1
|
Rodrigues MJ, Casadei CM, Weinert T, Panneels V, Schertler GFX. Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallogr D Struct Biol 2023; 79:224-233. [PMID: 36876432 PMCID: PMC9986800 DOI: 10.1107/s2059798323000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Rhodopsin is a G-protein-coupled receptor that detects light and initiates the intracellular signalling cascades that underpin vertebrate vision. Light sensitivity is achieved by covalent linkage to 11-cis retinal, which isomerizes upon photo-absorption. Serial femtosecond crystallography data collected from rhodopsin microcrystals grown in the lipidic cubic phase were used to solve the room-temperature structure of the receptor. Although the diffraction data showed high completeness and good consistency to 1.8 Å resolution, prominent electron-density features remained unaccounted for throughout the unit cell after model building and refinement. A deeper analysis of the diffraction intensities uncovered the presence of a lattice-translocation defect (LTD) within the crystals. The procedure followed to correct the diffraction intensities for this pathology enabled the building of an improved resting-state model. The correction was essential to both confidently model the structure of the unilluminated state and interpret the light-activated data collected after photo-excitation of the crystals. It is expected that similar cases of LTD will be observed in other serial crystallography experiments and that correction will be required in a variety of systems.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cecilia M. Casadei
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
3
|
The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8482149. [PMID: 35498134 PMCID: PMC9042598 DOI: 10.1155/2022/8482149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Natural visible light is an electromagnetic wave composed of a spectrum of monochromatic wavelengths, each with a characteristic color. Photons are the basic units of light, and their wavelength correlates to the energy of light; short-wavelength photons carry high energy. The retina is a fragile neuronal tissue that senses light and generates visual signals conducted to the brain. However, excessive and intensive light exposure will cause retinal light damage. Within the visible spectrum, short-wavelength light, such as blue light, carries higher energy, and thus the retinal injury, is more significant when exposed to these wavelengths. The damage mechanism triggered by different short-wavelength light varies due to photons carrying different energy and being absorbed by different photosensitive molecules in the retinal neurons. However, photooxidation might be a common molecular step to initiate cell death. Herein, we summarize the historical understanding of light, the key molecular steps related to retinal light injury, and the death pathways of photoreceptors to further decipher the molecular mechanism of retinal light injury and explore potential neuroprotective strategies.
Collapse
|
4
|
Abstract
Conformational equilibria of G-protein-coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron-electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners.
Collapse
|
5
|
Albert A, Alexander D, Boesze-Battaglia K. Cholesterol in the rod outer segment: A complex role in a "simple" system. Chem Phys Lipids 2016; 199:94-105. [PMID: 27216754 DOI: 10.1016/j.chemphyslip.2016.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/01/2022]
Abstract
The rod outer segment (ROS) of retinal photoreceptor cells consists of disk membranes surrounded by the plasma membrane. It is a relatively uncomplicated system in which to investigate cholesterol distribution and its functional consequences in biologically relevant membranes. The light sensitive protein, rhodopsin is the major protein in both membranes, but the lipid compositions are significantly different in the disk and plasma membranes. Cholesterol is high in the ROS plasma membrane. Disk membranes are synthesized at the base of the ROS and are also high in cholesterol. However, cholesterol is rapidly depleted as the disks are apically displaced. During this apical displacement the disk phospholipid fatty acyl chains become progressively more unsaturated, which creates an environment unfavorable to cholesterol. Membrane cholesterol has functional consequences. The high cholesterol found in the plasma membrane and in newly synthesized disks inhibits the activation of rhodopsin. As disks are apically displaced and cholesterol is depleted rhodopsin becomes more responsive to light. This effect of cholesterol on rhodopsin activation has been shown in both native and reconstituted membranes. The modulation of activity can be at least partially explained by the effect of cholesterol on bulk lipid properties. Cholesterol decreases the partial free volume of the hydrocarbon region of the bilayer and thereby inhibits rhodopsin conformational changes required for activation. However, cholesterol binds to rhodopsin and may directly affect the protein also. Furthermore, cholesterol stabilizes rhodopsin to thermal denaturation. The membrane must provide an environment that allows rhodopsin conformational changes required for activation while also stabilizing the protein to thermal denaturation. Cholesterol thus plays a complex role in modulating the activity and stability of rhodopsin, which have implications for other G-protein coupled receptors.
Collapse
|
6
|
|
7
|
Lomonosova E, Kolesnikov AV, Kefalov VJ, Kisselev OG. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex. Invest Ophthalmol Vis Sci 2012; 53:1225-33. [PMID: 22266510 DOI: 10.1167/iovs.11-9350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. METHODS Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. RESULTS Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra-meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. CONCLUSIONS Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods.
Collapse
Affiliation(s)
- Elena Lomonosova
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Activation of GPCRs (G-protein-coupled receptors) leads to conformational changes that ultimately initiate signal transduction. Activated GPCRs transiently combine with and activate heterotrimeric G-proteins resulting in GTP replacement of GDP on the G-protein alpha subunit. Both the detailed structural changes essential for productive GDP/GTP exchange on the G-protein alpha subunit and the structure of the GPCR-G-protein complex itself have yet to be elucidated. Nevertheless, transient GPCR-G-protein complexes can be trapped by nucleotide depletion, yielding an empty-nucleotide G-protein-GPCR complex that can be isolated. Whereas early biochemical studies indicated formation of a complex between G-protein and activated receptor only, more recent results suggest that G-protein can bind to pre-activated states of receptor or even couple transiently to non-activated receptor to facilitate rapid responses to stimuli. Efficient and reproducible formation of physiologically relevant, conformationally homogenous GPCR-G-protein complexes is a prerequisite for structural studies designed to address these possibilities.
Collapse
|
9
|
Kim TY, Uji-i H, Möller M, Muls B, Hofkens J, Alexiev U. Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation. Biochemistry 2009; 48:3801-3. [PMID: 19301833 DOI: 10.1021/bi900308c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterotrimeric G-proteins interact with their G-protein-coupled receptors (GPCRs) via key binding elements comprising the receptor-specific C-terminal segment of the alpha-subunit and the lipid anchors at the alpha-subunit N-terminus and the gamma-subunit C-terminus. Direct information about diffusion and interaction of GPCRs and their G-proteins is mandatory for an understanding of the signal transduction mechanism. By using single-particle tracking, we show that the encounters of the alpha-subunit C-terminus with the GPCR rhodopsin change after receptor activation. Slow as well as less restricted diffusion compared to the inactive state within domains 60-280 nm in length was found for the receptor-bound C-terminus, indicating short-range order in rhodopsin packing.
Collapse
Affiliation(s)
- Tai-Yang Kim
- Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rhodopsin is a member of the family of G-protein-coupled receptors (GPCRs), and is an excellent molecular switch for converting light signals into electrical response of the rod photoreceptor cells. Light initiates cis-trans isomerization of the retinal chromophore of rhodopsin and leads to the formation of several thermolabile intermediates during the bleaching process. Recent investigations have identified spectrally distinguishable two intermediate states that can interact with the retinal G-protein, transducin, and have elucidated the functional sharing of these intermediates. The initial contact with GDP-bound G-protein occurs in the meta-Ib intermediate state, which has a protonated Schiff base as its chromophore. The meta-Ib intermediate in the complex with the G-protein converts to the meta-II intermediate with releasing GDP from the alpha-subunit of the G protein. Meta-II has a de-protonated Schiff base chromophore and induces binding of GTP to the alpha-subunit of the G-protein. Thus, the GDP-GTP exchange reaction, namely G-protein activation, by rhodopsin proceeds through at least two steps, with conformational changes in both rhodopsin and the G-protein.
Collapse
Affiliation(s)
- Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, CREST, Japan Science and Technology Agency, Japan.
| | | |
Collapse
|
11
|
Natochin M, Barren B, Artemyev NO. Dominant negative mutants of transducin-alpha that block activated receptor. Biochemistry 2006; 45:6488-94. [PMID: 16700559 PMCID: PMC2525804 DOI: 10.1021/bi060381e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations counterpart to dominant negative RasSer17Asn in the alpha-subunits of heterotrimeric G-proteins are known to also produce dominant negative effects. The mechanism of these mutations remains poorly understood. Here, we examined the effects and mechanism of the Ser43Cys and Ser43Asn mutants of transducin-like chimeric Gtalpha* in the visual signaling system. Our analysis showed that both mutants have reduced affinity for GDP and are likely to exist in an empty-or partially occupied-pocket state. S43C and S43N retained the ability to interact with Gtbetagamma and, as heterotrimeric proteins, bind to photoexcited rhodopsin (R*). The interaction with R* is unproductive as the mutants failed to bind GTPgammaS and become activated. S43C and S43N inhibited R*-dependent activation of Gtalpha* and Gtalpha, apparently by blocking R*. Finally, both Gtalpha* mutants lacked interaction with the gamma-subunit of PDE6, an effector protein in phototransduction. These results indicate that the S43C and S43N mutants of Gtalpha* are dominant negative inhibitors that bind and block the activated receptor in a mechanism that parallels that of RasSer17Asn. Dominant negative mutants of Gtalpha sequestering R*, such as S43C and S43N, may become useful instruments in probing the mechanisms of visual dysfunctions caused by abnormal phototransduction signaling.
Collapse
Affiliation(s)
- Michael Natochin
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
12
|
Morizumi T, Imai H, Shichida Y. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes. Biochemistry 2005; 44:9936-43. [PMID: 16026166 DOI: 10.1021/bi0504512] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodopsin is a photoreceptive protein that is present in rod photoreceptor cells, inducing a GDP-GTP exchange reaction on the retinal G-protein transducin (Gt) upon light absorption. This exchange reaction proceeds through at least three steps, which include the binding of photoactivated rhodopsin to GDP-bound Gt, the dissociation of GDP from the rhodopsin-Gt complex, and the binding of GTP to the nucleotide-unbound Gt. These steps have been thought to occur after the formation of the rhodopsin intermediate, meta-II; however, the extra formation of meta-II, which reflects the formation of a complex with Gt, was inhibited in the presence of excess GDP. Here, we use a newly developed CCD spectrophotometer to show that a meta-II precursor, meta-Ib, which has an absorption maximum at visible region, can bind to Gt in its GDP-bound form in urea-washed bovine rod outer segment membranes. The affinity of meta-Ib for GDP-bound Gt is about two times less than that of meta-II for GDP-unbound Gt, indicating that the extra formation of meta-II is observed at equilibrium even in the presence of the meta-Ib-Gt complex. This is the first identification of a complex that includes the GDP-bound form of G protein. Our results strongly suggest that the protein conformational change of the rhodopsin intermediate after binding to Gt is important for the induction of the nucleotide release from the alpha-subunit of Gt.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and CREST, Japan Science and Technology Agency, Japan
| | | | | |
Collapse
|
13
|
Abstract
The photoreceptor rod outer segment (ROS) provides a unique system in which to investigate the role of cholesterol, an essential membrane constituent of most animal cells. The ROS is responsible for the initial events of vision at low light levels. It consists of a stack of disk membranes surrounded by the plasma membrane. Light capture occurs in the outer segment disk membranes that contain the photopigment, rhodopsin. These membranes originate from evaginations of the plasma membrane at the base of the outer segment. The new disks separate from the plasma membrane and progressively move up the length of the ROS over the course of several days. Thus the role of cholesterol can be evaluated in two distinct membranes. Furthermore, because the disk membranes vary in age it can also be investigated in a membrane as a function of the membrane age. The plasma membrane is enriched in cholesterol and in saturated fatty acids species relative to the disk membrane. The newly formed disk membranes have 6-fold more cholesterol than disks at the apical tip of the ROS. The partitioning of cholesterol out of disk membranes as they age and are apically displaced is consistent with the high PE content of disk membranes relative to the plasma membrane. The cholesterol composition of membranes has profound consequences on the major protein, rhodopsin. Biophysical studies in both model membranes and in native membranes have demonstrated that cholesterol can modulate the activity of rhodopsin by altering the membrane hydrocarbon environment. These studies suggest that mature disk membranes initiate the visual signal cascade more effectively than the newly synthesized, high cholesterol basal disks. Although rhodopsin is also the major protein of the plasma membrane, the high membrane cholesterol content inhibits rhodopsin participation in the visual transduction cascade. In addition to its effect on the hydrocarbon region, cholesterol may interact directly with rhodopsin. While high cholesterol inhibits rhodopsin activation, it also stabilizes the protein to denaturation. Therefore the disk membrane must perform a balancing act providing sufficient cholesterol to confer stability but without making the membrane too restrictive to receptor activation. Within a given disk membrane, it is likely that cholesterol exhibits an asymmetric distribution between the inner and outer bilayer leaflets. Furthermore, there is some evidence of cholesterol microdomains in the disk membranes. The availability of the disk protein, rom-1 may be sensitive to membrane cholesterol. The effects exerted by cholesterol on rhodopsin function have far-reaching implications for the study of G-protein coupled receptors as a whole. These studies show that the function of a membrane receptor can be modulated by modification of the lipid bilayer, particularly cholesterol. This provides a powerful means of fine-tuning the activity of a membrane protein without resorting to turnover of the protein or protein modification.
Collapse
Affiliation(s)
- Arlene D Albert
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
14
|
Abstract
Bovine rhodopsin is the prototypical G protein coupled receptor (GPCR). It was the first GPCR to be obtained in quantity and studied in detail. It is also the first GPCR for which detailed three dimensional structural information has been obtained. Reviewed here are the experiments leading up to the high resolution structure determination of rhodopsin and the most recent structural information on the activation and stability of this integral membrane protein.
Collapse
Affiliation(s)
- Arlene D Albert
- Department of Molecular and Cell Biology, U-125 University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
15
|
Mitchell DC, Niu SL, Litman BJ. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding. J Biol Chem 2001; 276:42801-6. [PMID: 11544258 DOI: 10.1074/jbc.m105772200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of membrane composition in modulating the rate of G protein-receptor complex formation was examined using rhodopsin and transducin (G(t)) as a model system. Metarhodopsin II (MII) and MII-G(t) complex formation rates were measured, in the absence of GTP, via flash photolysis for rhodopsin reconstituted in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC) bilayers, with and without 30 mol% cholesterol. Variation in bilayer lipid composition altered the lifetime of MII-G(t) formation to a greater extent than the lifetime of MII. MII-G(t) formation was fastest in 18:0,22:6PC and slowest in 18:0,18:1PC/30 mol% cholesterol. At 37 degrees C and a G(t) to photolyzed rhodopsin ratio of 1:1 in 18:0,22:6PC bilayers, MII-G(t) formed with a lifetime of 0.6 +/- 0.06 ms, which was not significantly different from the lifetime for MII formation. Incorporation of 30 mol% cholesterol slowed the rate of MII-G(t) complex formation by about 400% in 18:0,18:1PC, but by less than 25% in 18:0,22:6PC bilayers. In 18:0,22:6PC, with or without cholesterol, MII-G(t) formed rapidly after MII formed. In contrast, cholesterol in 18:0,18:1PC induced a considerable lag time in MII-G(t) formation after MII formed. These results demonstrate that membrane composition is a critical factor in determining the temporal response of a G protein-coupled signaling system.
Collapse
Affiliation(s)
- D C Mitchell
- Section of Fluorescence Studies, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, USA
| | | | | |
Collapse
|
16
|
Imamoto Y, Kataoka M, Tokunaga F, Palczewski K. Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface. Biochemistry 2000; 39:15225-33. [PMID: 11106502 PMCID: PMC1382172 DOI: 10.1021/bi0018685] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Modification with Alexa594 allowed the monitoring of fluorescence changes at a red excitation light wavelength of 605 nm, thus avoiding significant rhodopsin bleaching. Upon absorption of a photon by rhodopsin, the fluorescence intensity increased as much as 20% at acidic pH with an apparent pK(a) of approximately 6.8 at 4 degrees C, and was sensitive to the presence of hydroxylamine. These findings indicated that the increase in fluorescence is specific for metarhodopsin II. In the presence of transducin, a significant increase in fluorescence was observed. This increase of fluorescence emission intensity was reduced by addition of GTP, in agreement with the fact that transducin enhances the formation of metarhodopsin II. Under conditions that favored the formation of a metarhodopsin II-Alexa594 complex, transducin slightly decreased the fluorescence. In the presence of arrestin, under conditions that favored the formation of metarhodopsin I or II, a phosphorylated, photolyzed rhodopsin-Alexa594 complex only slightly decreased the fluorescence intensity, suggesting that the cytoplasmic surface structure of metarhodopsin II is different in the complex with arrestin and transducin. These results demonstrate the application of Alexa594-modified rhodopsin (Alexa594-rhodopsin) to continuously monitor the conformational changes in rhodopsin during light-induced transformations and its interactions with other proteins.
Collapse
Affiliation(s)
- Y Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | |
Collapse
|
17
|
Souto ML, Borhan B, Nakanishi K. Low-temperature photoaffinity labeling of rhodopsin and intermediates along transduction path. Methods Enzymol 2000; 316:425-35. [PMID: 10800692 DOI: 10.1016/s0076-6879(00)16740-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- M L Souto
- Universidad de La Laguna, Santa Cruz, Mexico
| | | | | |
Collapse
|
18
|
Gibson SK, Parkes JH, Liebman PA. Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. Biochemistry 2000; 39:5738-49. [PMID: 10801324 DOI: 10.1021/bi991857f] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants for light-activated rhodopsin in proportion to phosphorylation stoichiometry. Rod disk membranes containing different average receptor phosphorylation stoichiometries were combined with G protein or arrestin, and titrated with a series of brief light flashes. Binding of G(t) or arrestin to activated rhodopsin augmented the 390 nm MII optical absorption signal by stabilizing MII as MII.G or MII.Arr. The concentration of active arrestin or G(t) and the binding constant of each to MII were determined using a nonlinear least-squares (Simplex) reaction model analysis of the titration data. The binding affinity of phosphorylated MII for G(t) decreased while that for arrestin increased with each added phosphate. G(t) binds more tightly to MII at phosphorylation levels less than or equal to two phosphates per rhodopsin; at higher phosphorylation levels, arrestin binding is favored. However, arrestin was found to bind much more slowly than G(t) at all phosphorylation levels, perhaps allowing time for phosphorylation to gradually reduce receptor-G protein interaction before arrestin capping of rhodopsin. Sensitivity of the binding constants to ionic strength suggests that a strong membrane electrostatic component is involved in both the reduction of G(t) binding and the increase of arrestin binding with increasing rhodopsin phosphorylation.
Collapse
Affiliation(s)
- S K Gibson
- Department of Biochemistry and Biophysics, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | |
Collapse
|
19
|
Imai H, Terakita A, Shichida Y. Analysis of amino acid residues in rhodopsin and cone visual pigments that determine their molecular properties. Methods Enzymol 2000; 315:293-312. [PMID: 10736709 DOI: 10.1016/s0076-6879(00)15850-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- H Imai
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|
20
|
Chapter 3 Late photoproducts and signaling states of bovine rhodopsin. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Hofmann KP. Signalling states of photoactivated rhodopsin. NOVARTIS FOUNDATION SYMPOSIUM 1999; 224:158-75; discussion 175-80. [PMID: 10614051 DOI: 10.1002/9780470515693.ch10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In microseconds after photoexcitation, rhodopsin forms the Meta I intermediate from lumirhodopsin. In this conversion, contacts between retinal and the apoprotein are formed, which result in a defined arrangement of donor and acceptor groups for proton translocations. A system of protonation-dependent coupled equilibria is now adopted, comprising Meta intermediates I, II and III, and their isospectral subforms. Some Meta states were identified as signalling states, in which the receptor interacts with transducin (Gt), rhodopsin kinase (RK) and arrestin. The binding of Gt or arrestin shifts the equilibrium to Meta II, while RK does not, indicating exposure of the RK binding site(s) before Meta II is formed. On contact with the activated receptor, each signalling protein responds with a conformational change, which transforms it into a functionally active state. The bell-shaped pH/rate profiles which are seen for the activation of both the G protein and the receptor kinase, indicate the necessary protonation and deprotonation of groups with different pKa. The right wing of the profile reflects the formation of the protonated subconformation (termed MIIb) of Meta II. For the interaction with Gt, recent work suggests a 'sequential fit' mechanism, involving the recognition of the C-terminal peptide of the Gt alpha subunit and of the farnesylated C-terminus of the gamma subunit. Isolated peptides derived from these portions of the G protein mimic the left wing of the pH/rate profile. We discuss the sequential fit as a time-ordered sequence of microscopic recognition and conformational interlocking in the interaction with the G protein.
Collapse
Affiliation(s)
- K P Hofmann
- Institut für Medizinische Physik und Biophysik, Medizinische Fakultät Charité, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
22
|
Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, Fukada Y. Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 1999; 38:14738-45. [PMID: 10555955 DOI: 10.1021/bi9913496] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chicken pineal pinopsin is the first example of extra-retinal opsins, but little is known about its molecular properties as compared with retinal rod and cone opsins. For characterization of extra-retinal photon signaling, we have developed an overexpression system providing a sufficient amount of purified pinopsin. The recombinant pinopsin, together with similarly prepared chicken rhodopsin and green-sensitive cone pigment, was subjected to photochemical and biochemical analyses by using low-temperature spectroscopy and the transducin activation assay. At liquid nitrogen temperature (-196 degrees C), we detected two kinds of photoproducts, bathopinopsin and isopinopsin, having their absorption maxima (lambda(max)) at 527 and approximately 440 nm, respectively, and we observed complete photoreversibility among pinopsin, bathopinopsin, and isopinopsin. A close parallel of the photoreversibility to the rhodopsin system strongly suggests that light absorbed by pinopsin triggers the initial event of cis-trans isomerization of the 11-cis-retinylidene chromophore. Upon warming, bathopinopsin decayed through a series of photobleaching intermediates: lumipinopsin (lambda(max) 461 nm), metapinopsin I (460 nm), metapinopsin II (385 nm), and metapinopsin III (460 nm). Biochemical and kinetic analyses showed that metapinopsin II is a physiologically important photoproduct activating transducin. Detailed kinetic analyses revealed that the formation of metapinopsin II is as fast as that of a chicken cone pigment, green, but that the decay process of metapinopsin II is as slow as that of the rod pigment, rhodopsin. These results indicate that pinopsin is a new type of pigment with a chimeric nature between rod and cone visual pigments in terms of the thermal behaviors of the meta II intermediate. Such a long-lived active state of pinopsin may play a role in the pineal-specific phototransduction process.
Collapse
Affiliation(s)
- A Nakamura
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Gibson SK, Parkes JH, Liebman PA. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential. Biochemistry 1999; 38:11103-14. [PMID: 10460166 DOI: 10.1021/bi990411w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation reduces the lifetime and activity of activated G protein-coupled receptors, yet paradoxically shifts the metarhodopsin I-II (MI-MII) equilibrium (K(eq)) of light-activated rhodopsin toward MII, the conformation that activates G protein. In this report, we show that phosphorylation increases the apparent pK for MII formation in proportion to phosphorylation stoichiometry. Decreasing ionic strength enhances this effect. Gouy-Chapman theory shows that the change in pK is quantitatively explained by the membrane surface potential, which becomes more negative with increasing phosphorylation stoichiometry and decreasing ionic strength. This lowers the membrane surface pH compared to the bulk pH, increasing K(eq) and the rate of MII formation (k(1)) while decreasing the back rate constant (k(-)(1)) of the MI-MII relaxation. MII formation has been observed to depend on bulk pH with a fractional stoichiometry of 0.6-0.7 H(+)/MII. We find that the apparent fractional H(+) dependence is an artifact of altering the membrane surface charge during a titration, resulting in a fractional change in membrane surface pH compared to bulk pH. Gouy-Chapman calculations of membrane pH at various phosphorylation levels and ionic strengths suggest MII formation behavior consistent with titration of a single H(+) binding site with 1:1 stoichiometry and an intrinsic pK of 6.3 at 0.5 degrees C. We show evidence that suggests this same site has an intrinsic pK of 5.0 prior to light activation and its protonation before activation greatly enhances the rate of MII formation.
Collapse
Affiliation(s)
- S K Gibson
- Department of Biochemistry and Biophysics, University of Pennsylvania Medical Center, Philadelphia 19104-6059, USA
| | | | | |
Collapse
|
24
|
Parkes JH, Gibson SK, Liebman PA. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes. Biochemistry 1999; 38:6862-78. [PMID: 10346908 DOI: 10.1021/bi9827666] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The equilibria between metarhodopsins I and II (MI and MII) and the binding of MII to retinal G protein (G) were investigated, using the dual wavelength absorbance response of rod disk membrane (RDM) suspensions to a series of small bleaches, together with a nonlinear least-squares fitting procedure that decouples the two reactions. This method has been subjected to a variety of theoretical and experimental tests that establish its validity. The two equilibrium constants, the amount of active G protein (that can bind to and stabilize MII) and the fraction bleached by the flash, have been determined without a priori assumptions about these values, at temperatures between 0 and 15 degrees C and pHs from 6.2 to 8.2. Binding of G to MII in normal RDM exhibits 1:1 stoichiometry (not cooperative), relatively weak, 2-4 x 10(4) M-1 affinity on the membrane, with a pH dependence maximal at pH 7.6, and a low thermal coefficient. The reported amount of active G remained constant even when its binding constant was reduced more than 10-fold at low pH. The method can readily be applied to the binding of MII to other proteins or polypeptides that stabilize its conformation as MII. It appears capable of determining many of the essential physical constants of G protein coupled receptor interaction with immediate signaling partners and the effect of perturbation of environmental parameters on these constants.
Collapse
Affiliation(s)
- J H Parkes
- Department of Biochemistry and Biophysics, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | |
Collapse
|
25
|
Terakita A, Yamashita T, Tachibanaki S, Shichida Y. Selective activation of G-protein subtypes by vertebrate and invertebrate rhodopsins. FEBS Lett 1998; 439:110-4. [PMID: 9849889 DOI: 10.1016/s0014-5793(98)01340-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have quantitatively investigated specificities in activating G-protein subtype by bovine and squid rhodopsins to examine whether or not the phototransduction cascade in each of the photoreceptor cells is determined by the colocalization of a large amount of G-protein subtype (Gt or Gq). In contrast to the efficient activation of respective Gt and Gq, bovine and squid rhodopsins scarcely activated G-protein counterparts. Exchange of alpha- and betagamma-subunits of Gt and Gq indicated the critical role of the alpha-subunit in specific binding to respective rhodopsins. Thus the specific recognition of G-protein subtype by each rhodopsin is a major mechanism in determining the phototransduction cascade.
Collapse
Affiliation(s)
- A Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
26
|
Gibson SK, Parkes JH, Liebman PA. Phosphorylation stabilizes the active conformation of rhodopsin. Biochemistry 1998; 37:11393-8. [PMID: 9708973 DOI: 10.1021/bi980933w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deactivation of many G protein coupled receptors (GPCRs) is now known to require phosphorylation of the activated receptor. The first such GPCR so analyzed was rhodopsin, which upon light activation forms an intramolecular equilibrium between the two conformers, metarhodopsin I and II (MI and MII). In this study, we find surprisingly that rhodopsin phosphorylation increases rather than diminishes the formation of MII, the conformation that activates G protein. The MI-MII equilibrium constant was progressively shifted toward MII as the experimental phosphorylation stoichiometry was increased from 0 to 6.4 phosphates per rhodopsin. Increasing phosphorylation both increased MII's formation rate (k1) and decreased its rate of loss (k-1). The direct effect of cytoplasmic surface phosphorylation on intramolecular conformer equilibria observed here may be important to functional state modulation of other membrane proteins.
Collapse
Affiliation(s)
- S K Gibson
- Department of Biochemistry and Biophysics, University of Pennsylvania Medical Center, Philadelphia 19104-6059, USA
| | | | | |
Collapse
|
27
|
Tachibanaki S, Imai H, Terakita A, Shichida Y. Identification of a new intermediate state that binds but not activates transducin in the bleaching process of bovine rhodopsin. FEBS Lett 1998; 425:126-30. [PMID: 9541020 DOI: 10.1016/s0014-5793(98)00216-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using time-resolved low-temperature spectroscopy, we have examined whether or not bovine rhodopsin has a unique transducin-binding state, meta Ib, previously detected from chicken rhodopsin. Unlike chicken meta Ib, bovine meta Ib was detected only by detailed kinetics analysis of the bleaching process, but it was stabilized by transducin and visualized in the observed spectral changes. From the effect of GTPgammaS, it was revealed that meta Ib induced no GDP-GTP exchange reaction in transducin. Thus meta Ib is a common intermediate of vertebrate rhodopsin and transducin is activated in two steps by meta Ib and meta II.
Collapse
Affiliation(s)
- S Tachibanaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
28
|
Boesze-Battaglia K, Allen C. Differential rhodopsin regeneration in photoreceptor membranes is correlated with variations in membrane properties. Biosci Rep 1998; 18:29-38. [PMID: 9653516 PMCID: PMC4732725 DOI: 10.1023/a:1022240717186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rhodopsin, the major transmembrane protein in both the plasma membrane and the disk membranes of photoreceptor rod outer segments (ROS) forms the apo-protein opsin upon the absorption of light. In vivo the regeneration of rhodopsin is necessary for subsequent receptor activation and for adaptation, in vitro this regeneration can be followed after the addition of 11-cis retinal. In this study we investigated the ability of bleached rhodopsin to regenerate in the compositionally different membrane environments found in photoreceptor rod cells. When 11-cis retinal was added to bleached ROS plasma membrane preparations, rhodopsin did not regenerate within the same time course or to the same extent as bleached rhodopsin in disk membranes. Over 80% of the rhodopsin in newly formed disks regenerated within 90 minutes while only 40% regenerated in older disks. Since disk membrane cholesterol content increases as disks are displaced from the base to the apical tip of the outer segment, we looked at the affect of membrane cholesterol content on the regeneration process. Enrichment or depletion of disk membrane cholesterol did not alter the % rhodopsin that regenerated. Bulk membrane properties measured with a sterol analog, cholestatrienol and a fatty acid analog, cis parinaric acid, showed a more ordered, less "fluid", lipid environment within plasma membrane relative to the disks. Collectively these results show that the same membrane receptor, rhodopsin, functions differently as monitored by regeneration in the different lipid environments within photoreceptor rod cells. These differences may be due to the bulk properties of the various membranes.
Collapse
Affiliation(s)
- K Boesze-Battaglia
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey-SOM, Stratford 08084, USA
| | | |
Collapse
|
29
|
Tachibanaki S, Imai H, Mizukami T, Okada T, Imamoto Y, Matsuda T, Fukada Y, Terakita A, Shichida Y. Presence of two rhodopsin intermediates responsible for transducin activation. Biochemistry 1997; 36:14173-80. [PMID: 9369490 DOI: 10.1021/bi970932o] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To identify how many rhodopsin intermediates interact with retinal G-protein transducin, the photobleaching process of chicken rhodopsin has been investigated in the presence or absence of transducin by means of time-resolved low-temperature spectroscopy. Singular value decomposition (SVD) analysis of the spectral data showed that a new intermediate called meta Ib is present between formally identified metarhodopsin I (now referred to as meta Ia) and metarhodopsin II (meta II). Since the absorption maximum of meta Ib (460 nm) is similar to that of meta Ia (480 nm), but considerably different from that of meta II (380 nm), meta Ib should have a protonated retinylidene Schiff base as its chromophore. Whereas transducin showed no effect on the conversion process between lumirhodopsin (lumi) and meta Ia, it affected the process between meta Ia and meta Ib and that between meta Ib and meta II. These results suggest that at least two intermediates (meta Ib and meta II) interact with transducin. The addition of GTPgammaS had no effect on the meta Ib-transducin interaction, while it abolished the ability of transducin to interact with meta II. Thus, meta Ib only binds to transducin, while meta II catalyzes a GDP-GTP exchange in transducin. These results suggest that deprotonation of the Schiff base chromophore is not necessary for the binding to transducin, while changes in protein structure including Schiff base deprotonation are needed to induce the GDP-GTP exchange in transducin.
Collapse
Affiliation(s)
- S Tachibanaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Imai H, Terakita A, Tachibanaki S, Imamoto Y, Yoshizawa T, Shichida Y. Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. Biochemistry 1997; 36:12773-9. [PMID: 9335534 DOI: 10.1021/bi970809x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Through low-temperature spectroscopy and G-protein (transducin) activating experiments, we have investigated molecular properties of chicken blue, the cone visual pigment present in chicken blue-sensitive cones, and compared them with those of the other cone visual pigments, chicken green and chicken red (iodopsin), and rod visual pigment rhodopsin. Irradiation of chicken blue at -196 degrees C results in formation of a batho intermediate which then converts to BL, lumi, meta I, meta II, and meta III intermediates with the transition temperatures of -160, -110, -40, -20, and -10 degrees C. Batho intermediate exhibits an unique absorption spectrum having vibrational fine structure, suggesting that the chromophore of batho intermediate is in a C6-C7 conformation more restricted than those of chicken blue and its isopigment. As reflected by the difference in maxima of the original pigments, the absorption maxima of batho, BL, and lumi intermediates of chicken blue are located at wavelengths considerably shorter than those of the respective intermediates of chicken green, red and rhodopsin, but the maxima of meta I, meta II, and meta III are similar to those of the other visual pigments. These facts indicate that during the lumi-to-meta I transition, retinal chromophore changes its original position relative to the amino acid residues which regulate the maxima of original pigments through electrostatic interactions. Using time-resolved low-temperature spectroscopy, the decay rates of meta II and meta III intermediates of chicken blue are estimated to be similar to those of chicken red and green, but considerably faster than those of rhodopsin. Efficiency in activating transducin by the irradiated chicken blue is greatly diminished as the time before its addition to the reaction mixture containing transducin and GTP increases, while that by irradiated rhodopsin is not. The time profile is almost identical with those observed in chicken red and green. Thus, the faster decay of enzymatically active state is common in cone visual pigments, independent of their spectral sensitivity.
Collapse
Affiliation(s)
- H Imai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Borhan B, Kunz R, Wang AY, Nakanishi K, Bojkova N, Yoshihara K. Chemoenzymatic Synthesis of 11-cis-Retinal Photoaffinity Analog by Use of Squid Retinochrome. J Am Chem Soc 1997. [DOI: 10.1021/ja970956i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Kiselev A, Subramaniam S. Studies of Rh1 metarhodopsin stabilization in wild-type Drosophila and in mutants lacking one or both arrestins. Biochemistry 1997; 36:2188-96. [PMID: 9047319 DOI: 10.1021/bi9621268] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used Drosophila mutants which are deficient in one or both of the arrestins present in photoreceptor cells to critically test the requirements for arrestin in the stabilization of Rh1 metarhodopsin under in vitro and in vivo conditions. Heads from flies illuminated with blue light were homogenized to obtain membranes or micellar extracts, and the amount of metarhodopsin present was quantitated by spectroscopic methods. Compared to wild-type, approximately 64% Rh1 metarhodopsin was recovered in flies deficient in arrestin-1 (arr1(1) mutant), approximately 38% in flies deficient in arrestin-2 (arr2(3) mutant), and approximately 6% in flies deficient in both arrestin-1 and arrestin-2 (arr1(1), arr2(3) double mutant). In contrast, no decrease was observed in the amounts of Rh1 metarhodopsin recovered from illuminated flies which were deficient either in the eye-specific phosphatase (rdgC mutant) or in the eye-specific phospholipase C (norpA(H24) and norpA(H52) mutants). Further, reconstitution experiments in total head homogenates showed that metarhodopsin produced in the arr1(1), arr2(3) double mutant could be stabilized upon the addition of exogenous arrestin-2. These studies provide definitive evidence that arrestin binding stabilizes Rh1 metarhodopsin under in vitro conditions. To test whether arrestin was also required to stabilize metarhodopsin in intact photoreceptor cells, metarhodopsin was generated in arr1(1), arr2(3) double mutant flies by in vivo illumination, and after a wait period of 20 min, converted back into rhodopsin by further illumination with red light. Quantitation of the regenerated rhodopsin in extracts from Drosophila heads showed no significant change in the level of rhodopsin recovered by this illumination protocol. Together, these experiments demonstrate that in disrupted photoreceptor cells, metarhodopsin is not stabilized unless arrestin is present, but in intact photoreceptor cells, significant metarhodopsin stabilization occurs even in the absence of bound arrestin.
Collapse
Affiliation(s)
- A Kiselev
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
33
|
Orlov NY, Orlova TG, Nomura K, Hanai N, Kimura N. Transducin-mediated, isoform-specific interaction of recombinant rat nucleoside diphosphate kinases with bleached bovine retinal rod outer segment membranes. FEBS Lett 1996; 389:186-90. [PMID: 8766826 DOI: 10.1016/0014-5793(96)00575-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The properties of the binding of recombinant rat nucleoside diphosphate (NDP) kinase isoforms alpha and beta (NDP kinase alpha and beta, respectively) to bleached bovine retinal rod outer segment (ROS) membranes were investigated. It was found that: (1) both NDP kinase isoforms interacted with ROS membranes in a pH-, cation- and GTPgammaS-dependent manner; (2) the retinal G-protein transducin was an obligatory factor for the interaction; (3) the apparent affinity of NDP kinase alpha for ROS membranes was about 100-fold higher than that of NDP kinase beta; and (4) an alpha-isoform-specific peptide, corresponding to the sequence of the N-terminal third (variable region), had the ability to displace bovine NDP kinase from ROS membranes. The results suggest the possible involvement of NDP kinases in cellular regulation via interaction with G-proteins and provide a structural basis for the possible differential roles of mammalian NDP kinase isoforms in the cell.
Collapse
Affiliation(s)
- N Y Orlov
- Department of Molecular Biology, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
We have developed a new model of phototransduction that accounts for the dynamics of primate and human cone flash responses in both their linear and saturating range. The model incorporates many of the known elements of the phototransduction cascade in vertebrate photoreceptors. The input stage is a new analytic expression for the activation and inactivation of cGMP-phosphodiesterase (PDE). Although the Lamb and Pugh (1992) model (of a delayed ramp for the rising phase of the PDE response in amphibian rods) provided a good fit for the first 2 log units of stimulus intensity without parameter adjustments, the remaining 4 log units of the data required nonlinear modifications of both delay and gain (slope). We show that this nonlinear behavior is a consequence of the delay approximation and develop a completely linear model to account for the rising phase of amphibian rod photocurrent responses over the full intensity range (approximately 6 log units). We use the same dynamic model to account for primate cone responses by decreasing the time constants of PDE activation and introducing an enhanced inactivation process. This PDE response activates a nonlinear calcium feedback stage that modulates guanylate cyclase synthesis of cyclic GMP. By adjustment of the throughput and feedback parameters, the full model successfully captures most of the features of the primate and human cone flash responses throughout their dynamic range. Our analysis suggests that initial processes in the transduction cascade may be qualitatively different from comparable processes in rods.
Collapse
Affiliation(s)
- R D Hamer
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA
| | | |
Collapse
|
35
|
Kisselev O, Ermolaeva M, Gautam N. Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. J Biol Chem 1995; 270:25356-8. [PMID: 7592699 DOI: 10.1074/jbc.270.43.25356] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-translational prenylation of the carboxyl-terminal cysteine is a characteristic feature of the guanine nucleotide-binding protein (G protein) gamma subunits. Recent findings show that the farnesylated COOH-terminal tail of the gamma 1 subunit is a specific determinant of rhodopsin-transducin coupling. We show here that when synthetic peptides specific to the COOH-terminal tail of gamma 1 are chemically modified with geranyl, farnesyl, or geranylgeranyl groups and tested for their ability to interact with light activated rhodopsin, the farnesylated peptide is significantly more effective. These results show that an appropriate isoprenoid on the G protein gamma subunit serves not only a membrane anchoring function but in combination with the COOH-terminal domain specifies receptor-G protein coupling.
Collapse
Affiliation(s)
- O Kisselev
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
36
|
Kisselev O, Pronin A, Ermolaeva M, Gautam N. Receptor-G protein coupling is established by a potential conformational switch in the beta gamma complex. Proc Natl Acad Sci U S A 1995; 92:9102-6. [PMID: 7568081 PMCID: PMC40932 DOI: 10.1073/pnas.92.20.9102] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Receptor-G protein interaction is characterized by cycles of association and dissociation. We present evidence which indicates that during receptor-G protein interaction, the C-terminal tail of the G protein gamma subunit, which is masked in the beta gamma complex, is exposed and establishes high-affinity contact with the receptor. This potential conformational switch provides a mechanism to regulate receptor-G protein coupling. This switch may also be significant for the role of the beta gamma complex in regulation of effector function.
Collapse
Affiliation(s)
- O Kisselev
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
37
|
Mah TL, Lewis JW, Sheves M, Ottolenghi M, Kliger DS. Low-temperature trapping of early photointermediates of alpha-isorhodopsin. Photochem Photobiol 1995; 62:356-60. [PMID: 7480145 DOI: 10.1111/j.1751-1097.1995.tb05282.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alpha-Isorhodopsin, an artificial visual pigment with a 9-cis-4,5-dehydro-5,6-dihydro(alpha)retinal chromophore, was photolyzed at low temperatures and absorption difference spectra were collected as the sample was warmed. A bathorhodopsin (Batho)-like intermediate absorbing at ca 495 nm was detected below 55 K,a blue-shifted intermediate (BSI)-like intermediate absorbing at ca 453 nm was observed when the temperature was raised to 60 K and a lumirhodopsin (Lumi)-like intermediate absorbing at ca 470 nm was found when the sample was warmed to 115 K. Photointermediates from this pigment were compared to those of native rhodopsin and 5,6-dihydroisorhodopsin. As in native rhodopsin, Batho is the first intermediate detected in alpha-isorhodopsin, though unlike native rhodopsin at low temperatures BSI is observed prior to Lumi formation. Alpha-Isohodopsin behaves similarly to 5,6-dihydroisorhodopsin, with the same early intermediates observed in both artificial visual pigments lacking the C5-C6 double bond. The transition temperature for BSI formation is higher in alpha-isorhodopsin, suggesting an interaction involving the chromophore ring in BSI formation. The transition temperature for Lumi formation is similar for these two pigments as well as for native rhodopsin, suggesting comparable changes in the protein environment in that transition.
Collapse
Affiliation(s)
- T L Mah
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | | | | | |
Collapse
|
38
|
Richards JE, Scott KM, Sieving PA. Disruption of conserved rhodopsin disulfide bond by Cys187Tyr mutation causes early and severe autosomal dominant retinitis pigmentosa. Ophthalmology 1995; 102:669-77. [PMID: 7724183 DOI: 10.1016/s0161-6420(95)30972-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To determine the molecular basis of an early and severe form of autosomal dominant retinitis pigmentosa and to characterize the associated phenotype. METHODS Visual function evaluation included electrophysiologic and psychophysical testing. Molecular genetic analysis included determining the DNA sequence of sections of the rhodopsin gene amplified by polymerase chain reaction and screening for changes single-nucleotide by allele-specific oligonucleotide hybridization. RESULTS Affected family members are heterozygous for a unique Cys187Tyr rhodopsin mutation which disrupts a highly conserved disulfide bond essential to normal rhodopsin function. The retinitis pigmentosa (RP) phenotype includes early and severe retinal dysfunction. The full-field electroretinogram showed only negligible remaining rod and cone responses by 22 years of age. Visual fields were constricted severely by early middle-age years. Macular dysfunction caused reduced visual acuity in early adult years, and macular atrophy was present in older age. The severity of phenotype generally correlated with age, with the exception of an affected 44-year-old patient who had better visual acuity, fields, electroretinogram, and dark-adapted thresholds than did three younger affected relatives, ranging in age from 22 to 38 years. CONCLUSION An early onset, blinding form of autosomal dominant RP results from a rhodopsin Cys187Tyr mutation that eliminates a residue necessary for the formation of a highly conserved disulfide bond essential to normal rhodopsin function. The fact that one family member is significantly less affected than his younger relatives suggests that genetic or environmental factors can modulate the phenotype.
Collapse
Affiliation(s)
- J E Richards
- Department of Ophthalmology, University of Michigan, W. K. Kellogg Eye Center, Ann Arbor 48105, USA
| | | | | |
Collapse
|
39
|
Suzuki T, Narita K, Yoshihara K, Nagai K, Kito Y. Phosphatidyl inositol-phospholipase C in squid photoreceptor membrane is activated by stable metarhodopsin via GTP-binding protein, Gq. Vision Res 1995; 35:1011-7. [PMID: 7762157 DOI: 10.1016/0042-6989(94)00219-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphatidyl inositol-phospholipase C (PI-PLC) in squid retina was studied by immunoblotting and its activities were determined using [3H]phosphatidyl inositol bisphosphate ([3H]PIP2) as substrate. PI-PLC activity was found mostly in soluble fraction when the retina homogenate was treated with 400 mM KCl, but was associated with rhabdomal membranes under low salt conditions (20 mM Hepes). A protein with apparent molecular mass of 130kD was recognized by an antibody against PLC beta 4/norp A in both 400 mM KCl soluble and rhabdomal membrane fractions. A 42 kD protein recognized by antibody against the C-terminus of Gq alpha was also present in these two fractions. GTP gamma S stimulated only the PI-PLC activity associated with membrane and was magnesium dependent. PI-PLC activity was found to be (i) highly dependent upon calcium concentrations, (ii) enhanced by GTP but not by other nucleotides, and (iii) significantly stimulated by light at lower concentrations of GTP gamma S. The stimulation by light was still observed when irradiated membrane was incubated at 10 degrees C for 10 min and then mixed with GTP gamma S. These results suggest that stable metarhodopsin stimulates a PLC beta 4/norp A-like enzyme via a G-protein, Gq.
Collapse
Affiliation(s)
- T Suzuki
- Department of Pharmacology, Hyogo College of Medicine, Japan
| | | | | | | | | |
Collapse
|
40
|
Farrens DL, Khorana HG. Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. J Biol Chem 1995; 270:5073-6. [PMID: 7890614 DOI: 10.1074/jbc.270.10.5073] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An increase in fluorescence is observed upon light activation of bovine rhodopsin. The rate of increase is monoexponential (t1/2 = 15.5 min) at 20 degrees C in 0.1% lauryl maltoside, pH 6.0, and parallels the rate of decay of metarhodopsin II. We show that the increase in fluorescence is due to the release of free retinal, which no longer quenches the tryptophan fluorescence. An extrinsic fluorescence reporter group, pyrene maleimide, attached to bovine rhodopsin also shows an increase in pyrene fluorescence on illumination. The rate of increase in pyrene fluorescence matches the rate of increase in tryptophan fluorescence. This result has been used to develop a micromethod, requiring on the order of 1 microgram of rhodopsin, for measurement of metarhodopsin II decay. An Arrhenius plot derived from the fluorescence assay shows the energy of activation barrier for retinal release from rhodopsin to be 20.2 kcal/mol in 0.1% dodecyl maltoside at pH 6.0.
Collapse
Affiliation(s)
- D L Farrens
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
41
|
Abstract
The interaction of the bovine opsin apoprotein with transducin in rod outer segment membranes was investigated using a guanyl nucleotide exchange assay. In exhaustive binding experiments, opsin activates transducin, with half-maximal exchange activity occurring at 0.8 mol of opsin/mol of transducin. The opsin activity was light-insensitive, hydroxylamine-resistant, unaffected by stoichiometric concentrations of retinaloxime, and more heat-labile than rhodopsin. The t1/2 of transducin activation in the presence of excess opsin was 8.5 min, compared with 0.7 min for metarhodopsin (II). The second-order rate constants were determined to be 0.012 pmol of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) bound per min/nM opsin and 0.35 pmol of GTP gamma S bound per min/nM metarhodopsin (II). Opsin was able to activate more than one transducin, although there appeared to be a turnover-dependent inactivation of the apoprotein. Opsin showed a broad pH range (5.8-7.4) for optimal activity, with no activity in buffers of pH > 9, whereas metarhodopsin (II) exhibited activity at pH > 9. Regulation of opsin activity by stoichiometric amounts of retinal was observed, with inhibition by 11-cis-retinal and stimulation by all-trans-retinal. A model for opsin activity is proposed.
Collapse
Affiliation(s)
- A Surya
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
42
|
Imai H, Mizukami T, Imamoto Y, Shichida Y. Direct observation of the thermal equilibria among lumirhodopsin, metarhodopsin I, and metarhodopsin II in chicken rhodopsin. Biochemistry 1994; 33:14351-8. [PMID: 7947845 DOI: 10.1021/bi00251a049] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using low-temperature time-resolved spectroscopy, we have directly observed thermal back reaction of metarhodopsin I (meta I) to lumirhodopsin (lumi) and that of metarhodopsin II (meta II) to meta I in chicken rhodopsin to demonstrate the presence of thermal equilibria among lumi, meta I, and meta II. The back reaction from meta I to lumi was observed when the rhodopsin sample irradiated at -35 degrees C was warmed to -20 degrees C, while that from meta II to meta I was observed when the sample irradiated at -10 degrees C was cooled to -20 degrees C. Thermodynamic parameters of lumi, meta I, and meta II were calculated from the equilibrium constants estimated by analyzing the spectra of the equilibrium states at temperatures ranging from -30 to -10 degrees C. The results showed that meta I has an enthalpy and an entropy considerably smaller than those of lumi and meta II, while the difference in thermodynamic parameters between lumi and meta II is not so large. These results suggest that meta I is a crucial stage of conversion of the light energy captured by the chromophore into restricted conformations of the chromophore and/or protein, from which a large conformational change of the protein starts to form meta II.
Collapse
Affiliation(s)
- H Imai
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
The thermal reaction of meta I-intermediate of iodopsin (metaiodopsin I), a chicken red-sensitive cone pigment, was studied by low-temperature spectrophotometry at -20 degrees C. Irradiation of iodopsin at -20 degrees C produced metaiodopsin I, whose absorption maximum was at about 470 nm. An incubation of metaiodopsin I at -20 degrees C resulted in a conversion to metaiodopsin II having absorption maximum at about 380 nm, as well as a concurrent formation of a red-shifted product stable at room temperature. Since the absorption spectrum and photo-reactivity of the red-shifted product were identical with those of iodopsin, the red-shifted product should be iodopsin. Thus a part of metaiodopsin I can revert to iodopsin by the thermal reaction unlike metarhodopsin I.
Collapse
Affiliation(s)
- Y Imamoto
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
44
|
Resek JF, Farrens D, Khorana HG. Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit. Proc Natl Acad Sci U S A 1994; 91:7643-7. [PMID: 8052635 PMCID: PMC44458 DOI: 10.1073/pnas.91.16.7643] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We prepared rhodopsin mutants that contained a single reactive cysteine residue per rhodopsin molecule at position 65, 140, 240, or 316 on the cytoplasmic face. A carbene-generating photoactivatable group was linked by a disulfide bond to the cysteine sulfhydryl group of each of the rhodopsin mutants. The resulting derivative was then light-activated at lambda > 495 nm to form the metarhodopsin II intermediate, which bound transducin. Subsequent photoactivation (355 nm) of the carbene-generating group resulted in crosslinking of the rhodopsin mutant carrying a cysteine residue at position 240 to transducin. This crosslinking was determined to be specifically with the alpha subunit of transducin. An alternative reaction observed during photolysis of the rhodopsin mutants was intramolecular insertion of the carbene into rhodopsin.
Collapse
Affiliation(s)
- J F Resek
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
45
|
Kisselev O, Ermolaeva M, Gautam N. A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31815-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Corson DW, Cornwall MC, MacNichol EF, Tsang S, Derguini F, Crouch RK, Nakanishi K. Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. Proc Natl Acad Sci U S A 1994; 91:6958-62. [PMID: 8041729 PMCID: PMC44317 DOI: 10.1073/pnas.91.15.6958] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The 9-methyl group of 11-cis-retinal plays a crucial role in photoexcitation of the visual pigment rhodopsin. A hydrogen-substituted analogue, 11-cis-9-desmethylretinal, combines with opsin to form a pigment that produces abnormal photoproducts and diminished activation of the GTP-binding protein transducin in vitro. We have measured the formation of this analogue pigment in bleached salamander rods and determined the size and shape of its quantal response. In addition, we have characterized the influence of opsin and newly formed analogue pigment on the quantal response to native porphyropsin. We find that, as 11-cis-9-desmethylretinal combines with opsin in bleached rods, the amplitude of the quantal response from residual native pigment is elevated by approximately 7.5-fold to 0.15 +/- 0.09 pA, a value close to the amplitude of the quantal response before bleach (0.31 +/- 0.10 pA). When activated by light, the new analogue pigment produces a quantal response that is approximately 30-fold smaller and decays approximately 5 times more slowly than that of native pigment in unbleached cells. We conclude that the 9-methyl group of retinal is not critical for conversion of opsin to its nondesensitizing state but that it is critical for the normal processes of activation and deactivation of metarhodopsin that give rise to the quantal response.
Collapse
Affiliation(s)
- D W Corson
- Department of Pathology, Medical University of South Carolina, Charleston 29425
| | | | | | | | | | | | | |
Collapse
|
47
|
Davidson FF, Loewen PC, Khorana HG. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci U S A 1994; 91:4029-33. [PMID: 8171030 PMCID: PMC43716 DOI: 10.1073/pnas.91.9.4029] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A disulfide bond that is evidently conserved in the guanine nucleotide-binding protein-coupled receptors is present in rhodopsin between Cys-110 and Cys-187. We have replaced these two cysteine residues by alanine residues and now report on the properties of the resulting rhodopsin mutants. The mutant protein C110A/C187A expressed in COS cells resembles wild-type rhodopsin in the ground state. It folds correctly to bind 11-cis-retinal and form the characteristic rhodopsin chromophore. It is inert to hydroxylamine in the dark, and its stability to dark thermal decay is reduced, relative to that of the wild type, by a delta delta G not equal to of only -2.9 kcal/mol. Further, the affinities of the mutant and wild-type rhodopsins to the antirhodopsin antibody rho4D2 are similar, both in the dark and in light. However, the metarhodopsin II (MII) and MIII photointermediates of the mutant are less stable than those formed by the wild-type rhodopsin. Although the initial rates of transducin activation are the same for both mutant and wild-type MII intermediates at 4 degrees C, at 15 degrees C the MII photointermediate in the mutant decays more than 20 times faster than in wild type. We conclude that the disulfide bond between Cys-110 and Cys-187 is a key component in determining the stability of the MII structure and its coupling to transducin activation.
Collapse
Affiliation(s)
- F F Davidson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
48
|
Khorana HG. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Proc Natl Acad Sci U S A 1993; 90:1166-71. [PMID: 8433978 PMCID: PMC45834 DOI: 10.1073/pnas.90.4.1166] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Site-directed mutagenesis has provided insight into the mechanisms of action of bacteriorhodopsin and rhodopsin. These studies are summarized here.
Collapse
Affiliation(s)
- H G Khorana
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
49
|
Kawamura S. Molecular aspects of photoreceptor adaptation in vertebrate retina. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1993; 35:43-86. [PMID: 8463064 DOI: 10.1016/s0074-7742(08)60568-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S Kawamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Brown NG, Fowles C, Sharma R, Akhtar M. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:659-67. [PMID: 1396673 DOI: 10.1111/j.1432-1033.1992.tb17232.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phosphorylation of a synthetic peptide, corresponding to the C-terminal 11 amino acids of bovine rhodopsin (VII, residues 338-348), was studied under different conditions. The peptide was only phosphorylated in the presence of photoactivated rhodopsin. Using the same protocol, 12 other peptides, mapping in the rhodopsin C-terminal, were screened for their effectiveness as substrates for rhodopsin kinase. It was found that the peptides became poorer substrates with increasing length, and the best substrates comprised the most C-terminal 9-12 amino acids as opposed to other parts of the C-terminus. It was noted that the absence of the two-terminal residues Pro347 and Ala348 impaired peptide phosphorylation. The effect of the decay of metarhodopsin II on the phosphorylation of rhodopsin and the peptides was determined, and it was found that the rhodopsin and peptide phosphorylations decayed with half times of approximately 33 min and 28 min, respectively. The sites of phosphorylation on the peptides were determined and in all cases the phosphorylation was found to be predominantly on serine residues. Only the 11-residue peptide (VII, residues 338-348) contained significant threonine phosphorylation, which was about 25% that on serine residues. Cumulatively, the results suggest that Ser343 is the preferred site of phosphorylation in vitro. The reason for the poor substrate effectiveness of the larger peptides was examined by competitive experiments in which it was shown that a poorly phosphorylated larger peptide successfully inhibited the phosphorylation of a 'good' peptide substrate. The studies above support a mechanism for rhodopsin kinase that we have termed the 'kinase-activation hypothesis'. This requires that the kinase exists in an inactive form and is activated only after binding to photoactivated rhodopsin.
Collapse
Affiliation(s)
- N G Brown
- Department of Biochemistry, University of Southampton, England
| | | | | | | |
Collapse
|