Tran K, Smith NP, Loiselle DS, Crampin EJ. A metabolite-sensitive, thermodynamically constrained model of cardiac cross-bridge cycling: implications for force development during ischemia.
Biophys J 2010;
98:267-76. [PMID:
20338848 DOI:
10.1016/j.bpj.2009.10.011]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 10/19/2022] Open
Abstract
We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum force production. Our model, based on a model of cross-bridge kinetics that was developed by others, reproduces many of the observed effects of MgATP, MgADP, Pi, and H(+) on force development while retaining the force/length/Ca(2+) properties of the original model. We introduce three new parameters to account for the competitive binding of H(+) to the Ca(2+) binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters, along with the Pi and H(+) regulatory steps within the cross-bridge cycle, were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H(+)]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia.
Collapse