1
|
Desmarais SM, Tropini C, Miguel A, Cava F, Monds RD, de Pedro MA, Huang KC. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography. J Biol Chem 2015; 290:31090-100. [PMID: 26468288 DOI: 10.1074/jbc.m115.661660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
Collapse
Affiliation(s)
| | - Carolina Tropini
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305
| | | | - Felipe Cava
- the Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, 90187 Sweden
| | - Russell D Monds
- From the Departments of Bioengineering and the Bio-X Program, Stanford University, Stanford, California 94305, and
| | - Miguel A de Pedro
- the Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Kerwyn Casey Huang
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305, the Bio-X Program, Stanford University, Stanford, California 94305, and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305,
| |
Collapse
|
2
|
Desmarais SM, De Pedro MA, Cava F, Huang KC. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol Microbiol 2013; 89:1-13. [PMID: 23679048 DOI: 10.1111/mmi.12266] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 02/02/2023]
Abstract
The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.
Collapse
|
3
|
Abstract
The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway.
Collapse
Affiliation(s)
- Jean van Heijenoort
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Bat 430, Université Paris-Sud, Orsay F-91405, France.
| |
Collapse
|
4
|
|
5
|
Lai EM, Nair U, Phadke ND, Maddock JR. Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli. Mol Microbiol 2004; 52:1029-44. [PMID: 15130122 DOI: 10.1111/j.1365-2958.2004.04040.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria show asymmetric subcellular distribution of many proteins involved in diverse cellular processes such as chemotaxis, motility, actin polymerization, chromosome partitioning and cell division. In many cases, the specific subcellular localization of these proteins is critical for proper regulation and function. Although cellular organization of the bacterial cell clearly plays an important role in cell physiology, systematic studies to uncover asymmetrically distributed proteins have not been reported previously. In this study, we undertook a proteomics approach to uncover polar membrane proteins in Escherichia coli. We identified membrane proteins enriched in E. coli minicells using a combination of two-dimensional electrophoresis and mass spectrometry. Among a total of 173 membrane protein spots that were consistently detected, 36 spots were enriched in minicell membranes, whereas 15 spots were more abundant in rod cell membranes. The minicell-enriched proteins included the inner membrane proteins MCPs, AtpA, AtpB, YiaF and AcrA, the membrane-associated FtsZ protein and the outer membrane proteins YbhC, OmpW, Tsx, Pal, FadL, OmpT and BtuB. We immunolocalized two of the minicell-enriched proteins, OmpW and YiaF, and showed that OmpW is a bona fide polar protein whereas YiaF displays a patchy membrane distribution with a polar and septal bias.
Collapse
Affiliation(s)
- Erh-Min Lai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- S R Lybarger
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
7
|
Höltje JV. Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. Microb Drug Resist 2000; 2:99-103. [PMID: 9158730 DOI: 10.1089/mdr.1996.2.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Affinity chromatography using different lytic transglycosylases as a specific ligand revealed an interaction of both murein hydrolases and murein synthases. This interaction is taken as evidence for the assemblage into a multienzyme complex that could function as a murein replicase precisely copying the given three-dimensional structure of the murein sacculus. The sacculus of the mother cell would function as a template, which is identically replicated by copying the lengths of the existing glycan strands and the pattern of crosslinkages. A hypothetical enzyme complex specifically involved in cell division and a complex specifically involved in cell elongation are presented. It is postulated that PBPs 1a and/or 1b are present in both complexes, whereas the presence of PBP2 or PBP3 defines the specificity of the murein-synthesizing machinery as being involved in either cell elongation or septation. Moreover, the proposed "holoenzyme" suprastructure could explain why the specific inhibition of PBPs 1a/1b results in bacteriolysis and why inhibition of PBP2 and PBP3 causes the well-known morphological alterations, spherical growth, and filamentation, respectively.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| |
Collapse
|
8
|
Fussenegger M, Kahrs AF, Facius D, Meyer TF. Tetrapac (tpc), a novel genotype of Neisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation. Mol Microbiol 1996; 19:1357-72. [PMID: 8730876 DOI: 10.1111/j.1365-2958.1996.tb02479.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We characterized a novel mutant phenotype (tetrapac, tpc) of Neisseria gonorrhoeae (Ngo) associated with a distinctive rough-colony morphology and bacterial growth in clusters of four. This phenotype, suggesting a defect in cell division, was isolated from a mutant library of Ngo MS11 generated with the phoA minitransposon TnMax4. The tpc mutant shows a 30% reduction in the overall murein hydrolase activity using Escherichia coli murein as substrate. Tetrapacs can be resolved by co-cultivation with wild-type Ngo, indicating that Tpc is a diffusible protein. Interestingly, Tpc is absolutely required for the natural transformation competence of piliated Ngo. Mutants in tpc grow normally, but show a approximately 10-fold reduction in their ability to invade human epithelial cells. The tpc sequence reveals an open reading frame of approximately 1 kb encoding a protein (Tpc) of 37 kDa. The primary gene product exhibits an N-terminal leader sequence typical of lipoproteins, but palmitoylation of Tpc could not be demonstrated. The ribosomal binding site of tpc is immediately downstream of the translational stop codon of the folC gene coding for an enzyme involved in folic acid biosynthesis and one-carbon metabolism. The tpc gene is probably co-transcribed from the folC promoter and a promoter located within the folC gene. The latter promoter sequence shares significant homology with E. coli gearbox consensus promoters. All three mutant phenotypes, i.e. the cell separation defect, the transformation deficiency and the defect in cell invasion can be restored by complementation of the mutant with an intact tpc gene. To some extent the tcp phenotype is reminiscent of iap in Listeria, lytA in Streptococcus pneumoniae and lyt in Bacillus subtilis, all of which are considered to represent murein hydrolase defects.
Collapse
Affiliation(s)
- M Fussenegger
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
9
|
Markiewicz Z, Höltje JV. Failure to trigger the autolytic enzymes in minicells ofEscherichia coli. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05195.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Tuomanen E. Newly made enzymes determine ongoing cell wall synthesis and the antibacterial effects of cell wall synthesis inhibitors. J Bacteriol 1986; 167:535-43. [PMID: 3525515 PMCID: PMC212922 DOI: 10.1128/jb.167.2.535-543.1986] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell wall synthesis can continue with less than the total complement of cell wall synthetic enzymes present in normal growing cells. A method was developed to investigate whether there exists an excess of cell wall-synthesizing enzymes (penicillin-binding proteins [PBPs]) which all remain functional or whether a mixed population of functional and nonfunctional enzymes characterize normal cells. Surprisingly, cells in which less than 10% of the PBPs were functional could grow at a normal rate, as evidenced by increases in viable counts, culture turbidity, and rates of peptidoglycan, protein, and RNA synthesis. This subset of functional enzymes was biosynthetically new. Penicillin-induced lysis occurred contingent on the acylation of this same small fraction of PBPs, the copy number and affinities of which were below the level of detection by current fluorographic assay techniques. We propose that PBPs have a short functional half-life and that cell wall synthesis and bacterial lysis reflect the activity of newly synthesized PBPs.
Collapse
|
11
|
Leduc M, Frehel C, van Heijenoort J. Correlation between degradation and ultrastructure of peptidoglycan during autolysis of Escherichia coli. J Bacteriol 1985; 161:627-35. [PMID: 3918020 PMCID: PMC214929 DOI: 10.1128/jb.161.2.627-635.1985] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The kinetics of peptidoglycan degradation were examined under different conditions of autolysis of Escherichia coli. With cephaloridine- or moenomycin-induced autolysis, degradation did not exceed 25 to 35%, whereas in EDTA-induced autolysis it rapidly reached 65 to 70%. When nonautolyzing cells were fixed overnight with glutaraldehyde, followed by an osmium fixation, and thin sections were stained by the phosphotungstic acid method, a dark, 15-nm-thick layer of uniform appearance and constant width occupied the whole area between the inner and outer membranes of the envelope. The stained material was tentatively identified with peptidoglycan. Ultrastructural changes in this phosphotungstic acid-stained periplasmic space were investigated at different time intervals after induction of autolysis. In all cases, breakdown proceeded over the whole cell surface. During antibiotic-induced autolysis a progressive thinning down limited to the inner side of the layer was observed. During EDTA-induced autolysis, the rapid decrease in thickness correlated well with the important loss of material labeled with [3H]diaminopimelic acid. Considering these changes and the insufficient amounts of peptidoglycan (1.3 U/nm2) necessary to account for a regularly structured polymer occupying the whole 15-nm layer, it was speculated that peptidoglycan might be unevenly distributed throughout the periplasmic space.
Collapse
|
12
|
Rodríguez-Tébar A, Arán V, Vázquez D. Labelling and cross-linking of Escherichia coli penicillin-binding proteins with bis-beta-lactam antibiotics. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 139:287-93. [PMID: 6365551 DOI: 10.1111/j.1432-1033.1984.tb08006.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have synthesized a number of radioactively labelled bis-beta-lactams, which are nearly symmetrical dimers of well-known beta-lactam antibiotics and act as bifunctional specific cross-linking reagents for the penicillin-binding proteins of Escherichia coli envelopes. We have observed that some of our bis-beta-lactam antibiotics cross-link two molecules of penicillin-binding protein 1b or 1c or 3. Furthermore our bis-beta-lactam antibiotics bind to E. coli proteins with higher affinities than the beta-lactams from which they were derived. Therefore, a number of monomeric protein bands are consistently labelled with our bis-beta-lactam antibiotics (190, 170, 145 and 124 kDa) as well as the previously described penicillin-binding proteins 1a, 1b, 1c, 2, 3, 4, 5, 6, 7 and 8. We do not know yet the possible enzymic activities of the penicillin-binding proteins of 190 kDa, 170 kDa, 145 kDa and 125 kDa that were not described previously. We have also detected some protein bands moving very slowly, which appear to be dimers or cross-linking species of these new high-molecular-mass penicillin-binding proteins described above.
Collapse
|
13
|
Harkness RE, Ishiguro EE. Temperature-sensitive autolysis-defective mutants of Escherichia coli. J Bacteriol 1983; 155:15-21. [PMID: 6134714 PMCID: PMC217645 DOI: 10.1128/jb.155.1.15-21.1983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two independently isolated temperature-sensitive autolysis-defective mutants of Escherichia coli LD5 (thi lysA dapD) were characterized. The mutants were isolated by screening the survivors of a three-step enrichment process involving sequential treatments with bactericidal concentrations of D-cycloserine, benzyl-penicillin, and D-cycloserine at 42 degrees C. Cultures of the mutants underwent autolysis during beta-lactam treatment, D-cycloserine treatment, or diaminopimelic acid deprivation at 30 degrees C. The same treatments at 42 degrees C inhibited growth but did not induce lysis of the mutants. The minimum inhibitory concentrations of selected beta-lactam antibiotics and D-cycloserine were identical for the parent and mutant strains at both 30 and 42 degrees C. Both mutants failed to form colonies at 42 degrees C, and both gave rise to spontaneous temperature-resistant revertants. The revertants exhibited the normal lytic response when treated with D-cycloserine and beta-lactams or when deprived of diaminopimelic acid at 42 degrees C. The basis for the autolysis-defective phenotype of these mutants could not be determined. However, a nonspecific in vitro assay for peptidoglycan hydrolase activity in cell-free extracts indicated that both mutants were deficient in a peptidoglycan hydrolase. Both mutations were localized to the 56- to 61-min region of the E. coli chromosome by F' complementation.
Collapse
|
14
|
Parquet C, Flouret B, Leduc M, Hirota Y, van Heijenoort J. N-acetylmuramoyl-L-alanine amidase of Escherichia coli K12. Possible physiological functions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 133:371-7. [PMID: 6133749 DOI: 10.1111/j.1432-1033.1983.tb07472.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Various experiments were carried out in an attempt to determine the possible physiological function of the N-acetylmuramoyl-L-alanine amidase purified from Escherichia coli K12 on the basis of its activity on N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-diaminopimelic acid [MurNAc-LAla-DGlu(msA2pm)]. A Km value of 0.04 mM was determined with this substrate. Specificity studies revealed that compounds with a MurNAc-LAla linkage are the most probable substrates of this enzyme in vivo. Purified amidase had no effect on purified peptidoglycan and only low levels (1-2.5%) of cleaved MurNAc-LAla linkages were detected in peptidoglycan isolated from normally growing cells. However, the action of the amidase in vivo on peptidoglycan was clearly detectable during autolysis. The amidase activity of cells treated by osmotic shock, ether or toluene, as well as that of mutants with altered outer membrane composition was investigated. Attempts to reveal a transfer reaction catalysed by amidase were unsuccessful. Furthermore, by its location and specificity, amidase was clearly not involved in the formation of UDP-MurNAc. The possibility that it might be functioning in vivo as a hydrolase degrading exogeneous peptidoglycan fragments in the periplasma was substantiated by the fact that MurNAc itself and MurNAc-peptides could sustain growth of E. coli as sole carbon and nitrogen sources. Finally, out of 200 thermosensitive mutants examined for altered amidase activity, only two strains had less than 50% of the normal level of activity, whereas ten strains were found to possess more than 50%. In fact, two of the overproducers encountered presented a 4-5-fold increase in activity.
Collapse
|
15
|
|
16
|
Valinger Z, Ladesić B, Tomasić J. Partial purification and characterization of N-acetylmuramyl-L-alanine amidase from human and mouse serum. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 701:63-71. [PMID: 6120007 DOI: 10.1016/0167-4838(82)90313-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The enzyme N-acetylmuramyl-L-alanine amidase (mucopeptide amidohydrolase, EC 3.5.1.28) has been detected in human, mouse, rabbit, bovine and sheep sera. A method for detection of amidase activity using [14C]peptidoglycan monomer as the substrate has been developed. Partial purification of human and mouse amidase was achieved by gel chromatography on Bio-Gel A-1.5 m, DEAE-Sephadex A-50 and Sephadex G-100. Both amidase preparations exhibited maximal activity at pH 9.0 in Tris-HCl buffer and required Mg2+ for maximal activity. Following digestion of peptidoglycan monomer, GlcNAc-MurNAc-L-Ala-D-isoglutaminyl-meso-diaminopimelyl-D-Ala-D-Ala, the disaccharide GlcNAc-MurNAc and the corresponding pentapeptide L-Ala-D-isoglutaminyl-meso-diaminopimelyl-D-Ala-D-Ala were formed and subsequently isolated and chemically characterized. The enzyme therefore acts as an N-acetylmuramyl-L-alanine amidase by cleaving the bond between N-acetylmuramic acid and L-alanine. The glycan linked, peptide-not-cross-linked peptidoglycan dimer was also shown to be a substrate for human and mouse amidase.
Collapse
|
17
|
Abstract
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.
Collapse
|
18
|
Kusser W, Schwarz U. Escherichia coli murein transglycosylase. Purification by affinity chromatography and interaction with polynucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 103:277-81. [PMID: 6988211 DOI: 10.1111/j.1432-1033.1980.tb04312.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Escherichia coli murein transglycosylase, a potential autolysin which splits the sugar chains of the murein sacculus, was rapidly purified from a crude cell extract by sequential chromatography on columns of blue Sepharose and poly(U)-Sepharose. In accordance with the binding to blue Sepharose and poly(U)-Sepharose, the transglycosylase is inhibited by Cibacron blue F3G-A, the affinity ligand of blue Sepharose, and also by polynucleotides, the latter, however, with varying efficiency. Among the polynucleotides tested, single-stranded DNA was found to be one of the most potent inhibitors. When bound to a blue Sepharose column, transglycosylase could be displaced from the column with single-stranded DNA. Taken together, these results point to a polynucleotide binding area on the transglycosylase molecule. Some aspects of the blue Sepharose affinity chromatography and the possible biological significance of the transglycosylase are discussed.
Collapse
|