1
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
2
|
Sabatini M, Comba S, Altabe S, Recio-Balsells AI, Labadie GR, Takano E, Gramajo H, Arabolaza A. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. FEBS J 2018; 285:4494-4511. [PMID: 30300504 PMCID: PMC6334511 DOI: 10.1111/febs.14675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, β-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and β-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the β-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.
Collapse
Affiliation(s)
- Martin Sabatini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Santiago Comba
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Silvia Altabe
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Alejandro I Recio-Balsells
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Guillermo R Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Eriko Takano
- Manchester Centre of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology (MIB), University of Manchester, UK
| | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Arabolaza
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
3
|
Rossini E, Gajewski J, Klaus M, Hummer G, Grininger M. Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs). Chem Commun (Camb) 2018; 54:11606-11609. [PMID: 30264077 DOI: 10.1039/c8cc06838k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perturbations of domain-domain interactions impact the function of type I fatty acid synthases. We identify interface point mutations that modulate fatty acid chain lengths, and explain their effect in changes of domain-domain binding energetics. Engineering of similar interfaces in related megasynthases may be exploited for custom synthesis of natural products.
Collapse
Affiliation(s)
- Emanuele Rossini
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
4
|
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 2017; 8:14650. [PMID: 28281527 PMCID: PMC5353594 DOI: 10.1038/ncomms14650] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. The production of short chain fatty acids by microorganisms has numerous industrial and biofuel applications. Here the authors reprogramme S. cerevisiae fatty acid synthase with five mutations to produce C6- and C8-fatty acids and identify thioesterases responsible for hydrolysis of short chain acyl-CoA hydrolysis.
Collapse
Affiliation(s)
- Jan Gajewski
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Renata Pavlovic
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Abstract
In all organisms, fatty acid synthesis is achieved in variations of a common cyclic reaction pathway by stepwise, iterative elongation of precursors with two-carbon extender units. In bacteria, all individual reaction steps are carried out by monofunctional dissociated enzymes, whereas in eukaryotes the fatty acid synthases (FASs) have evolved into large multifunctional enzymes that integrate the whole process of fatty acid synthesis. During the last few years, important advances in understanding the structural and functional organization of eukaryotic FASs have been made through a combination of biochemical, electron microscopic and X-ray crystallographic approaches. They have revealed the strikingly different architectures of the two distinct types of eukaryotic FASs, the fungal and the animal enzyme system. Fungal FAS is a 2·6 MDa α₆β₆ heterododecamer with a barrel shape enclosing two large chambers, each containing three sets of active sites separated by a central wheel-like structure. It represents a highly specialized micro-compartment strictly optimized for the production of saturated fatty acids. In contrast, the animal FAS is a 540 kDa X-shaped homodimer with two lateral reaction clefts characterized by a modular domain architecture and large extent of conformational flexibility that appears to contribute to catalytic efficiency.
Collapse
|
6
|
Leibundgut M, Maier T, Jenni S, Ban N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 2008; 18:714-25. [DOI: 10.1016/j.sbi.2008.09.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 11/16/2022]
|
7
|
Lomakin IB, Xiong Y, Steitz TA. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 2007; 129:319-32. [PMID: 17448991 DOI: 10.1016/j.cell.2007.03.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/23/2007] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
In yeast, the whole metabolic pathway for making 16- and 18-carbon fatty acids is carried out by fatty acid synthase, a 2.6 megadalton molecular-weight macromolecular assembly containing six copies of all eight catalytic centers. We have determined its crystal structure, which illuminates how this enzyme is initially activated and then carries out multiple steps of synthesis in each of six sterically isolated reaction chambers. Six of the catalytic sites are in the wall of the assembly facing an acyl carrier protein (ACP) bound to the ketoacyl synthase domain. Two-dimensional diffusion of substrates to the catalytic sites may be achieved by the electrostatically negative ACP swinging to each of the six electrostatically positive catalytic sites. The phosphopantetheinyl transferase domain lies outside the shell of the assembly, inaccessible to ACP that lies inside, suggesting that the attachment of the pantetheine arm to ACP must occur before complete assembly of the complex.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
8
|
Jenni S, Leibundgut M, Boehringer D, Frick C, Mikolásek B, Ban N. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 2007; 316:254-61. [PMID: 17431175 DOI: 10.1126/science.1138248] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.
Collapse
Affiliation(s)
- Simon Jenni
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Schweizer E, Hofmann J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 2004; 68:501-17, table of contents. [PMID: 15353567 PMCID: PMC515254 DOI: 10.1128/mmbr.68.3.501-517.2004] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits alpha and beta are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.
Collapse
Affiliation(s)
- Eckhart Schweizer
- Lehrstuhl für Biochemie der Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany
| | | |
Collapse
|
10
|
Niwa H, Katayama E, Yanagida M, Morikawa K. Cloning of the fatty acid synthetase beta subunit from fission yeast, coexpression with the alpha subunit, and purification of the intact multifunctional enzyme complex. Protein Expr Purif 1998; 13:403-13. [PMID: 9693066 DOI: 10.1006/prep.1998.0914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned and sequenced the fission yeast (Schizosaccharomyces pombe) fas1+ gene, which encodes the fatty acid synthetase (FAS) beta subunit, by applying a PCR technique to conserved regions in the beta subunit of the alpha6beta6 types of FAS among different organisms. The deduced amino acid sequence of the Fas1 polypeptide, consisting of 2073 amino acids (Mr = 230,616), exhibits the 48.1% identity with the beta subunit from the budding yeast (Saccharomyces cerevisiae). This subunit, with five different catalytic activities, bears four distinct domains, while the alpha subunit, the sequence of which was previously reported by Saitoh et al. (S. Saitoh et al., 1996, J. Cell Biol. 134, 949-961), carries three domains. We have developed a co-expression system of the FAS alpha and beta subunits by cotransformation of two expression vectors, containing the lsd1+/fas2+ gene and the fas1+ gene, into fission yeast cells. The isolated FAS complex showed quite high specific activity, of more than 4000 mU/mg, suggesting complete purification. Its molecular weight was determined by dynamic light scattering and ultracentrifugation analysis to be 2.1-2.4 x 10(6), and one molecule of the FAS complex was found to contain approximately six FMN molecules. These results indicate that the FAS complex from S. pombe forms a heterododecameric alpha6beta6 structure. Electron micrographs of the negatively stained molecule suggest that the complex adopts a unique barrel-shaped cage architecture.
Collapse
Affiliation(s)
- H Niwa
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka, 565-0874
| | | | | | | |
Collapse
|
11
|
Carreras CW, Pieper R, Khosla C. The chemistry and biology of fatty acid, polyketide, and nonribosomal peptide biosynthesis. Top Curr Chem (Cham) 1997. [DOI: 10.1007/bfb0119235] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Stuible HP, Wagner C, Andreou I, Huter G, Haselmann J, Schweizer E. Identification and functional differentiation of two type I fatty acid synthases in Brevibacterium ammoniagenes. J Bacteriol 1996; 178:4787-93. [PMID: 8759839 PMCID: PMC178258 DOI: 10.1128/jb.178.16.4787-4793.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fatty acid synthase (FAS) from Brevibacterium ammoniagenes is a homohexameric multienzyme complex that catalyzes the synthesis of both saturated and unsaturated fatty acids. By immunological screening of a B. ammoniagenes expression library, an fas DNA fragment was isolated and subsequently used to clone the entire gene together with its flanking sequences. Within 10,525 bp of sequenced DNA, the 9,189-bp FAS coding region was identified, corresponding to a protein of 3,063 amino acids with a molecular mass of 324,910 Da. This gene (fasA) encodes, at its 5' end, the same amino acid sequence as is observed with purified B. ammoniagenes FAS. A second reading frame encoding another B. ammoniagenes FAS variant (FasB) had been identified previously. Both sequences are colinear and exhibit 61 and 47% identity at the DNA and protein levels, respectively. By using specific antibodies raised against a unique peptide sequence of FasB, this enzyme was shown to represent only 5 to 10% of the cellular FAS protein. Insertional inactivation of the FasB coding sequence causes no defective phenotype, while fasA disruptants require oleic acid for growth. Correspondingly, oleate-dependent B. ammoniagenes cells obtained by ethyl methanesulfonate mutagenesis were complemented by transformation with fasA DNA but not with fasB DNA. The data indicate that B. ammoniagenes contains two related though differently expressed type I FASs. FasA represents the bulk of cellular FAS protein and catalyzes the synthesis of both saturated and unsaturated fatty acids, while the minor variant, FasB, cannot catalyze the synthesis of oleic acid.
Collapse
MESH Headings
- Adhesins, Escherichia coli/biosynthesis
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/isolation & purification
- Amino Acid Sequence
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/isolation & purification
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/isolation & purification
- Brevibacterium/enzymology
- Brevibacterium/genetics
- Cloning, Molecular
- Escherichia coli
- Fatty Acid Synthases/genetics
- Fatty Acid Synthases/isolation & purification
- Fatty Acid Synthases/metabolism
- Fimbriae Proteins
- Gene Expression
- Gene Library
- Genes, Bacterial
- Genetic Complementation Test
- Genetic Variation
- Isoenzymes/genetics
- Isoenzymes/isolation & purification
- Isoenzymes/metabolism
- Molecular Sequence Data
- Oleic Acid
- Oleic Acids/metabolism
- Plasmids
- Reading Frames
- Restriction Mapping
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- H P Stuible
- Lehrstuhl für Biochemie der Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Feller G, Thiry M, Gerday C. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol 1991; 10:381-8. [PMID: 1907455 DOI: 10.1089/dna.1991.10.381] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The lip2 gene from the antarctic psychotroph Moraxella TA144 was sequenced. The primary structure of the Lip2 preprotein deduced from the nucleotide sequence is composed of 433 amino acids with a predicted Mr of 47,222. This enzyme contains a Ser-centered consensus sequence and a conserved His-Gly dipeptide found in most lipase amino-terminal domains. These sequences are involved in the lipase active site conformation since substitution of the conserved Ser or His residues by Ala and Gln, respectively, results in the loss of both lipase and esterase activities. Structural factors that would allow proper enzyme flexibility at low temperatures are discussed. It is suggested that only subtle changes in the primary structure of these psychrotrophic enzymes can account for their ability to catalyze lipolysis at temperatures close to 0 degrees C.
Collapse
Affiliation(s)
- G Feller
- Laboratory of Biochemistry, University of Liège, Belgium
| | | | | |
Collapse
|
14
|
Stoops JK, Singh N, Wakil SJ. The yeast fatty acid synthase. Pathway for transfer of the acetyl group from coenzyme A to the Cys-SH of the condensation site. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44855-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Krätzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 1989; 171:5422-9. [PMID: 2477357 PMCID: PMC210379 DOI: 10.1128/jb.171.10.5422-5429.1989] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The DNA sequence of about 5.9 kilobase pairs (kbp) of the gramicidin S biosynthesis operon (grs) was determined. Three open reading frames were identified; the corresponding genes, called grsT, grsA, and grsB, were found to be organized in one transcriptional unit, not two as previously reported (M. Krause and M. A. Marahiel, J. Bacteriol. 170:4669-4674, 1988). The entire nucleotide sequence of grsA, coding for the 126.663-kilodalton gramicidin S synthetase 1, grsT, encoding a 29.191-kilodalton protein of unknown function, and 732 bp of the 5' end of grsB, encoding the gramicidin S synthetase 2, were determined. A single initiation site of transcription 81 bp upstream of the grsT initiation condon GTG was identified by high-resolution S1 mapping studies. The sequence of the grsA gene product showed a high degree of homology to the tyrocidine synthetase 1 (TycA protein), and that of grsT exhibited a significant degree of homology to vertebrate fatty acid thioesterases.
Collapse
Affiliation(s)
- J Krätzschmar
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Safford R, de Silva J, Lucas C, Windust JH, Shedden J, James CM, Sidebottom CM, Slabas AR, Tombs MP, Hughes SG. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase. Biochemistry 1987; 26:1358-64. [PMID: 3105579 DOI: 10.1021/bi00379a023] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Poly(A)+ RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A)+ RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from approximately 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G X C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH.
Collapse
|
17
|
Schweizer M, Roberts LM, Höltke HJ, Takabayashi K, Höllerer E, Hoffmann B, Müller G, Köttig H, Schweizer E. The pentafunctional FAS1 gene of yeast: its nucleotide sequence and order of the catalytic domains. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:479-86. [PMID: 3528750 DOI: 10.1007/bf00422073] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FAS1, the structural gene of the pentafunctional fatty acid synthetase subunit beta in Saccharomyces cerevisiae has been sequenced. Its reading frame represents an intron-free nucleotide sequence of 5,535 base pairs, corresponding to a protein of 1,845 amino acids with a molecular weight of 205,130 daltons. In addition to the coding sequence, 1,468 base pairs of its 5'-flanking region were determined. S1 nuclease mapping revealed two transcriptional initiation sites; 5 and 36 base pairs upstream of the translational start codon. Within the flanking sequences two TATATAAA boxes, several A-rich and T-rich blocks and a TAG...TATGTT...TATGTT...TTT sequence were found and are discussed as transcriptional initiation and termination signals, respectively. The order of catalytic domains in the cluster gene was established by complementation of defined fas1 mutants with overlapping FAS1 subclones. Acetyl transferase (amino acids 1-468) is located proximal to the N-terminus of subunit beta, followed by the enoyl reductase (amino acids 480-858), the dehydratase (amino acids 1,134-1,615) and the malonyl/palmityl transferase (amino acids 1,616-1,845) domains. One major inter-domain region of about 276 amino acids with so far unknown function was found between the enoyl reductase and dehydratase domains. The substrate-binding serine residues of acetyl, malonyl and palmityl transferases were identified within the corresponding domains. Significant sequence homologies exist between the acyl transferase active sites of yeast and animal fatty acid synthetases. Similarly, a putative sequence of the enoyl reductase active site was identified.
Collapse
|
18
|
Human plasma lecithin-cholesterol acyltransferase. An elucidation of the catalytic mechanism. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62718-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Mikkelsen J, Højrup P, Hansen HF, Hansen JK, Knudsen J. Evidence that the medium-chain acyltransferase of lactating-goat mammary-gland fatty acid synthetase is identical with the acetyl/malonyltransferase. Biochem J 1985; 227:981-5. [PMID: 4004809 PMCID: PMC1144930 DOI: 10.1042/bj2270981] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Competitive binding experiments with malonyl-CoA and [1-14C]acetyl-CoA, [1-14C]butyryl-CoA or [1-14C]decanoyl-CoA indicate that all these substrates are transferred to lactating-goat mammary-gland fatty acid synthetase by the same transferase. Isolation and determination of the amino acid sequence of [1-14C]decanoyl-labelled CNBr-cleavage peptide from the decanoyltransferase site showed that this transferase is identical with the acetyl/malonyltransferase.
Collapse
|
20
|
Mikkelsen J, Højrup P, Rasmussen MM, Roepstorff P, Knudsen J. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase. Biochem J 1985; 227:21-7. [PMID: 3922356 PMCID: PMC1144804 DOI: 10.1042/bj2270021] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Goat mammary fatty acid synthetase was labelled in the acyltransferase domain by formation of O-ester intermediates by incubation with [1-14C]acetyl-CoA and [2-14C]malonyl-CoA. Tryptic-digest and CNBr-cleavage peptides were isolated and purified by high-performance reverse-phase and ion-exchange liquid chromatography. The sequences of the malonyl- and acetyl-labelled peptides were shown to be identical. The results confirm the hypothesis that both acetyl and malonyl groups are transferred to the mammalian fatty acid synthetase complex by the same transferase. The sequence is compared with those of other fatty acid synthetase transferases.
Collapse
|
21
|
Hammes GG. Fatty acid synthase: elementary steps in catalysis and regulation. CURRENT TOPICS IN CELLULAR REGULATION 1985; 26:311-24. [PMID: 4075824 DOI: 10.1016/b978-0-12-152826-3.50030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
McCarthy AD, Hardie D. Fatty acid synthase — an example of protein evolution by gene fusion. Trends Biochem Sci 1984. [DOI: 10.1016/0968-0004(84)90184-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Schweizer E. Chapter 3 Genetics of fatty acid biosynthesis in yeast. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0167-7306(08)60121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
24
|
1 Structure and Mechanism of Fatty Acid Synthetase. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s1874-6047(08)60299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Knudsen J, Grunnet I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Biochem J 1982; 202:139-43. [PMID: 7082303 PMCID: PMC1158083 DOI: 10.1042/bj2020139] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Ruminant mammary-gland fatty acid synthetases can, in contrast with non-ruminant mammary enzymes, synthesize medium-chain fatty acids. 2. Medium-chain fatty acids are only synthesized in the presence of a fatty acid-removing system such as albumin, beta-lactoglobulin or methylated cyclodextrin. 3. The short- and medium-chain fatty acids synthesized were released as acyl-CoA esters from the fatty acid synthetase.
Collapse
|
26
|
|