Zylicz M, Taylor K. Interactions between phage lambda replication proteins, lambda DNA and minicell membrane.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1981;
113:303-9. [PMID:
6451425 DOI:
10.1111/j.1432-1033.1981.tb05067.x]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gentle methods for minicell lysis and lysate fractionation have been elaborated: lysis by T4 lysozyme without detergents, and fractionation by equilibrium sedimentation in a metrizamide density gradient, both at low ionic strength. In the lysates of phage-lambda-infected minicells the lambda DNA, trapped at a prereplicative step [Witkiewicz, H. and Taylor, K. (1979) Biochim. Biophys. Acta 564, 31-36], appeared in two peaks of different buoyant densities: as a membrane-bound and a free lambda DNA. The covalently-closed-circular form of lambda DNA appeared exclusively in the membrane fraction. The lambda-coded proteins, synthesized in lambda-infected minicells, appeared in two major fractions: as membrane-bound and as free proteins, and in one minor fraction, bound with free lambda DNA. Neither lambda protein engaged in the initiation of DNA replication was present in the fraction of free proteins: the P-gene product was membrane-associated, and the O-gene product formed a complex with free lambda DNA. The effect of high ionic strength (KCl) and of detergents (Triton X-100 and sarcosyl) on the binding of replication proteins with lambda DNA and with the membrane was studied. The non-ionic detergent, Triton X-100 caused displacement of a part of lambda DNA from the membrane to the free lambda DNA peak; both lambda replication proteins were bound with free lambda DNA. The binding of the O protein with lambda DNA was relatively stable, but was destroyed by the ionic detergent, sarcosyl.
Collapse