1
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
2
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
3
|
Méndez Y, Pérez-Labrada K, González-Bacerio J, Valdés G, de los Chávez MÁ, Osuna J, Charli JL, Pascual I, Rivera DG. Combinatorial multicomponent access to natural-products-inspired peptidomimetics: discovery of selective inhibitors of microbial metallo-aminopeptidases. ChemMedChem 2014; 9:2351-9. [PMID: 24989844 DOI: 10.1002/cmdc.201402140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 11/09/2022]
Abstract
The development of selective inhibitors of microbial metallo-aminopeptidases is an important goal in the pursuit of antimicrobials for therapeutic applications. Herein, we disclose a combinatorial approach relying on two Ugi reactions for the generation of peptidomimetics inspired by natural metallo-aminopeptidase inhibitors. The library was screened for inhibitory activity against the neutral metallo-aminopeptidase of Escherichia coli (ePepN) and the porcine kidney cortex metallo-aminopeptidase (pAPN), which was used as a model of the M1-aminopeptidases of mammals. Six compounds showed typical dose-response inhibition profiles toward recombinant ePepN, with two of them being very potent and highly selective for ePepN over pAPN. Another compound showed moderate ePepN inhibition but total selectivity for this bacterial enzyme over its mammalian orthologue at concentrations of physiological relevance. This strategy proved to be useful for the identification of lead compounds for further optimization and development.
Collapse
Affiliation(s)
- Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana (Cuba)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gumpena R, Kishor C, Ganji RJ, Jain N, Addlagatta A. Glu121-Lys319 salt bridge between catalytic and N-terminal domains is pivotal for the activity and stability of Escherichia coli aminopeptidase N. Protein Sci 2012; 21:727-36. [PMID: 22411732 DOI: 10.1002/pro.2060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/11/2022]
Abstract
Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.
Collapse
Affiliation(s)
- Rajesh Gumpena
- Center for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
5
|
Dalal S, Ragheb DRT, Klemba M. Engagement of the S1, S1' and S2' subsites drives efficient catalysis of peptide bond hydrolysis by the M1-family aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 2012; 183:70-7. [PMID: 22348949 DOI: 10.1016/j.molbiopara.2012.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 12/19/2022]
Abstract
The M1-family aminopeptidase PfA-M1 catalyzes the last step in the catabolism of human hemoglobin to amino acids in the Plasmodium falciparum food vacuole. In this study, the structural features of the substrate that promote efficient PfA-M1-catalyzed peptide bond hydrolysis were analyzed. X-Ala and Ala-X dipeptide substrates were employed to characterize the specificities of the enzyme's S1 and S1' subsites. Both subsites exhibited a preference for basic and hydrophobic sidechains over polar and acidic sidechains. The relative specificity of the S1 subsite was similar over the pH range 5.5-7.5. Substrate P1 and P1' residues affected both K(m) and k(cat), revealing that sidechain-subsite interactions not only drive the formation of the Michaelis complex but also influence the rates of ensuing chemical steps. Only a small fraction of the available binding energy was exploited in interactions between substrate sidechains and the S1 and S1' subsites, which indicates a modest level of complementarity. There was no correlation between S1 and S1' specificities and amino acid abundance in hemoglobin. Interactions between PfA-M1 and the backbone atoms of the P1' and P2' residues as well as the P2' sidechain further contributed to the catalytic efficiency of substrate hydrolysis. By demonstrating the engagement of multiple, broad-specificity subsites in PfA-M1, these studies provide insight into how this enzyme is able to efficiently generate amino acids from highly sequence-diverse di- and oligopeptides in the food vacuole.
Collapse
Affiliation(s)
- Seema Dalal
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
6
|
Gumpena R, Kishor C, Ganji RJ, Addlagatta A. Discovery of α,β- and α,γ-diamino acid scaffolds for the inhibition of M1 family aminopeptidases. ChemMedChem 2011; 6:1971-6. [PMID: 22025387 DOI: 10.1002/cmdc.201100298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/11/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Rajesh Gumpena
- Center for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP-500 607, India
| | | | | | | |
Collapse
|
7
|
Addlagatta A, Gay L, Matthews BW. Structural basis for the unusual specificity of Escherichia coli aminopeptidase N. Biochemistry 2008; 47:5303-11. [PMID: 18416562 DOI: 10.1021/bi7022333] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminopeptidase N from Escherichia coli is a M1 class aminopeptidase with the active-site region related to that of thermolysin. The enzyme has unusual specificity, cleaving adjacent to the large, nonpolar amino acids Phe and Tyr but also cleaving next to the polar residues Lys and Arg. To try to understand the structural basis for this pattern of hydrolysis, the structure of the enzyme was determined in complex with the amino acids L-arginine, L-lysine, L-phenylalanine, L-tryptophan, and L-tyrosine. These amino acids all bind with their backbone atoms close to the active-site zinc ion and their side chain occupying the S1 subsite. This subsite is in the form of a cylinder, about 10 A in cross-section and 12 A in length. The bottom of the cylinder includes the zinc ion and a number of polar side chains that make multiple hydrogen-bonding and other interactions with the alpha-amino group and the alpha-carboxylate of the bound amino acid. The walls of the S1 cylinder are hydrophobic and accommodate the nonpolar or largely nonpolar side chains of Phe and Tyr. The top of the cylinder is polar in character and includes bound water molecules. The epsilon-amino group of the bound lysine side chain and the guanidinium group of arginine both make multiple hydrogen bonds to this part of the S1 site. At the same time, the hydrocarbon part of the lysine and arginine side chains is accommodated within the nonpolar walls of the S1 cylinder. This combination of hydrophobic and hydrophilic binding surfaces explains the ability of ePepN to cleave Lys, Arg, Phe, and Tyr. Another favored substrate has Ala at the P1 position. The short, nonpolar side chain of this residue can clearly be bound within the hydrophobic part of the S1 cylinder, but the reason for its facile hydrolysis remains uncertain.
Collapse
Affiliation(s)
- Anthony Addlagatta
- Institute of Molecular Biology, Howard Hughes Medical Institute, and Department of Physics, 1229 University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
8
|
Milliere J, Veillet-Poncet L. An inventory of peptide hydrolases and arylamidases inFlavobacterium IIb. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1985.tb03346.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Golich FC, Han M, Crowder MW. Over-expression, purification, and characterization of aminopeptidase N from Escherichia coli. Protein Expr Purif 2005; 47:634-9. [PMID: 16380266 DOI: 10.1016/j.pep.2005.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The gene from Escherichia coli encoding aminopeptidase N (PepN) was subcloned into pET-26b, and PepN was over-expressed in BL21(DE3) E. coli and purified using Q-Sepharose chromatography. This protocol yielded over 17 mg of purified, recombinant PepN per liter of growth culture under optimum conditions. Gel filtration chromatography revealed that recombinant PepN exists as a monomer. MALDI-TOF mass spectra showed that the enzyme has a molecular mass of 98,750 Da, and steady-state kinetic studies revealed that as-isolated, recombinant PepN exhibits a k(cat) of 354 +/- 11s(-1) and a K(m) of 376 +/- 39 microM when using L-alanine-p-nitroanilide as the substrate. Metal analyses demonstrated that as-isolated, recombinant PepN binds 0.5 and <0.1 equivalents of iron and zinc, respectively. The addition of Zn(II) to recombinant PepN inhibits catalytic activity, while the addition of iron causes a slight decrease or no change in activity. Further metal binding studies revealed that recombinant PepN tightly binds 5 equivalents of iron and <0.1 equivalents of Zn(II). By using this over-expression and purification system, E. coli PepN can now be obtained in quantities necessary for structural characterization and possibly inhibitor design efforts.
Collapse
Affiliation(s)
- Frank C Golich
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
10
|
Byun T, Tang M, Sloma A, Brown KM, Marumoto C, Fujii M, Blinkovsky AM. Aminopeptidase from Sphingomonas capsulata. J Biol Chem 2001; 276:17902-7. [PMID: 11359790 DOI: 10.1074/jbc.m010608200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel aminopeptidase with unique substrate specificity was purified from a culture broth of Sphingomonas capsulata. This is the first reported aminopeptidase to demonstrate broad substrate specificity and yet release glycine and alanine with the highest efficacy. On a series of pentapeptide amides with different N-terminal amino acids, this enzyme efficiently releases glycine, alanine, leucine, proline, and glutamate with the lowest turnover value of 370 min(-1) for glutamate. At pH 7.5 (pH optimum) and 25 degrees C, the kinetic parameters for alanine para-nitroanilide were found to be k(cat) = 7600 min(-1) and K(m) = 14 mm. For alanine beta-naphthylamide, they were k(cat) = 860 min(-1) and K(m) = 6.7 mm. Polymerase chain reaction primers were designed based upon obtained internal sequences of the wild type enzyme. The subsequent product was then used to acquire the full-length gene from an S. capsulata genomic library. An open reading frame encoding a protein of 670 amino acids was obtained. The translated protein has a putative signal peptide that directs the enzyme into the supernatant. A search of the amino acid sequence revealed no significant homology to any known aminopeptidases in the available data bases.
Collapse
Affiliation(s)
- T Byun
- Novozymes Biotech, Inc., Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Millière JB, Veillet-Poncet L. Isolation and some properties of an arylamidase from Flavobacterium IIb. Biochimie 1986; 68:1087-96. [PMID: 3096386 DOI: 10.1016/s0300-9084(86)80183-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A constitutive L-leucylarylamidase (EC 3.4.11) hydrolase able to cleave L-aminoacyl-beta naphthylamide and L-aminoacyl-4 nitroanilide substrates, was isolated from sonicated cells of Flavobacterium IIb and partially purified with a 0.9% yield and a 159-fold recovery. Its molecular weight was estimated to be about 170,000 +/- 10%. This arylamidase exhibited optimum activity at pH 7.0 and 28 degrees C for the hydrolysis of L-leucine-4NA and is inhibited strongly by metal chelating agents, and to a weaker extent, by some sulfhydryl and reducing agents. Heavy metal ions: Cd2+, Zn2+, Cu2+, Hg2+ and Co2+, markedly inhibit it, and Zn2+ is a competitive inhibitor. This metalloenzyme, free of carboxypeptidase, proteinase and L-leucine aminopeptidase (L-leucylglycine substrate) activities, hydrolyzes aminoacyl-beta NA, aminoacyl-4NA and some dipeptides with unsubstituted amino groups of the L-configuration. The lowest Km values are associated with substrates having neutral or basic residues, with large side chains.
Collapse
|
13
|
Gharbi S, Belaich A, Murgier M, Lazdunski A. Multiple controls exerted on in vivo expression of the pepN gene in Escherichia coli: studies with pepN-lacZ operon and protein fusion strains. J Bacteriol 1985; 163:1191-5. [PMID: 2863254 PMCID: PMC219258 DOI: 10.1128/jb.163.3.1191-1195.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Three physiological conditions were shown to promote transcriptional regulation of pepN expression: phosphate limitation, the nature of the source of carbon and energy, and anaerobiosis. The transcriptional level of regulation can be deduced from the observation of these effects in strains carrying operon fusion pepN-lacZ. Mutations in the various genes phoB, phoM, phoR, crp, and fnr (oxrA) did not affect pepN expression.
Collapse
|
14
|
Bally M, Murgier M, Lazdunski A. Cloning and orientation of the gene encoding aminopeptidase N in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:507-10. [PMID: 6147745 DOI: 10.1007/bf00341454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pepN gene, that encodes aminopeptidase N in Escherichia coli, has been cloned into the multicopy plasmid pBR322. Expression of the cloned pepN gene results in overproduction of the enzyme. The restriction map of the 6.7 Kb insert was established and the gene was further localized by analysis of the in vitro constructed delection plasmid and mutant plasmids generated by Tn5 insertions. Chromosome mobilization experiments, using pep-N-lac fusion strains allowed us to infer a clockwise direction of transcription for the pepN gene.
Collapse
|
15
|
Bally M, Murgier M, Lazdunski A. Molecular cloning and amplification of the gene for aminopeptidase N ofEscherichia coli. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00554.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Kirschenbaum DM. Molar absorptivity and A(1%)(1 cm) values for proteins at selected wavelengths of the ultraviolet and visible regions - XIX. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1981; 13:621-36. [PMID: 7238990 DOI: 10.1016/0020-711x(81)90189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Lazdunski A, Murgier M, Lazdunski C. Phospholipid synthesis-dependent activity of aminopeptidase N in intact cells of Escherichia coli. J Mol Biol 1979; 128:127-41. [PMID: 107320 DOI: 10.1016/0022-2836(79)90122-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|