1
|
Wang S, Yu Y, Li Y, Zhang T, Jiang W, Wang X, Liu R. Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1. Stem Cell Res Ther 2024; 15:274. [PMID: 39218930 PMCID: PMC11367998 DOI: 10.1186/s13287-024-03886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yangyang Yu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yinglei Li
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Xinghuan Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Ran Liu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
3
|
Xie H, Guo L, Ma Q, Zhang W, Yang Z, Wang Z, Peng S, Wang K, Wen S, Shang Z, Niu Y. YAP is required for prostate development, regeneration, and prostate stem cell function. Cell Death Discov 2023; 9:339. [PMID: 37689711 PMCID: PMC10492789 DOI: 10.1038/s41420-023-01637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Prostate development and regeneration depend on prostate stem cell function, the delicate balance of stem cell self-renewal and differentiation. However, mechanisms modulating prostate stem cell function remain poorly identified. Here, we explored the roles of Yes-associated protein 1 (YAP) in prostate stem cells, prostate development and regeneration. Using YAPfl/fl, CD133-CreER mice, we found that stem cell-specific YAP-deficient mice had compromised branching morphogenesis and epithelial differentiation, resulting in damaged prostate development. YAP inhibition also significantly affected the regeneration process of mice prostate, leading to impaired regenerated prostate. Furthermore, YAP ablation in prostate stem cells significantly reduced its self-renewal activity in vitro, and attenuated prostate regeneration of prostate grafts in vivo. Further analysis revealed a decrease in Notch and Hedgehog pathways expression in YAP inhibition cells, and treatment with exogenous Shh partially restored the self-renewal ability of prostate sphere cells. Taken together, our results revealed the roles of YAP in prostate stem cell function and prostate development and regeneration through regulation of the Notch and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Linpei Guo
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Zhang
- Department of Radiology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhao Yang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhun Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Shuanghe Peng
- Department of Pathology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keruo Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Simeng Wen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
4
|
Derderian S, Vesval Q, Wissing MD, Hamel L, Côté N, Vanhuyse M, Ferrario C, Bladou F, Aprikian A, Chevalier S. Liquid biopsy-based targeted gene screening highlights tumor cell subtypes in patients with advanced prostate cancer. Clin Transl Sci 2022; 15:2597-2612. [PMID: 36172886 PMCID: PMC9652435 DOI: 10.1111/cts.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Prostate cancer (PCa) clinical heterogeneity underscores tumor heterogeneity, which may be best defined by cell subtypes. To test if cell subtypes contributing to progression can be assessed noninvasively, we investigated whether 14 genes representing luminal, neuroendocrine, and stem cells are detectable in whole blood RNA of patients with advanced PCa. For each gene, reverse transcription quantitative polymerase chain reaction assays were first validated using RNA from PCa cell lines, and their traceability in blood was assessed in cell spiking experiments. These were next tested in blood RNA of 40 advanced PCa cases and 40 healthy controls. Expression in controls, which was low or negative, was used to define stringent thresholds for gene overexpression in patients to account for normal variation in white blood cells. Thirty-five of 40 patients overexpressed at least one gene. Patients with more genes overexpressed had a higher risk of death (hazard ratio 1.42, range 1.12-1.77). Progression on androgen receptor inhibitors was associated with overexpression of stem (odds ratio [OR] 7.74, range 1.68-35.61) and neuroendocrine (OR 13.10, range 1.24-142.34) genes, while luminal genes were associated with taxanes (OR 2.7, range 1.07-6.82). Analyses in PCa transcriptomic datasets revealed that this gene panel was most prominent in metastases of advanced disease, with diversity among patients. Collectively, these findings support the contribution of the prostate cell subtypes to disease progression. Cell-subtype specific genes are traceable in blood RNA of patients with advanced PCa and are associated with clinically relevant end points. This opens the door to minimally invasive liquid biopsies for better management of this deadly disease.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada
| | - Quentin Vesval
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of UrologyCentre Hospitalier Régional et Universitaire (CHRU) de RennesRennesFrance
| | - Michel D. Wissing
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Nathalie Côté
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Marie Vanhuyse
- Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Cristiano Ferrario
- Department of OncologyJewish General Hospital (JGH) and McGill UniversityMontrealCanada
| | - Franck Bladou
- Department of UrologyCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada,Department of MedicineMcGill UniversityMontrealCanada
| |
Collapse
|
5
|
Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nat Commun 2021; 12:6377. [PMID: 34737261 PMCID: PMC8568894 DOI: 10.1038/s41467-021-26612-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.
Collapse
|
6
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. BPA-induced prostatic hyperplasia in vitro is correlated with the unbalanced gene expression of AR and ER in the epithelium and stroma. Toxicol Ind Health 2021; 37:585-593. [PMID: 34486460 DOI: 10.1177/07482337211042986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a typical environmental endocrine disruptor (EED), bisphenol A (BPA) can induce pathological hyperplasia of the prostatic epithelium and stroma. This study concentrates mainly on the effect and underlying mechanisms of BPA on prostatic hyperplasia, which is based on the culture of primary human prostate epithelial cells (HPEpiC) and human prostate fibroblasts (HPrF). In an effect to screen the optimal pro-survival BPA levels, HPEpiC and HPrF were, respectively, exposed to concentration gradients of BPA (10-12 M-10-4 M) solution diluted with two corresponding medium and incubated for 72 h at 37°C. CCK-8 assay showed that 10-9 M-10-5 M BPA could facilitate the proliferation of HPEpiC, while similar proliferative effect of HPrF only needed 10-11 M-10-7 M BPA. HPrF were more sensitive to BPA than HPEpiC. The qualification of PCNA gene expression measured using quantitative real-time polymerase chain reaction (qRT-PCR) also mirrored the BPA-induced cell proliferation. Additionally, our results considered that androgen receptor (AR), estrogen receptor (ERα, ERβ), and NFKB1 gene expressions exhibited up-regulation in HPEpiC treated with 10-9 M BPA for 72 h. However, in HPrF, the identical BPA treatment could activate ERα, ERβ, and NFKB1 gene expressions and down-regulated the expression of AR levels. It is further confirmed that low-dose BPA can indeed promote the proliferation of human prostate cells in vitro, and the mechanisms of BPA for prostatic epithelial and stromal hyperplasia may not be consistent.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Dongyan Huang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ping Zhou
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xin Su
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rongfu Yang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Congcong Shao
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jianhui Wu
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
7
|
Yang Z, Chen J, Xie H, Liu T, Chen Y, Ma Z, Pei X, Yang W, Li L. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett 2019; 473:118-129. [PMID: 31843555 DOI: 10.1016/j.canlet.2019.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Early studies suggest that the androgen receptor (AR) may play differential roles in influencing prostate cancer (PCa) and bladder cancer (BCa) metastasis, but the underlying mechanisms remain unclear. Here, we found that the AR might function via differentially altering vasculogenic mimicry (VM) formation to either decrease PCa metastasis or increase BCa metastasis. Mechanism dissection showed that the AR could differentially alter the expression of the VM marker SLPI through miR-525-5p to regulate SLPI; moreover, it could either increase miR-525-5p transcription in PCa or decrease it in BCa via binding to different androgen-response-elements (AREs) located at different positions in the miR-525 precursor promoter. Further, results from liquid chromatography-mass spectrometry (LC-MS) showed that the co-factors of AR in PCa and BCa are NFIX and HDAC2, respectively. Together, these results provide the first detailed mechanism of how the AR can differentially alter PCa and BCa metastasis; thus, targeting the newly identified AR-miR-525-5p-SLPI axis may help suppress metastasis.
Collapse
Affiliation(s)
- Zhao Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenkun Ma
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinqi Pei
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenjie Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Loss of the tumor suppressor, Tp53, enhances the androgen receptor-mediated oncogenic transformation and tumor development in the mouse prostate. Oncogene 2019; 38:6507-6520. [PMID: 31358900 PMCID: PMC6752978 DOI: 10.1038/s41388-019-0901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Recent genome analysis of human prostate cancers demonstrated that both AR gene amplification and TP53 mutation are among the most frequently observed alterations in advanced prostate cancer. However, the biological role of these dual genetic alterations in prostate tumorigenesis is largely unknown. In addition, there are no biologically relevant models that can be used to assess the molecular mechanisms for these genetic abnormalities. Here, we report a novel mouse model, in which elevated transgenic AR expression and Trp53 deletion occur simultaneously in mouse prostatic epithelium to mimic human prostate cancer cells. These compound mice developed an earlier onset of high-grade prostatic intraepithelial neoplasia and accelerated prostate tumors in comparison to mice harboring only the AR transgene. Histological analysis showed prostatic sarcomatoid and basaloid carcinomas with massive squamous differentiation in the above compound mice. RNA-sequencing analyses identified a robust enrichment of the signature genes for human prostatic basal cell carcinomas in the above prostate tumors. Master Regulator Analysis revealed SOX2 as a transcriptional regulator in prostatic basal cell tumors. Elevated expression of SOX2 and its downstream target genes were detected in prostatic tumors of the compound mice. Chromatin immunoprecipitation analyses implicate a co-regulatory role of AR and SOX2 in the expression of prostatic basal cell signature genes. Our data demonstrate a critical role of SOX2 in prostate tumorigenesis and provide mechanistic insight into prostate tumor aggressiveness and progression mediated by aberrant AR and p53 signaling pathways.
Collapse
|
9
|
Brocqueville G, Chmelar RS, Bauderlique-Le Roy H, Deruy E, Tian L, Vessella RL, Greenberg NM, Rohrschneider LR, Bourette RP. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells. Oncotarget 2018; 7:29228-44. [PMID: 27081082 PMCID: PMC5045392 DOI: 10.18632/oncotarget.8709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin- CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells.
Collapse
Affiliation(s)
- Guillaume Brocqueville
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Renee S Chmelar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hélène Bauderlique-Le Roy
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Emeric Deruy
- BioImaging Center Lille, Institut Pasteur de Lille, University of Lille, F-59000 Lille, France
| | - Lu Tian
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Norman M Greenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Present address: NMG Scientific Consulting, North Potomac, MD 20878, USA
| | - Larry R Rohrschneider
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland P Bourette
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| |
Collapse
|
10
|
Brechka H, McAuley EM, Lamperis SM, Paner GP, Vander Griend DJ. Contribution of Caudal Müllerian Duct Mesenchyme to Prostate Development. Stem Cells Dev 2016; 25:1733-1741. [PMID: 27595922 DOI: 10.1089/scd.2016.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A fundamental understanding of prostate development and tissue homeostasis has the high potential to reveal mechanisms for prostate disease initiation and identify novel therapeutic approaches for disease prevention and treatment. Our current understanding of prostate lineage specification stems from the use of developmental model systems that rely upon the embryonic preprostatic urogenital sinus mesenchyme to induce the formation of mature prostate epithelial cells. It is unclear, however, how the urogenital sinus epithelium can derive both adult urethral glands and prostate epithelia. Furthermore, the vast disparity in disease initiation between these two glands highlights key developmental factors that predispose prostate epithelia to hyperplasia and cancer. In this study we demonstrate that the caudal Müllerian duct mesenchyme (CMDM) drives prostate epithelial differentiation and is a key determinant in cell lineage specification between urethral glands and prostate epithelia. Utilizing both human embryonic stem cells and mouse embryonic tissues, we document that the CMDM is capable of inducing the specification of androgen receptor, prostate-specific antigen, NKX3.1, and Hoxb13-positive prostate epithelial cells. These results help to explain key developmental differences between prostate and urethral gland differentiation, and implicate factors secreted by the caudal Müllerian duct as novel targets for prostate disease prevention and treatment.
Collapse
Affiliation(s)
- Hannah Brechka
- 1 The Committee on Cancer Biology, The University of Chicago , Chicago, Illinois
| | - Erin M McAuley
- 2 The Committee on Molecular Pathology and Molecular Medicine, The University of Chicago , Chicago, Illinois
| | - Sophia M Lamperis
- 3 Department of Surgery, Section of Urology, The University of Chicago , Chicago, Illinois
| | - Gladell P Paner
- 4 Department of Pathology, The University of Chicago , Chicago, Illinois
| | - Donald J Vander Griend
- 1 The Committee on Cancer Biology, The University of Chicago , Chicago, Illinois.,3 Department of Surgery, Section of Urology, The University of Chicago , Chicago, Illinois
| |
Collapse
|
11
|
Kang SYC, Kannan N, Zhang L, Martinez V, Rosin MP, Eaves CJ. Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation. Stem Cell Reports 2015; 5:1210-1225. [PMID: 26527383 PMCID: PMC4682068 DOI: 10.1016/j.stemcr.2015.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. Tonsillar surface and crypt epithelial progenitor cells are detected similarly Both surface and crypt epithelial progenitors in the tonsil are CD44+NGFR+ Stratified epithelium can be regenerated from primitive tonsillar crypt cells HPV16 E6/E7 deregulates crypt epithelial progenitor growth and differentiation
Collapse
Affiliation(s)
- Sung Yoon Catherine Kang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lewei Zhang
- Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Victor Martinez
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Miriam P Rosin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Wang H, Wang L, Jerde TJ, Chan B, Savran CA, Burcham GN, Crist S, Ratliff TL. Characterization of autoimmune inflammation induced prostate stem cell expansion. Prostate 2015; 75:1620-31. [PMID: 26174474 PMCID: PMC4720918 DOI: 10.1002/pros.23043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND The presence of inflammation in prostate cancer (PCa) and benign prostate hyperplasia (BPH) has been well described but the cellular mechanisms by which inflammation modulates the prostate are currently unclear. Prostate stem cells (PSC) not only maintain prostate homeostasis but also are considered to be the cell of origin of PCa and an important contributor to BPH. However, the impact of inflammation on PSC is not well understood. Therefore, we initiated studies to evaluate the effect of inflammation on PSC. METHOD Ovalbumin specific CD8(+) T cells were intravenously delivered to intact and castrated prostate ovalbumin expressing transgenic-3 (POET-3) mice to induce inflammation. Lin (CD45/CD31)(-) Sca1(+) CD49f(+) cells (LSC) and progenitor cells within LSC were determined by flow cytometry. Sorted LSC were subjected to a prostate sphere forming assay to evaluate PSC clonal propagation, proliferation, immediate differentiation, and self-renewal ability. Density of individual spheres was measured by a cantilever-based resonator weighing system. Morphology and characterization of prostate spheres was determined by hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). Finally, immediate PSC differentiation in sphere formation was determined by immunofluorescence for epithelial cytokeratin markers cytokeratin (CK) 5 and CK8. RESULT Data presented here demonstrate a significant expansion of the proliferative (BrdU(+) ) LSC population, including CK5(+) , p63(+) , CK18(+) cells, as well as intermediate cells (CK5(+) /CK8(+) ) in inflamed prostates. Histological images reveal that PSC from inflamed prostates produce significantly larger spheres, indicating that the enhanced proliferation observed in LSC is sustained in vitro in the absence of inflammatory mediators. In addition, cultures from inflamed PSC yielded increased number of tubule-like spheres. These tube-like spheres grown from PSCs isolated from inflamed mice exhibited stratification of a CK8(+) luminal-like layer and a CK5(+) basal-like layer. Notably, the numbers of spheres formed by inflamed and non-inflamed PSC were equal, suggesting that even though proliferation is enhanced by inflammation, the homeostatic level of PSC is maintained. CONCLUSION Induction of inflammation promotes PSC expansion and immediate differentiation through highly proliferative progenitor cells while the homeostasis of PSC is maintained.
Collapse
Affiliation(s)
- Hsing‐Hui Wang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Liang Wang
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Bin‐Da Chan
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Cagri A. Savran
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Grant N. Burcham
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- College of Veterinary MedicineThe Heeke Animal Disease Diagnostic Laboratory, Purdue UniversityWest LafayetteIndiana
| | - Scott Crist
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Timothy L. Ratliff
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| |
Collapse
|
13
|
Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE, Raj GV, Tilley WD, Dehm SM. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res 2015; 43:5880-97. [PMID: 25908785 PMCID: PMC4499120 DOI: 10.1093/nar/gkv262] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022] Open
Abstract
Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55905, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Mens' Health, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55905, USA
| | - Michael D Nyquist
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Lu Miao
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Mens' Health, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55905, USA Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55905, USA
| |
Collapse
|
14
|
Lee SH, Luong R, Johnson DT, Cunha GR, Rivina L, Gonzalgo ML, Sun Z. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene 2015; 35:702-14. [PMID: 25893287 PMCID: PMC4615253 DOI: 10.1038/onc.2015.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/05/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
Emerging evidence has demonstrated the critical roles for both androgen and Wnt pathways in prostate tumorigenesis. A recent integrative genomic analysis of human prostate cancers has revealed a unique enrichment of androgen and Wnt signaling in early onset prostate cancers, implying their clinical significance in the disease. Additionally, interaction between the androgen receptor (AR) and β-catenin has long been detected in prostate cancer cells. However, the consequence of this interaction in prostate tumorigenesis is still unknown. Because mutations in adenomatous polyposis coli (APC), β-catenin, and other components of the destruction-complex are generally rare in prostate cancers, other mechanisms of aberrant Wnt signaling activation have been speculated. To address these critical questions, we developed Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 mice, in which transgenic AR and stabilized β-catenin are co-expressed in prostatic epithelial cells. We observed accelerated tumor development, aggressive tumor invasion, and a decreased survival rate in Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice compared to age-matched Ctnnb1L(ex3)/+:PB-Cre4 littermate controls, which only have stabilized β-catenin expression in the prostate. Castration of the above transgenic mice resulted in significant tumor regression, implying an essential role of androgen signaling in tumor growth and maintenance. Implantation of the prostatic epithelial cells isolated from the transgenic mice regenerated PIN and prostatic adenocarcinoma lesions. Microarray analyses of transcriptional profiles showed more robust enrichment of known tumor and metastasis promoting genes: Spp1, Egr1, c-Myc, Sp5, and Sp6 genes in samples isolated from Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice than those from Ctnnb1L(ex3)/+:PB-Cre4 and R26hARL/+:PB-Cre4 littermate controls. Together, these data demonstrate a confounding role of androgen signaling in β-catenin initiated oncogenic transformation in prostate tumorigenesis.
Collapse
Affiliation(s)
- S H Lee
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - R Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D T Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - G R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - M L Gonzalgo
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Z Sun
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Luo W, Rodriguez M, Valdez JM, Zhu X, Tan K, Li D, Siwko S, Xin L, Liu M. Lgr4 is a key regulator of prostate development and prostate stem cell differentiation. Stem Cells 2014; 31:2492-505. [PMID: 23897697 DOI: 10.1002/stem.1484] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 12/31/2022]
Abstract
Mechanisms modulating prostate cell fate determination remain unexplored. The leucine-rich repeat containing G-protein-coupled receptors (Lgr) have been identified as important stem cell markers in various tissues. Here, we investigated the roles of Lgr4/Gpr48 in prostate stem cells (PSCs) and development. Lgr4 was ubiquitously expressed during early prostate development prior to lineage specification, with adult expression restricted to a few basal cells (principally Lin(-)Sca1(+)CD49f(+)). Lgr4(-/-) mice had compromised branching morphogenesis and delayed epithelial differentiation, leading to decreased prostate size and impaired luminal cell function. In vitro prostate sphere culture revealed that Lgr4(-/-) Lin(-)/Sca1(+)/CD49f(+) cells failed to generate p63(low) cells, indicating a differentiation deficiency. Furthermore, Lgr4 ablation arrested PSC differentiation of in vivo kidney capsule prostate grafts, suggesting that Lgr4 modulates PSC properties independent of hormonal and mesenchymal effects. Analysis of neonatal prostates and prostate spheres revealed a decrease in Wnt, Sonic Hedgehog, and Notch1 expression in Lgr4(-/-) cells. Lgr4 loss blocked differentiation of prostate sphere p63(hi) cells to p63(low). Treatment with exogenous Sonic Hedgehog partially restored the differentiation of p63(hi) cells in Lgr4(-/-) spheres. Taken together, our data revealed the roles of Lgr4 in early prostate development and in stem cell differentiation through regulation of the Wnt, Notch, and Sonic Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Weijia Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, TexasA&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Omori A, Miyagawa S, Ogino Y, Harada M, Ishii K, Sugimura Y, Ogino H, Nakagata N, Yamada G. Essential roles of epithelial bone morphogenetic protein signaling during prostatic development. Endocrinology 2014; 155:2534-44. [PMID: 24731097 PMCID: PMC4060178 DOI: 10.1210/en.2013-2054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prostate is a male sex-accessory organ. The prostatic epithelia consist primarily of basal and luminal cells that differentiate from embryonic urogenital sinus epithelia. Prostate tumors are believed to originate in the basal and luminal cells. However, factors that promote normal epithelial differentiation have not been well elucidated, particularly for bone morphogenetic protein (Bmp) signaling. This study shows that Bmp signaling prominently increases during prostatic differentiation in the luminal epithelia, which is monitored by the expression of phosphorylated Smad1/5/8. To elucidate the mechanism of epithelial differentiation and the function of Bmp signaling during prostatic development, conditional male mutant mouse analysis for the epithelial-specific Bmp receptor 1a (Bmpr1a) was performed. We demonstrate that Bmp signaling is indispensable for luminal cell maturation, which regulates basal cell proliferation. Expression of the prostatic epithelial regulatory gene Nkx3.1 was significantly reduced in the Bmpr1a mutants. These results indicate that Bmp signaling is a key factor for prostatic epithelial differentiation, possibly by controlling the prostatic regulatory gene Nkx3.1.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type I/metabolism
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Epithelium/metabolism
- Epithelium/pathology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hyperplasia
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Mice, Transgenic
- Mutation
- Phosphorylation
- Prostate/metabolism
- Prostate/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Smad Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Akiko Omori
- Department of Developmental Genetics (A.O., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan; Okazaki Institute for Integrative Bioscience (S.M., Y.O.), National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, 444-8787, Japan; Department of Clinical Anatomy (M.H.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8591, Japan; Department of Oncologic Pathology (K.I.), and Nephro-Urologic Surgery and Andrology (Y.S.), Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Animal Bioscience (H.O.), Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan; and Division of Reproductive Engineering (N.N.), Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
DeGraff DJ, Grabowska MM, Case T, Yu X, Herrick MK, Hayward W, Strand DW, Cates JM, Hayward SW, Gao N, Walter MA, Buttyan R, Yi Y, Kaestner KH, Matusik RJ. FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. J Transl Med 2014; 94:726-39. [PMID: 24840332 PMCID: PMC4451837 DOI: 10.1038/labinvest.2014.64] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/20/2014] [Accepted: 03/26/2014] [Indexed: 01/25/2023] Open
Abstract
The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1(loxp/loxp) mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1(loxp/loxp) prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.
Collapse
Affiliation(s)
- David J. DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | | | - Tom Case
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Xiuping Yu
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Mary K. Herrick
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - William Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Douglas W. Strand
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Justin M. Cates
- Department of Pathology, Vanderbilt University Medical Center, Nashville TN
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark NJ
| | | | | | - Yajun Yi
- Institute for Integrative Genomics and Department of Medicine, Vanderbilt University, Nashville TN
| | | | - Robert J. Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville TN,Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville TN,Correspondence and reprint requests should be made to: Robert J. Matusik, Ph.D., William L. Bray Chair of Urologic Surgery, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232,
| |
Collapse
|
18
|
Grabowska MM, Elliott AD, DeGraff DJ, Anderson PD, Anumanthan G, Yamashita H, Sun Q, Friedman DB, Hachey DL, Yu X, Sheehan JH, Ahn JM, Raj GV, Piston DW, Gronostajski RM, Matusik RJ. NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol Endocrinol 2014; 28:949-64. [PMID: 24801505 DOI: 10.1210/me.2013-1213] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression.
Collapse
Affiliation(s)
- Magdalena M Grabowska
- Department of Urologic Surgery (M.M.G., G.A. H.Y., Q.S., X.Y., R.J.M.), Department of Molecular Physiology and Biophysics (A.D.E., D.W.P.), and Vanderbilt-Ingram Cancer Center (R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pathology (D.J.D.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Biological Sciences (P.D.A.), Salisbury University, Salisbury, Maryland 21801; Mass Spectrometry Research Center (D.B.F., D.L.H.), Department of Biochemistry, Department of Biochemistry and Center for Structural Biology (J.H.S.), and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37232; Department of Chemistry (J.-M.A.), University of Texas Dallas, Dallas, Texas 75080; Department of Urology (G.V.R.), University of Texas Southwestern, Dallas, Texas 75390; and Department of Biochemistry (R.M.G.), Developmental Genomics Group, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chan SC, Dehm SM. Constitutive activity of the androgen receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:327-66. [PMID: 24931201 DOI: 10.1016/b978-0-12-417197-8.00011-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration-resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this chapter, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional coregulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand-binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
20
|
miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One 2013; 8:e83991. [PMID: 24391862 PMCID: PMC3877136 DOI: 10.1371/journal.pone.0083991] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022] Open
Abstract
miRNA regulate gene expression at post-transcriptional level and fine-tune the key biological processes, including cancer progression. Here, we demonstrate the involvement of miR-200 b in the metastatic spread of prostate cancer. We identified miR-200 b as a downstream target of androgen receptor and linked its expression to decreased tumorigenicity and metastatic capacity of the prostate cancer cells. Overexpression of miR-200 b in PC-3 cells significantly inhibited their proliferation and the formation of subcutaneous tumors. Moreover, in an orthotopic model, miR-200 b blocked spontaneous metastasis and angiogenesis by PC-3 cells. This decreased metastatic potential was likely due to the reversal of the epithelial-to-mesenchymal transition, as was evidenced by increased pan-epithelial marker E-cadherin and specific markers of prostate epithelium, cytokeratins 8 and 18. In contrast, mesenchymal markers, fibronectin and vimentin, were significantly downregulated by miR-200 b. Our results suggest an important role for miR-200 b in prostate cancer progression and indicate its potential utility for prostate cancer therapy.
Collapse
|
21
|
Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, Luong R, Sun Z. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. PLoS One 2013; 8:e53476. [PMID: 23308230 PMCID: PMC3540073 DOI: 10.1371/journal.pone.0053476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023] Open
Abstract
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate.
Collapse
Affiliation(s)
- Mi Kyung Kwak
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel T. Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chunfang Zhu
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suk Hyung Lee
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ding-Wei Ye
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zijie Sun
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhu C, Luong R, Zhuo M, Johnson DT, McKenney JK, Cunha GR, Sun Z. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. J Biol Chem 2011; 286:33478-88. [PMID: 21795710 DOI: 10.1074/jbc.m111.269894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting "conditionally" activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hAR(loxP):Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development.
Collapse
Affiliation(s)
- Chunfang Zhu
- Department of Urology and Genetics, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells. Cancers (Basel) 2011; 3:2050-79. [PMID: 24212796 PMCID: PMC3757404 DOI: 10.3390/cancers3022050] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 12/23/2022] Open
Abstract
The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|
24
|
Zhang L, Valdez JM, Zhang B, Wei L, Chang J, Xin L. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One 2011; 6:e18271. [PMID: 21464902 PMCID: PMC3065488 DOI: 10.1371/journal.pone.0018271] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/24/2011] [Indexed: 11/18/2022] Open
Abstract
Activation of the RhoA/ROCK signaling pathway has been shown to contribute to dissociation-induced apoptosis of embryonic and neural stem cells. We previously demonstrated that approximately 1 out of 40 Lin(-)Sca-1(+)CD49f(high) (LSC) prostate basal epithelial cells possess the capacities of stem cells for self-renewal and multi-lineage differentiation. We show here that treating LSC cells with the ROCK kinase inhibitor Y-27632 increases their cloning efficiency by 8 fold in an in vitro prostate colony assay. Y-27632 treatment allows prostate colony cells to replate efficiently, which does not occur otherwise. Y-27632 also increases the cloning efficiency of prostate stem cells in a prostate sphere assay and a dissociated prostate cell regeneration assay. The increased cloning efficiency is due to the suppression of the dissociation-induced, RhoA/ROCK activation-mediated apoptosis of prostate stem cells. Dissociation of prostate epithelial cells from extracellular matrix increases PTEN activity and attenuates AKT activity. Y-27632 treatment alone is sufficient to suppress cell dissociation-induced activation of PTEN activity. However, this does not contribute to the increased cloning efficiency, because Y-27632 treatment increases the sphere-forming unit of wild type and Pten null prostate cells to a similar extent. Finally, knocking down expression of both ROCK kinases slightly increases the replating efficiency of prostate colony cells, corroborating that they play a major role in the Y-27632 mediated increase in cloning efficiency. Our study implies that the numbers of prostate cells with stem/progenitor activity may be underestimated based on currently employed assays, supports that dissociation-induced apoptosis is a common feature of embryonic and somatic stem cells with an epithelial phenotype, and highlights the significance of environmental cues for the maintenance of stem cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
25
|
Mauney JR, Ramachandran A, Yu RN, Daley GQ, Adam RM, Estrada CR. All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS One 2010; 5:e11513. [PMID: 20644631 PMCID: PMC2903484 DOI: 10.1371/journal.pone.0011513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/02/2010] [Indexed: 01/05/2023] Open
Abstract
The urinary bladder and associated tract are lined by the urothelium, a transitional epithelium that acts as a specialized permeability barrier that protects the underlying tissue from urine via expression of a highly specific group of proteins known as the uroplakins (UP). To date, our understanding of the developmental processes responsible for urothelial differentiation has been hampered due to the lack of suitable models. In this study, we describe a novel in vitro cell culture system for derivation of urothelial cells from murine embryonic stem cells (ESCs) following cultivation on collagen matrices in the presence all trans retinoic acid (RA). Upon stimulation with micromolar concentrations of RA, ESCs significantly downregulated the pluripotency factor OCT-4 but markedly upregulated UP1A, UP1B, UP2, UP3A, and UP3B mRNA levels in comparison to naïve ESCs and spontaneously differentiating controls. Pan-UP protein expression was associated with both p63- and cytokeratin 20-positive cells in discrete aggregating populations of ESCs following 9 and 14 days of RA stimulation. Analysis of endodermal transcription factors such as GATA4 and GATA6 revealed significant upregulation and nuclear enrichment in RA-treated UP2-GFP+ populations. GATA4-/- and GATA6-/- transgenic ESC lines revealed substantial attenuation of RA-mediated UP expression in comparison to wild type controls. In addition, EMSA analysis revealed that RA treatment induced formation of transcriptional complexes containing GATA4/6 on both UP1B and UP2 promoter fragments containing putative GATA factor binding sites. Collectively, these data suggest that RA mediates ESC specification toward a urothelial lineage via GATA4/6-dependent processes.
Collapse
Affiliation(s)
- Joshua R. Mauney
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aruna Ramachandran
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard N. Yu
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George Q. Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Manton Center for Orphan Disease Research, Boston, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos R. Estrada
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Zhang J, Gao N, DeGraff DJ, Yu X, Sun Q, Case TC, Kasper S, Matusik RJ. Characterization of cis elements of the probasin promoter necessary for prostate-specific gene expression. Prostate 2010; 70:934-51. [PMID: 20209642 PMCID: PMC3712623 DOI: 10.1002/pros.21128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The androgen-regulated probasin (PB) promoter has been used extensively to target transgenes to the prostate in transgenic mice; however, limited data exist on the mechanism that dictates prostate-specific gene expression. Tissue-specific gene expression involves synergistic effects among transcription factors associated in a complex bound to cis-acting DNA elements. METHODS Using comprehensive linker scan mutagenesis, enzyme mobility shift and supershift assays, chromatin immunoprecipitation, and transgenic animal studies, we have extensively characterized the prostate-specific PB promoter. RESULTS We identified a series of nonreceptor transcription factors that are bound to the prostate-specific rat PB promoter. These factors include several ubiquitously distributed proteins known to participate in steroid receptor-mediated transcription. In addition, we identified two tissue-specific DNA elements that are crucial in directing prostate-specific PB expression, and confirmed the functional importance of both elements in transgenic animal studies. These two elements are functionally interchangeable and can be bound by multiple protein complexes, including the forkhead transcription factor FoxA1, a "pioneer factor" that has a restricted distribution to some cells type that are ectoderm and endoderm in origin. Using transgenic mice, we further demonstrate that the minimal PB promoter region (-244/-96 bp) that encompasses these tissue-specific elements results in prostate-specific gene expression in transgenic mice, contains androgen receptor and FoxA1-binding sites, as well as ubiquitous transcription factor binding sites. CONCLUSION We propose that these sequence-specific DNA-binding proteins, including tissue-restricted and ubiquitous factors, create the first level of transcriptional control, which responds to intracellular pathways that directs prostate-specific gene expression.
Collapse
Affiliation(s)
- JianFeng Zhang
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
| | - Nan Gao
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - David J. DeGraff
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
- Department of Vanderbilt University Medical Center, Nashville, TN 37232-2765 USA
| | - Xiuping Yu
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - Qian Sun
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2765 USA
| | - Thomas C. Case
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267-0056
| | - Robert J. Matusik
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2765 USA
- Department of Vanderbilt University Medical Center, Nashville, TN 37232-2765 USA
| |
Collapse
|
27
|
McCune K, Bhat-Nakshatri P, Thorat MA, Nephew KP, Badve S, Nakshatri H. Prognosis of hormone-dependent breast cancers: implications of the presence of dysfunctional transcriptional networks activated by insulin via the immune transcription factor T-bet. Cancer Res 2010; 70:685-96. [PMID: 20068169 DOI: 10.1158/0008-5472.can-09-1530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogen receptor alpha (ERalpha)-positive breast cancers that co-express transcription factors GATA-3 and FOXA1 have a favorable prognosis. These transcription factors form an autoregulatory hormonal network that influences estrogen responsiveness and sensitivity to hormonal therapy. Disruption of this network may be a mechanism whereby ERalpha-positive breast cancers become resistant to therapy. The transcription factor T-bet is a negative regulator of GATA-3 in the immune system. In this study, we report that insulin increases the expression of T-bet in breast cancer cells, which correlates with reduced expression of GATA-3, FOXA1, and the ERalpha:FOXA1:GATA-3 target gene GREB-1. The effects of insulin on GATA-3 and FOXA1 could be recapitulated through overexpression of T-bet in MCF-7 cells (MCF-7-T-bet). Chromatin immunoprecipitation assays revealed reduced ERalpha binding to GREB-1 enhancer regions in MCF-7-T-bet cells and in insulin-treated MCF-7 cells. MCF-7-T-bet cells were resistant to tamoxifen in the presence of insulin and displayed prolonged extracellular signal-regulated kinase and AKT activation in response to epidermal growth factor treatment. ERalpha-positive cells with intrinsic tamoxifen resistance as well as MCF-7 cells with acquired tamoxifen and fulvestrant resistance expressed elevated levels of T-bet and/or reduced levels of FOXA1 and GATA-3. Analysis of publicly available databases revealed ERalpha-positive/T-bet-positive breast cancers expressing lower levels of FOXA1 (P = 0.0137) and GATA-3 (P = 0.0063) compared with ERalpha-positive/T-bet-negative breast cancers. Thus, T-bet expression in primary tumors and circulating insulin levels may serve as surrogate biomarkers to identify ERalpha-positive breast cancers with a dysfunctional hormonal network, enhanced growth factor signaling, and resistance to hormonal therapy.
Collapse
Affiliation(s)
- Kasi McCune
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sun Q, Yu X, Degraff DJ, Matusik RJ. Upstream stimulatory factor 2, a novel FoxA1-interacting protein, is involved in prostate-specific gene expression. Mol Endocrinol 2009; 23:2038-47. [PMID: 19846536 DOI: 10.1210/me.2009-0092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The forkhead protein A1 (FoxA1) is critical for the androgenic regulation of prostate-specific promoters. Prostate tissue rescued from FoxA1 knockout mice exhibits abnormal prostate development, typified by the absence of expression of differentiation markers and inability to engage in secretion. Chromatin immunoprecipitation and coimmunoprecipitation studies revealed that FoxA1 is one of the earliest transcription factors that binds to prostate-specific promoters, and that a direct protein-protein interaction occurs between FoxA1 and androgen receptor. Interestingly, evidence of the interaction of FoxA1 with other transcription factors is lacking. The upstream stimulatory factor 2 (USF2), an E-box-binding transcription factor of the basic-helix-loop-helix-leucine-zipper family, binds to a consensus DNA sequence similar to FoxA1. Our in vitro and in vivo studies demonstrate the binding of USF2 to prostate-specific gene promoters including the probasin promoter, spermine-binding protein promoter, and prostate-specific antigen core enhancer. Furthermore, we show a direct physical interaction between FoxA1 and USF2 through the use of immunoprecipitation and glutathione-S-transferase pull-down assays. This interaction is mediated via the forkhead DNA-binding domain of FoxA1 and the DNA-binding domain of USF2. In summary, these data indicate that USF2 is one of the components of the FoxA1/androgen receptor transcriptional protein complex that contributes to the expression of androgen-regulated and prostate-specific genes.
Collapse
Affiliation(s)
- Qian Sun
- Department of Cancer Biology, The Vanderbilt Prostate Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Breast cancer is a heterogeneous disease and classification is important for clinical management. At least five subtypes can be identified based on unique gene expression patterns; this subtype classification is distinct from the histopathological classification. The transcription factor network(s) required for the specific gene expression signature in each of these subtypes is currently being elucidated. The transcription factor network composed of the oestrogen (estrogen) receptor alpha (ERalpha), FOXA1 and GATA3 may control the gene expression pattern in luminal subtype A breast cancers. Breast cancers that are dependent on this network correspond to well-differentiated and hormone-therapy-responsive tumours with good prognosis. In this review, we discuss the interplay between these transcription factors with a particular emphasis on FOXA1 structure and function, and its ability to control ERalpha function. Additionally, we discuss modulators of FOXA1 function, ERalpha-FOXA1-GATA3 downstream targets, and potential therapeutic agents that may increase differentiation through FOXA1.
Collapse
|
30
|
Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 2008; 105:20882-7. [PMID: 19088204 DOI: 10.1073/pnas.0811411106] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The epithelium of the adult prostate contains 3 distinct cell types: basal, luminal, and neuroendocrine. Tissue-regenerative activity has been identified predominantly from the basal cells, isolated by expression of CD49f and stem cell antigen-1 (Sca-1). An important question for the field is whether all basal cells have stem cell characteristics. Prostate-specific microarray databases were interrogated to find candidate surface antigens that could subfractionate the basal cell population. Tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1/GA733-1) was identified because it was enriched after castration, in prostate sphere cells and in the basal fraction. In the murine prostate, Trop2 shows progenitor characteristics such as localization to the region of the gland proximal to the urethra and enrichment for sphere-forming and colony-forming cells. Trop2 subfractionates the basal cells into 2 populations, both of which express characteristic basal cell markers by quantitative PCR. However, only the basal cells expressing high levels of Trop2 were able to efficiently form spheres in vitro. In the human prostate, where Sca-1 is not expressed, sphere-forming progenitor cells were also isolated based on high expression of Trop2 and CD49f. Trop2-expressing murine basal cells could regenerate prostatic tubules in vivo, whereas the remaining basal cells had minimal activity. Evidence was found for basal, luminal, and neuroendocrine cells in prostatic tubules regenerated from Trop2(hi) basal cells. In summary, functionally distinct populations of cells exist within the prostate basal compartment and an epithelial progenitor can give rise to neuroendocrine cells in vivo.
Collapse
|
31
|
Abstract
Stromal-epithelial interactions mediated by paracrine signaling mechanisms dictate prostate development and progression of prostate cancer. The regulatory role of androgens in both the prostate stromal and epithelial compartments set the prostate apart from many other organs and tissues with regard to gene targeting. The identification of androgen-dependent prostate epithelial promoters has allowed successful gene targeting to the prostate epithelial compartment. Currently, there are no transgenic mouse models available to specifically alter gene expression within the prostate stromal compartment. As a primary metastatic site for prostate cancer is bone, the functional dissection of the bone stromal compartment is important for understanding stromal-epithelial interactions associated with metastatic tumor growth. Use of currently available methodologies for the expression or deletion of gene expression in recent research studies has advanced our understanding of the stroma. However, the complexity of stromal heterogeneity within the prostate remains a challenge to obtaining compartment or cell-lineage-specific in vivo models necessary for furthering our understanding of prostatic developmental, benign, tumorigenic, and metastatic growth.
Collapse
Affiliation(s)
- Roger S Jackson
- Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | |
Collapse
|