1
|
Zharmukhamedov SK, Shabanova MS, Rodionova MV, Huseynova IM, Karacan MS, Karacan N, Aşık KB, Kreslavski VD, Alwasel S, Allakhverdiev SI. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells 2022; 11:cells11172680. [PMID: 36078088 PMCID: PMC9455146 DOI: 10.3390/cells11172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids’ intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.
Collapse
Affiliation(s)
- Sergey K. Zharmukhamedov
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| | - Mehriban S. Shabanova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Margarita V. Rodionova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Irada M. Huseynova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Kübra Begüm Aşık
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | | | - Saleh Alwasel
- College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| |
Collapse
|
2
|
Modafferi D, Zazubovich V, Kálmán L. Bound detergent molecules in bacterial reaction centers facilitate detection of tetryl explosive. PHOTOSYNTHESIS RESEARCH 2020; 145:145-157. [PMID: 32632533 DOI: 10.1007/s11120-020-00770-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Bacterial reaction centers (BRC) from Rhodobacter sphaeroides were found to accelerate, about 100-fold, the reaction between tetryl (2,4,6-trinitrophenylmethylnitramine) explosive and n-lauryl-N-N-dimethylamine-N-oxide (LDAO) that results in the formation of picric acid-like product with characteristic UV-VIS absorption spectrum with peaks at 345 and 415 nm. Moreover, this product also affects the spectra of BRC cofactors in the NIR spectral region and stabilizes the conformational changes associated with slow charge recombination. The evolution of the NIR absorption changes correlated with the kinetics of the product formation. Comparison between the wild-type and the R26 carotenoid-less strain indicates that tetryl-LDAO reaction is roughly five times faster for R26, which allows for identifying the carotenoid binding site as the optimal reaction site. Another, less-defined reaction site is located in the BRC's hydrophobic cavity. These effects are highly selective for tetryl and not observed for several other widespread nitric explosives; slowed-down charge recombination allows for distinguishing between tetryl and QB-site herbicides. The current limit of detection is in the ppb range or ~ 100 nM. Details of the molecular mechanisms of the reactions and perspectives of using these effects in bioassays or biosensors for explosives detection are also discussed.
Collapse
Affiliation(s)
- Daniel Modafferi
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.
| | - László Kálmán
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
3
|
Nagarkar SS, Desai AV, Ghosh SK. Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm 2016. [DOI: 10.1039/c6ce00244g] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Bhalla V, Zazubovich V. Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes. Anal Chim Acta 2011; 707:184-90. [PMID: 22027137 DOI: 10.1016/j.aca.2011.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 11/24/2022]
Abstract
Photosynthetic reaction centers were immobilized onto gold screen-printed electrodes (Au-SPEs) using a self-assembled monolayer (SAM) of mercaptopropionic acid (MPA) which was deliberately defective in order to achieve effective mediator transfer to the electrodes. The pure Photosystem II (PS II) cores from spinach immobilize onto the electrodes very efficiently but fair badly in terms of photocurrent response (measured using duroquinone as the redox mediator). The cruder preparation of PS II known as BBY particles performs significantly better under the same experimental conditions and shows a photocurrent response of 20-35 nA (depending on preparation) per screen-printed electrode surface (12.5mm(2)). The data was corroborated using AFM, showing that in the case of BBY particles a defective biolayer is indeed formed, with grooves spanning the whole thickness of the layer enhancing the possibility of mass transfer to the electrodes and enabling biosensing. In comparison, the PS II core layer showed ultra-dense organization, with additional formation of aggregates on top of the single protein layer, thus blocking mediator access to the electrodes and/or binding sites. The defective monolayer biosensor with BBY particles was successfully applied for the detection of photosynthesis inhibitors, demonstrating that the inhibitor binding site remained accessible to both the inhibitor and the external redox mediator. Biosensing was demonstrated using picric acid and atrazine. The detection limits were 1.15 nM for atrazine and 157 nM for picric acid.
Collapse
Affiliation(s)
- Vijayender Bhalla
- Department of Physics, Concordia University, Montreal, Quebec, Canada.
| | | |
Collapse
|
6
|
Kaminskaya O, Shuvalov VA, Renger G. Evidence for a Novel Quinone-Binding Site in the Photosystem II (PS II) Complex That Regulates the Redox Potential of Cytochrome b559. Biochemistry 2006; 46:1091-105. [PMID: 17240992 DOI: 10.1021/bi0613022] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study provides a thorough analysis of effects on the redox properties of cytochrome (Cyt) b559 induced by two photosystem II (PS II) herbicides [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,4-dinitro-6-sec-butylphenol (dinoseb)], an acceleration of the deactivation reactions of system Y (ADRY) agent carbonylcyanide-m-chlorophenylhydrazone (CCCP), and the lipophilic PS II electron-donor tetraphenylboron (TPB) in PS II membrane fragments from higher plants. The obtained results revealed that (1) all four compounds selectively affected the midpoint potential (E(m)) of the high potential (HP) form of Cyt b559 without any measurable changes of the E(m) values of the intermediate potential (IP) and low potential (LP) forms; (2) the control values from +390 to +400 mV for HP Cyt b559 gradually decreased with increasing concentrations of DCMU, dinoseb, CCCP, and TPB; (3) in the presence of high TPB concentrations, a saturation of the E(m) decrease was obtained at a level of about +240 mV, whereas no saturation was observed for the other compounds at the highest concentrations used in this study; (4) the effect of the phenolic herbicide dinoseb on the E(m) is independent of the occupancy of the Q(B)-binding site by DCMU; (5) at high concentrations of TPB or dinoseb, an additional slow and irreversible transformation of HP Cyt b559 into IP Cyt b559 or a mixture of the IP and LP Cyt b559 is observed; and (6) the compounds stimulate autoxidation of HP Cyt b559 under aerobic conditions. These findings lead to the conclusion that a binding site Q(C) exists for the studied substances that is close to Cyt b559 and different from the Q(B) site. On the basis of the results of the present study and former experiments on the effect of PQ extraction and reconstitution on HP Cyt b559 [Cox, R. P., and Bendall, D. S. (1974) The functions of plastoquinone and beta-carotene in photosystem II of chloroplasts, Biochim. Biophys. Acta 347, 49-59], it is postulated that the binding of a plastoquinone (PQ) molecule to Q(C) is crucial for establishing the HP form of Cyt b559. On the other hand, the binding of plastoquinol (PQH2) to Q(C) is assumed to cause a marked decrease of E(m), thus, giving rise to a PQH2 oxidase function of Cyt b559. The possible physiological role of the Q(C) site as a regulator of the reactivity of Cyt b559 is discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | | |
Collapse
|
7
|
Roberts AG, Gregor W, Britt RD, Kramer DM. Acceptor and donor-side interactions of phenolic inhibitors in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:23-32. [PMID: 12686418 DOI: 10.1016/s0005-2728(03)00021-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain phenolic compounds represent a distinct class of Photosystem (PS) II Q(B) site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of Q(B) sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified Q(A) to Q(B) electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of Q(B) site inhibitors, DCMU and atrazine. In the sensitive centers, the S(2)Q(A)(-) state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S(2)Q(A)(-) state than the S(1)Q(A) state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S(2)-multiline electron paramagnetic resonance (EPR) signal and the 'split' EPR signal, originating from the S(2)Y(Z) state showed no significant changes upon binding of phenolic inhibitors at the Q(B) site. We thus propose a working model where Q(A) redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the Q(B) niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the Q(B) site.
Collapse
Affiliation(s)
- Arthur G Roberts
- Institute of Biological Chemistry, Washington State University, Stadium Way, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
8
|
Mathis P, Rutherford A. Effect of phenolic herbicides on the oxygen-evolving side of Photosystem II. Formation of the carotenoid cation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90190-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|