies on the clinical relevance of KAP1 in cancer will also be discussed.
Collapse
|
7
|
Miyagi S, Koide S, Saraya A, Wendt GR, Oshima M, Konuma T, Yamazaki S, Mochizuki-Kashio M, Nakajima-Takagi Y, Wang C, Chiba T, Kitabayashi I, Nakauchi H, Iwama A. The TIF1β-HP1 system maintains transcriptional integrity of hematopoietic stem cells. Stem Cell Reports 2014; 2:145-52. [PMID: 24527388 PMCID: PMC3923190 DOI: 10.1016/j.stemcr.2013.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/03/2023] Open
Abstract
TIF1β is a transcriptional corepressor that recruits repressive chromatin modifiers to target genes. Its biological function and physiological targets in somatic stem cells remain largely unknown. Here, we show that TIF1β is essential for the maintenance of hematopoietic stem cells (HSCs). Deletion of Tif1b in mice induced active cycling and apoptosis of HSCs and promoted egression of HSCs from the bone marrow, leading to rapid depletion of HSCs. Strikingly, Tif1b-deficient HSCs showed a strong trend of ectopic expression of nonhematopoietic genes. Levels of heterochromatin protein 1 (HP1α, β and γ) proteins, which form a complex with TIF1β, were significantly reduced in the absence of TIF1β and depletion of HP1 recapitulated a part of the phenotypes of Tif1b-deficient HSCs. These results demonstrate that the TIF1β-HP1 system functions as a critical repressive machinery that targets genes not normally activated in the hematopoietic compartment, thereby maintaining the transcriptional signature specific to HSCs. Deletion of Tif1b in mice causes rapid depletion of HSCs Loss of TIF1β leads to reduction in HP1 proteins in HSCs The TIF1β-HP1 system represses nonhematopoietic genes in HSCs The TIF1β-HP1 system helps maintain the transcriptional integrity of HSCs
Collapse
Affiliation(s)
- Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Shuhei Koide
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - George R Wendt
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; ITO Foundation for International Education Exchange, Shinjuku 160-0023, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takaaki Konuma
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Makiko Mochizuki-Kashio
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tetsuhiro Chiba
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan ; JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
8
|
Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLoS One 2013; 8:e56721. [PMID: 23451074 PMCID: PMC3579818 DOI: 10.1371/journal.pone.0056721] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 01/24/2023] Open
Abstract
Highly coordinated transcription networks orchestrate the self-renewal of pluripotent stem cell and the earliest steps of mammalian development. KRAB-containing zinc finger proteins represent the largest group of transcription factors encoded by the genomes of higher vertebrates including mice and humans. Together with their putatively universal cofactor KAP1, they have been implicated in events as diverse as the silencing of endogenous retroelements, the maintenance of imprinting and the pluripotent self-renewal of embryonic stem cells, although the genomic targets and specific functions of individual members of this gene family remain largely undefined. Here, we first generated a list of Ensembl-annotated KRAB-containing genes encoding the mouse and human genomes. We then defined the transcription levels of these genes in murine early embryonic cells. We found that the majority of KRAB-ZFP genes are expressed in mouse pluripotent stem cells and other early progenitors. However, we also identified distinctively cell- or stage-specific patterns of expression, some of which are pluripotency-restricted. Finally, we determined that individual KRAB-ZFP genes exhibit highly distinctive modes of expression, even when grouped in genomic clusters, and that these cannot be correlated with the presence of prototypic repressive or activating chromatin marks. These results pave the way to delineating the role of specific KRAB-ZFPs in early embryogenesis.
Collapse
|
9
|
|
10
|
LeRoy G, Chepelev I, DiMaggio PA, Blanco MA, Zee BM, Zhao K, Garcia BA. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol 2012; 13:R68. [PMID: 22897906 PMCID: PMC3491368 DOI: 10.1186/gb-2012-13-8-r68] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 08/16/2012] [Indexed: 01/06/2023] Open
Abstract
Background Histone post-translational modifications (PTMs) constitute a branch of epigenetic mechanisms that can control the expression of eukaryotic genes in a heritable manner. Recent studies have identified several PTM-binding proteins containing diverse specialized domains whose recognition of specific PTM sites leads to gene activation or repression. Here, we present a high-throughput proteogenomic platform designed to characterize the nucleosomal make-up of chromatin enriched with a set of histone PTM binding proteins known as histone PTM readers. We support our findings with gene expression data correlating to PTM distribution. Results We isolated human mononucleosomes bound by the bromodomain-containing proteins Brd2, Brd3 and Brd4, and by the chromodomain-containing heterochromatin proteins HP1β and HP1α. Histone PTMs were quantified by mass spectrometry (ChIP-qMS), and their associated DNAs were mapped using deep sequencing. Our results reveal that Brd- and HP1-bound nucleosomes are enriched in histone PTMs consistent with actively transcribed euchromatin and silent heterochromatin, respectively. Data collected using RNA-Seq show that Brd-bound sites correlate with highly expressed genes. In particular, Brd3 and Brd4 are most enriched on nucleosomes located within HOX gene clusters, whose expression is reduced upon Brd4 depletion by short hairpin RNA. Conclusions Proteogenomic mapping of histone PTM readers, alongside the characterization of their local chromatin environments and transcriptional information, should prove useful for determining how histone PTMs are bound by these readers and how they contribute to distinct transcriptional states.
Collapse
|
11
|
Zhang L, Zhou Y, Zhu J, Xu Q. An updated view on stem cell differentiation into smooth muscle cells. Vascul Pharmacol 2012; 56:280-7. [PMID: 22421140 DOI: 10.1016/j.vph.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 12/16/2022]
Abstract
Stem cells possess the ability of self-renewal and give rise to specific cell types. The differentiation of stem cells involves environmental factors, transduction of extra and intra-cellular signals, regulation of gene expression by transcriptional factors, microRNAs and chromosome structural modifiers. Vascular SMCs play a profound role in blood vessel physiology and participate in a number of cardiovascular diseases such as atherosclerosis, hypertension and restenosis. In addition, SMCs could be a crucial cell component for vascular tissue engineering. In this review, we aim to update the recent progress on the mechanisms of SMC differentiation from stem cells, which involve reactive oxygen species, epigenetic modifiers, transcription factors and microRNAs coordinately regulated during stem cell differentiation. We will also discuss the potential application of stem cell therapy for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310003, PR China
| | | | | | | |
Collapse
|
12
|
Meister P, Schott S, Bedet C, Xiao Y, Rohner S, Bodennec S, Hudry B, Molin L, Solari F, Gasser SM, Palladino F. Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biol 2011; 12:R123. [PMID: 22185090 PMCID: PMC3334618 DOI: 10.1186/gb-2011-12-12-r123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 01/23/2023] Open
Abstract
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Collapse
Affiliation(s)
- Peter Meister
- Laboratory of Molecular and Cellular Biology, CNRS, Université de Lyon, Ecole Normale Supérieure, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xiao Q, Wang G, Yin X, Luo Z, Margariti A, Zeng L, Mayr M, Ye S, Xu Q. Chromobox Protein Homolog 3 Is Essential for Stem Cell Differentiation to Smooth Muscles In Vitro and in Embryonic Arteriogenesis. Arterioscler Thromb Vasc Biol 2011; 31:1842-52. [DOI: 10.1161/atvbaha.111.230110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Gang Wang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Xiaoke Yin
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Zhenling Luo
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Andriani Margariti
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Lingfang Zeng
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Manuel Mayr
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Shu Ye
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (Q. Xiao, S.Y.); Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (G.W., X.Y., Z.L., A.M., L.Z., M.M., Q. Xu)
| |
Collapse
|
14
|
Grant J, Verrill C, Coustham V, Arneodo A, Palladino F, Monier K, Khalil A. Perinuclear distribution of heterochromatin in developing C. elegans embryos. Chromosome Res 2010; 18:873-85. [PMID: 21116703 DOI: 10.1007/s10577-010-9175-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genome activity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic 3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.
Collapse
Affiliation(s)
- Jeremy Grant
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Caillier M, Thénot S, Tribollet V, Birot AM, Samarut J, Mey A. Role of the epigenetic regulator HP1γ in the control of embryonic stem cell properties. PLoS One 2010; 5:e15507. [PMID: 21085495 PMCID: PMC2981578 DOI: 10.1371/journal.pone.0015507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/06/2010] [Indexed: 12/30/2022] Open
Abstract
The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs.
Collapse
Affiliation(s)
- Maïa Caillier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Sandrine Thénot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
- * E-mail: (AM); (JS)
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
- * E-mail: (AM); (JS)
| |
Collapse
|
16
|
Higo S, Asano Y, Kato H, Yamazaki S, Nakano A, Tsukamoto O, Seguchi O, Asai M, Asakura M, Asanuma H, Sanada S, Minamino T, Komuro I, Kitakaze M, Takashima S. Isoform-specific intermolecular disulfide bond formation of heterochromatin protein 1 (HP1). J Biol Chem 2010; 285:31337-47. [PMID: 20675861 DOI: 10.1074/jbc.m110.155788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three mammalian isoforms of heterochromatin protein 1 (HP1), α, β, and γ, play diverse roles in gene regulation. Despite their structural similarity, the diverse functions of these isoforms imply that they are additionally regulated by post-translational modifications. Here, we have identified intermolecular disulfide bond formation of HP1 cysteines in an isoform-specific manner. Cysteine 133 in HP1α and cysteine 177 in HP1γ were involved in intermolecular homodimerization. Although both HP1α and HP1γ contain reactive cysteine residues, only HP1γ readily and reversibly formed disulfide homodimers under oxidative conditions. Oxidatively dimerized HP1γ strongly and transiently interacted with TIF1β, a universal transcriptional co-repressor. Under oxidative conditions, HP1γ dimerized and held TIF1β in a chromatin component and inhibited its repression ability. Our results highlight a novel, isoform-specific role for HP1 as a sensor of the cellular redox state.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 2010; 6:e1000869. [PMID: 20221260 PMCID: PMC2832679 DOI: 10.1371/journal.pgen.1000869] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/02/2010] [Indexed: 01/05/2023] Open
Abstract
Krüppel-associated box domain-zinc finger proteins (KRAB–ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB–mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB–containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB–mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 β (HP1β) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1–dependent transcriptional repression at an endogenous KRAB–ZFP gene cluster, where KAP1 binds to the 3′ end of genes and mediates propagation of H3K9me3 and HP1β towards their 5′ end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB–ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB–ZFPs and KAP1. The regulation of gene activity by transcription factors is crucial to the function of all cells. Here, we studied the mechanisms of action of the largest family of gene regulators encoded by the human genome, the so-called KRAB–containing zinc finger proteins (KRAB–ZFPs), which in concert with their universal cofactor KAP1 act as transcriptional repressors. For this, we used two parallel approaches. First, by targeting an ectopic KRAB domain to hundreds of different genes, we found that KRAB/KAP1 can repress promoters located several tens of kilobases from the repressor DNA docking site. We further could show that KRAB induces such long-range effects by mediating the spread of repressive chromatin marks along the body of the gene, resulting in a block of transcriptional initiation at the promoter. In a second set of experiments, we analyzed an endogenous KRAB–ZFP gene cluster, where we could also document KAP1–dependent heterochromatin spreading and transcriptional repression. Together, these results support a model whereby KRAB–ZFPs and KAP1 can mediate long-range transcriptional repression through the spread of silencing chromatin marks. This study thus provides insight into KRAB/KAP1–induced gene regulation at KRAB–ZFP gene clusters, and will further help interpret genome-wide studies of KRAB–ZFPs and KAP1 DNA binding patterns.
Collapse
Affiliation(s)
- Anna C. Groner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Meylan
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nadine Zangger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Dénervaud
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philipp Bucher
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Caterino M, Ruoppolo M, Fulcoli G, Huynth T, Orrù S, Baldini A, Salvatore F. Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: a comparative proteomic analysis. J Proteome Res 2009; 8:1515-26. [PMID: 19178302 DOI: 10.1021/pr800870d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TBX1 haploinsufficiency is considered a major contributor to the del22q11.2/DiGeorge syndrome (DGS) phenotype. We have used proteomic tools to look at all the major proteins involved in the TBX1-mediated pathways in an attempt to better understand the molecular interactions instrumental to its cellular functions. We found more than 90 proteins that could be targeted by TBX1 through different mechanisms. The most interesting observation is that overexpression of TBX1 results in down-regulation of two proteins involved in retinoic acid metabolism.
Collapse
Affiliation(s)
- Marianna Caterino
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy, Dipartimento di Biochimica e Biotecnologie Mediche, Universita di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
LeRoy G, Weston JT, Zee BM, Young NL, Plazas-Mayorca MD, Garcia BA. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol Cell Proteomics 2009; 8:2432-42. [PMID: 19567367 DOI: 10.1074/mcp.m900160-mcp200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heterochromatin protein 1 (HP1) family members (alpha, beta, and gamma) bind histone H3 methylated at Lys-9, leading to gene silencing and heterochromatin formation. Several previous reports have suggested that HP1s are post-translationally modified, yet sites of modification have not yet been exhaustively determined. Here we perform the first comprehensive proteomic analysis of all HP1 isoforms using tandem mass spectrometry. Our data reveal that all HP1 isoforms are highly modified in a manner analogous to histones including phosphorylation, acetylation, methylation, and formylation, including several sites having multiple different types of modifications. Additionally, many of these modifications are found in both the chromo- and chromoshadow domains, suggesting that they may have an important role in modulating HP1 interactions or functions. These studies are the first to systematically map the abundant sites of covalent modifications on HP1 isoforms and provide the foundation for future investigations to test whether these modifications are essential in heterochromatin maintenance or other nuclear processes.
Collapse
Affiliation(s)
- Gary LeRoy
- Department Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
20
|
Briers S, Crawford C, Bickmore WA, Sutherland HG. KRAB zinc-finger proteins localise to novel KAP1-containing foci that are adjacent to PML nuclear bodies. J Cell Sci 2009; 122:937-46. [PMID: 19258395 DOI: 10.1242/jcs.034793] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.
Collapse
Affiliation(s)
- Stephanie Briers
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
21
|
Riclet R, Chendeb M, Vonesch JL, Koczan D, Thiesen HJ, Losson R, Cammas F. Disruption of the interaction between transcriptional intermediary factor 1{beta} and heterochromatin protein 1 leads to a switch from DNA hyper- to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol Biol Cell 2008; 20:296-305. [PMID: 18923144 DOI: 10.1091/mbc.e08-05-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here, we identified the imprinted mesoderm-specific transcript (MEST) gene as an endogenous TIF1beta primary target gene and demonstrated that transcriptional intermediary factor (TIF) 1beta, through its interaction with heterochromatin protein (HP) 1, is essential in establishing and maintaining a local heterochromatin-like structure on MEST promoter region characterized by H3K9 trimethylation and hypoacetylation, H4K20 trimethylation, DNA hypermethylation, and enrichment in HP1 that correlates with preferential association to foci of pericentromeric heterochromatin and transcriptional repression. On disruption of the interaction between TIF1beta and HP1, TIF1beta is released from the promoter region, and there is a switch from DNA hypermethylation and histone H3K9 trimethylation to DNA hypomethylation and histone H3K27 trimethylation correlating with rapid reactivation of MEST expression. Interestingly, we provide evidence that the imprinted MEST allele DNA methylation is insensitive to TIF1beta loss of function, whereas the nonimprinted allele is regulated through a distinct TIF1beta-DNA methylation mechanism.
Collapse
Affiliation(s)
- Raphaël Riclet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur/Collège de France, Illkirch-Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Chang CW, Chou HY, Lin YS, Huang KH, Chang CJ, Hsu TC, Lee SC. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol 2008; 9:61. [PMID: 18590578 PMCID: PMC2474647 DOI: 10.1186/1471-2199-9-61] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background As an epigenetic regulator, the transcriptional intermediary factor 1β (TIF1β)/KAP1/TRIM28) has been linked to gene expression and chromatin remodeling at specific loci by association with members of the heterochromatin protein 1 (HP1) family and various other chromatin factors. The interaction between TIF1β and HP1 is crucial for heterochromatin formation and maintenance. The HP1-box, PXVXL, of TIF1β is responsible for its interaction with HP1. However, the underlying mechanism of how the interaction is regulated remains poorly understood. Results This work demonstrates that TIF1β is phosphorylated on Ser473, the alteration of which is dynamically associated with cell cycle progression and functionally linked to transcriptional regulation. Phosphorylation of TIF1β/Ser473 coincides with the induction of cell cycle gene cyclin A2 at the S-phase. Interestingly, chromatin immunoprecipitation demonstrated that the promoter of cyclin A2 gene is occupied by TIF1β and that such occupancy is inversely correlated with Ser473 phosphorylation. Additionally, when HP1β was co-expressed with TIF1β/S473A, but not TIF1β/S473E, the colocalization of TIF1β/S473A and HP1β to the promoters of Cdc2 and Cdc25A was enhanced. Non-phosphorylated TIF1β/Ser473 allowed greater TIF1β association with the regulatory regions and the consequent repression of these genes. Consistent with possible inhibition of TIF1β's corepressor function, the phosphorylation of the Ser473 residue, which is located near the HP1-interacting PXVXL motif, compromised the formation of TIF1β-HP1 complex. Finally, we found that the phosphorylation of TIF1β/Ser473 is mediated by the PKCδ pathway and is closely linked to cell proliferation. Conclusion The modulation of HP1β-TIF1β interaction through the phosphorylation/de-phosphorylation of TIF1β/Ser473 may constitute a molecular switch that regulates the expression of particular genes. Higher levels of phosphorylated TIF1β/Ser473 may be associated with the expression of key regulatory genes for cell cycle progression and the proliferation of cells.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem 2008; 56:711-21. [PMID: 18474937 DOI: 10.1369/jhc.2008.951251] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei.
Collapse
Affiliation(s)
- Eva Bártová
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol 2008; 87:291-303. [PMID: 18396346 DOI: 10.1016/j.ejcb.2008.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that histone code dictates the type and structure of chromatin. Bearing in mind the importance of A-type lamins for chromatin arrangement, we studied the effect of trichostatin A (TSA)-induced histone hyperacetylation in lamin A/C-deficient (LMNA-/-) fibroblasts. Lamin A/C deficiency caused condensation of chromosome territories and the nuclear reorganization of centromeric heterochromatin, which was accompanied by the appearance of a chain-like morphology of HP1beta foci. Conversely, histone deacetylase (HDAC) inhibition induced de-condensation of chromosome territories, which compensated the effect of lamin A/C deficiency on chromosome regions. The amount of heterochromatin in the area associated with the nuclear membrane was significantly reduced in LMNA-/- cells when compared with lamin A/C-positive (LMNA+/+) fibroblasts. TSA also decreased the amount of peripheral heterochromatin, similarly as lamin A/C deficiency. In both LMNA+/+ and LMNA-/- cells, physically larger chromosomes were positioned more peripherally as compared with the smaller ones, even after TSA treatment. Our observations indicate that lamin A/C deficiency causes not only reorganization of chromatin and some chromatin-associated domains, but also has an impact on the extent of chromosome condensation. As HDAC inhibition can compensate the lamin A/C-dependent chromatin changes, the interaction between lamins and specifically modified histones may play an important role in higher-order chromatin organization, which influences transcriptional activity.
Collapse
|
25
|
Ritou E, Bai M, Georgatos SD. Variant-specific patterns and humoral regulation of HP1 proteins in human cells and tissues. J Cell Sci 2007; 120:3425-35. [PMID: 17855381 DOI: 10.1242/jcs.012955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have examined the occurrence and distribution of HP1α and HP1β under in vivo, ex vivo and in vitro conditions. Consistent with a non-essential role in heterochromatin maintenance, both proteins are diminished or undetectable in several types of differentiated cells and are universally downregulated during erythropoiesis. Variant-specific patterns are observed in almost all human and mouse tissues examined. Yet, the most instructive example of HP1 plasticity is observed in the lymph nodes, where HP1α and HP1β exhibit regional patterns that are exactly complementary to one another. Furthermore, whereas HP1α shows a dispersed sub-nuclear distribution in the majority of peripheral lymphocytes, it coalesces into large heterochromatic foci upon stimulation with various mitogens and IL-2. The effect of inductive signals on HP1α distribution is reproduced by coculture of immortalized T- and B-cells and can be confirmed using specific markers. These complex patterns reveal an unexpected plasticity in HP1 variant expression and strongly suggest that the sub-nuclear distribution of HP1 proteins is regulated by humoral signals and microenvironmental cues.
Collapse
Affiliation(s)
- Eleni Ritou
- Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina School of Medicine, Dourouti, Greece
| | | | | |
Collapse
|
26
|
Dialynas GK, Terjung S, Brown JP, Aucott RL, Baron-Luhr B, Singh PB, Georgatos SD. Plasticity of HP1 proteins in mammalian cells. J Cell Sci 2007; 120:3415-24. [PMID: 17855382 DOI: 10.1242/jcs.012914] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the distribution of endogenous heterochromatin protein 1 (HP1) proteins (α, β and γ) in different epithelial lines, pluripotent stem cells and embryonic fibroblasts. In parallel, we have interrogated assembly and dynamics of newly expressed HP1-GFP proteins in cells lacking both HP1α and HP1β alleles, blocked at the G1-S boundary, or cultured in the presence of HDAC and HAT inhibitors. The results reveal a range of cell type and differentiation state-specific patterns that do not correlate with `fast' or `slow' subunit exchange in heterochromatin. Furthermore, our observations show that targeting of HP1γ to heterochromatic sites depends on HP1α and H1β and that, on an architectural level, HP1α is the most polymorphic variant of the HP1 family. These data provide evidence for HP1 plasticity under shifting microenvironmental conditions and offer a new conceptual framework for understanding chromatin dynamics at the molecular level.
Collapse
Affiliation(s)
- George K Dialynas
- The Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina, School of Medicine and The Institute of Biomedical Research (FORTH/BRI), 45 110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
27
|
Panteleeva I, Boutillier S, See V, Spiller DG, Rouaux C, Almouzni G, Bailly D, Maison C, Lai HC, Loeffler JP, Boutillier AL. HP1alpha guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation. EMBO J 2007; 26:3616-28. [PMID: 17627279 PMCID: PMC1949014 DOI: 10.1038/sj.emboj.7601789] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 06/11/2007] [Indexed: 11/09/2022] Open
Abstract
A critical step of neuronal terminal differentiation is the permanent withdrawal from the cell cycle that requires the silencing of genes that drive mitosis. Here, we describe that the alpha isoform of the heterochromatin protein 1 (HP1) protein family exerts such silencing on several E2F-targeted genes. Among the different isoforms, HP1alpha levels progressively increase throughout differentiation and take over HP1gamma binding on E2F sites in mature neurons. When overexpressed, only HP1alpha is able to ensure a timed repression of E2F genes. Specific inhibition of HP1alpha expression drives neuronal progenitors either towards death or cell cycle progression, yet preventing the expression of the neuronal marker microtubule-associated protein 2. Furthermore, we provide evidence that this mechanism occurs in cerebellar granule neurons in vivo, during the postnatal development of the cerebellum. Finally, our results suggest that E2F-targeted genes are packaged into higher-order chromatin structures in mature neurons relative to neuroblasts, likely reflecting a transition from a 'repressed' versus 'silenced' status of these genes. Together, these data present new epigenetic regulations orchestrated by HP1 isoforms, critical for permanent cell cycle exit during neuronal differentiation.
Collapse
Affiliation(s)
- Irina Panteleeva
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
- Université Louis Pasteur, Faculté de médecine, UMRS692, Strasbourg, France
| | - Stéphanie Boutillier
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
- Université Louis Pasteur, Faculté de médecine, UMRS692, Strasbourg, France
| | - Violaine See
- Centre for Cell Imaging, University of Liverpool, Liverpool L69 7ZB, UK
| | - Dave G Spiller
- Centre for Cell Imaging, University of Liverpool, Liverpool L69 7ZB, UK
| | - Caroline Rouaux
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
- Université Louis Pasteur, Faculté de médecine, UMRS692, Strasbourg, France
| | | | | | | | - Helen C Lai
- Department of Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jean-Philippe Loeffler
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
- Université Louis Pasteur, Faculté de médecine, UMRS692, Strasbourg, France
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Faculté de médecine, 11 rue Humann, Strasbourg 67085, France. Tel.: +33 390 24 30 82; Fax: +33 390 24 30 65; E-mail:
| | - Anne-Laurence Boutillier
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
- Université Louis Pasteur, Faculté de médecine, UMRS692, Strasbourg, France
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Faculté de médecine, 11 rue Humann, Strasbourg 67085, France. Tel.: +33 390 24 30 82; Fax: +33 390 24 30 65; E-mail:
| |
Collapse
|