1
|
Airas RK. Kinetic analysis of the isoleucyl-tRNA synthetase mechanism: the next reaction cycle can start before the previous one ends. FEBS Open Bio 2018; 8:244-255. [PMID: 29435414 PMCID: PMC5794461 DOI: 10.1002/2211-5463.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases join correct amino acids to their cognate tRNA at the start of the protein synthesis. Through the kinetic analysis, it is possible to estimate how their functional details correspond to the known structural features. Kinetic analysis of the isoleucyl-tRNA synthetase (IleRS) from Escherichia coli was accomplished. Sixteen different steady-state two-ligand experiments were statistically analysed simultaneously so that the same rate equations and same rate and dissociation constants applied to all experiments. The so-called rapid equilibrium segments procedure was used to derive the rate equations. The final best-fit mechanism included the normal activation and transfer steps, and reorganization of the steps between them and after the transfer step. In addition, the analysis strongly suggested an additional activation step, formation of a new isoleucyl-AMP before the isoleucyl-tRNA was freed from the enzyme. The removal of Ile-tRNA was possible without the formation of Ile-AMP if both isoleucine and ATP were bound to the E-Ile-tRNA complex, but this route covered only 11% of the total formation of Ile-tRNA. In addition to the Mg2+ in MgATP or MgPPi, only two tRNA-bound Mg2+ were required to explain the magnesium dependence in the best-fit mechanism. The first Mg2+ could be present in all steps before the second activation and was obligatory in the first reorganizing step and transfer step. The second Mg2+ was present only at the transfer step, whereas elsewhere it prevented the reaction, including the activation reactions. Chloride inhibited the IleRS reaction, while 100 mm KCl caused 50% inhibition if the ionic strength was kept constant with K-acetate. The Kmapp (tRNA) value was increased from 0.057 to 1.37 μm when the KCl concentration was increased from 0 to 200 mm. The total rate equation helps to understand the reaction route and how the simultaneous presence of Ile-tRNA and Ile-AMP can cause new possibilities to proofreading mechanisms of this enzyme. Enzyme Isoleucyl-tRNA synthetase (EC 6.1.1.5).
Collapse
|
2
|
Datta D, Vaidehi N, Zhang D, Goddard WA. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase. Protein Sci 2005; 13:2693-705. [PMID: 15388861 PMCID: PMC2286561 DOI: 10.1110/ps.04792204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The accuracy of in vivo incorporation of amino acids during protein biosynthesis is controlled to a significant extent by aminoacyl-tRNA synthetases (aaRS). This paper describes the application of the HierDock computational method to study the molecular basis of amino acid binding to the Escherichia coli methionyl tRNA synthetase (MetRS). Starting with the protein structure from the MetRS cocrystal, the HierDock calculations predict the binding site of methionine in MetRS to a root mean square deviation in coordinates (CRMS) of 0.55 A for all the atoms, compared with the crystal structure. The MetRS conformation in the cocrystal structure shows good discrimination between cognate and the 19 noncognate amino acids. In addition, the calculated binding energies of a set of five methionine analogs show a good correlation (R(2) = 0.86) to the relative free energies of binding derived from the measured in vitro kinetic parameters, K(m) and k(cat). Starting with the crystal structure of MetRS without the methionine (apo-MetRS), the putative binding site of methionine was predicted. We demonstrate that even the apo-MetRS structure shows a preference for binding methionine compared with the 19 other natural amino acids. On comparing the calculated binding energies of the 20 natural amino acids for apo-MetRS with those for the cocrystal structure, we observe that the discrimination against the noncognate substrate increases dramatically in the second step of the physical binding process associated with the conformation change in the protein.
Collapse
Affiliation(s)
- Deepshikha Datta
- Materials and Process Simulation Center (MC 139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
3
|
Abstract
Kinetics of a self-capping RNA, Iso6, have been investigated to constrain the catalytic mechanism. The role of phosphates has been examined by varying the number of phosphates on the nucleophilic attacking group or on the RNA. While the number of phosphates in the nucleophile affects capping kinetics, only KM but not kcat is altered. The KM values for GMP, GDP, GTP and ppppG are 200, 11, 13 and 31 microM, respectively. A reaction product, pyrophosphate, is also found to strongly inhibit RNA activities through a competitive exchange mechanism with an apparent Ki of 200 nM. Uniquely strong binding of pyrophosphate supports the idea that capping originated by utilization of the initial pyrophosphate leaving group site for capping nucleophiles. In contrast to the nucleophile phosphate, change of 5' RNA terminus from triphosphate to tetraphosphate enhances the overall rate and kcat by 40%, with little effect on KM. Thus, only the leaving group appears to affect the rate of the chemical transformation. We propose two possible mechanisms that explain this apparent rate-limiting chemical step, either dissociation of pyrophosphate to form a metaphosphate monoester intermediate or formation of a circular phosphoramidate intermediate, using an internal RNA nitrogenous group. A single essential Ca ion is required for all activities.
Collapse
Affiliation(s)
- F Huang
- Department of Molecular Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309-0347, USA
| | | |
Collapse
|
4
|
Cramer F, Freist W. Aminoacyl-tRNA-Synthetasen: Einteilung in zwei Klassen durch Chemie an Substraten und Enzymen vorweggenommen. Angew Chem Int Ed Engl 1993. [DOI: 10.1002/ange.19931050206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Airas RK. Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:443-50. [PMID: 1459129 DOI: 10.1111/j.1432-1033.1992.tb17440.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Derivation of a steady-state rate equation for the aminoacyl-tRNA synthetases is described, and its suitability for the analysis of various details of the reaction is tested. The equation is applied to the magnesium and spermidine dependences of the isoleucyl-tRNA synthetase reaction. Earlier work [Airas, R.K. (1990) Eur. J. Biochem. 192, 401-409] is expanded by experiments and calculations of the tRNA kinetics. The analysis suggests the following new details in addition to the earlier results: (a) The binding of tRNA to the enzyme (and not only the rate of the aminoacylation reaction) is affected by the presence of the Mg2+ and spermidine in the tRNA molecule. At least two bound Mg2+ or spermidines are required. (b) tRNA and PPi partly inhibit the binding of each other to the enzyme. (c) The transfer reaction is rather slow, and, at least under some conditions, it participates in rate limitation. (d) A Mg(2+)-induced reduction in the aminoacylation rate seems to be directed to the dissociation of the aminoacyl-tRNA from the enzyme. This dissociation rate is enhanced if a Mg2+ is first dissociated from the enzyme or tRNA. An increase in the Mg2+ concentration shifts the rate limitation from the transfer reaction towards dissociation of the product.
Collapse
Affiliation(s)
- R K Airas
- Department of Biochemistry, University of Turku, Finland
| |
Collapse
|
6
|
Cramer F, Englisch U, Freist W, Sternbach H. Aminoacylation of tRNAs as critical step of protein biosynthesis. Biochimie 1991; 73:1027-35. [PMID: 1720662 DOI: 10.1016/0300-9084(91)90144-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isoleucyl-tRNA synthetases isolated from commercial baker's yeast and E coli were investigated for their sequences of substrate additions and product releases. The results show that aminoacylation of tRNA is catalyzed by these enzymes in different pathways, eg isoleucyl-tRNA synthetase from yeast can act with four different catalytic cycles. Amino acid specificities are gained by a four-step recognition process consisting of two initial binding and two proofreading steps. Isoleucyl-tRNA synthetase from yeast rejects noncognate amino acids with discrimination factors of D = 300-38000, isoleucyl-tRNA synthetase from E coli with factors of D = 600-68000. Differences in Gibbs free energies of binding between cognate and noncognate amino acids are related to different hydrophobic interaction energies and assumed conformational changes of the enzyme. A simple hypothetical model of the isoleucine binding site is postulated. Comparison of gene sequences of isoleucyl-tRNA synthetase from yeast and E coli exhibits only 27% homology. Both genes show the 'HIGH'- and 'KMSKS'-regions assigned to binding of ATP and tRNA. Deletion of 250 carboxyterminal amino acids from the yeast enzyme results in a fragment which is still active in the pyrophosphate exchange reaction but does not catalyze the aminoacylation reaction. The enzyme is unable to catalyze the latter reaction if more than 10 carboxyterminal residues are deleted.
Collapse
Affiliation(s)
- F Cramer
- Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, Germany
| | | | | | | |
Collapse
|
7
|
Airas RK. On the roles of magnesium and spermidine in the isoleucyl-tRNA synthetase reaction. Analysis of the reaction mechanism by total rate equations. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:401-9. [PMID: 2209594 DOI: 10.1111/j.1432-1033.1990.tb19241.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reaction of isoleucyl-tRNA synthetase from Escherichia coli B was analysed by deriving total steady-state rate equations for the ATP/PPi exchange reaction and for the aminoacylation of tRNA, and by fitting these rate equations to series of experimental results. The analysis suggests that (a) a Mg2+ inhibits the aminoacylation of tRNA but not the activation of the amino acid. In the chosen mechanism, this enzyme-bound Mg2+ is required at the activation step. (b) Another Mg2+ is required at ATP, but the MgATP apparently can be replaced by the spermidine.ATP complex. Spermidine.ATP is a weaker substrate. The role of spermidine.ATP is especially suggested by the relative rates of the aminoacylation of tRNA when the spermidine and magnesium concentrations are varied. The aminoacylation measurements still suggest that (c) two (or more) Mg2+ are bound to the tRNA molecule and are required for enzyme activity at the transfer step, and that these Mg2+ can be replaced by spermidines.
Collapse
Affiliation(s)
- R K Airas
- Department of Biochemistry, University of Turku, Finland
| |
Collapse
|
8
|
Freist W. Error rates and mechanism of substrate recognition in aminoacylation of tRNAs by aminoacyl-tRNA synthetases. Amino Acids 1990. [DOI: 10.1007/978-94-011-2262-7_125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Static and kinetic studies on binding of a fluorescent analogue of ATP and valyt-tRNA synthetase from Bacillus stearothermophilus. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0167-4838(89)90097-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Airas RK. On the non-linear Eadie plots of the tRNA kinetics and non-linear Dixon plots of the PPi inhibition kinetics of the aminoacyl-tRNA synthetases. An analysis of the aminoacylation of tRNA in a model reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:95-100. [PMID: 2537203 DOI: 10.1111/j.1432-1033.1989.tb14525.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A model of the aminoacyl-tRNA synthetase reaction was analyzed by deriving a rate equation, and by calculating the aminoacylation rates at various values of the rate and equilibrium constants. The model specially contained the possibilities that (1) the activation of the amino acid occurs either with bound or non-bound tRNA, and that (2) the transfer of the aminoacyl moiety from the aminoacyl adenylate to tRNA occurs either with bound or non-bound PPi. The analysis showed that the Eadie plots (tRNA as the variable substrate) are straight lines only if the rates of the activation reactions with bound and non-bound tRNA are equal. Otherwise the Eadie plots can be either curved upwards or downwards. The Dixon plots of the PPi inhibition are straight lines only if PPi must be dissociated from the enzyme before the transfer reaction. The conditions under which the Kiapp values are much lower than the dissociation constants for PPi are met if the transfer reaction is relatively slow and the reverse reaction of the activation (pyrophosphorolysis) is fast, and if the tRNA concentration is low.
Collapse
Affiliation(s)
- R K Airas
- Department of Biochemistry, University of Turku, Finland
| |
Collapse
|
11
|
Johanningmeier U. Possible control of transcript levels by chlorophyll precursors in Chlamydomonas. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:417-24. [PMID: 3056725 DOI: 10.1111/j.1432-1033.1988.tb14391.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Steady-state mRNA levels of the three nuclear genes cab1, rbcS1 and rbcS2 (coding for the light-harvesting chlorophyll-binding protein (LHCP) and the small subunit of ribulose 1,5-bisphosphate carboxylase, respectively) and of the two plastid-encoded genes rbcL and psaA2 (coding for the large subunit of the carboxylase and a member of the P700 chlorophyll a protein, respectively) have been investigated in synchronized Chlamydomonas cells in response to light and inhibitors interfering with chlorophyll synthesis. The accumulation of cab1, rbcS1 and psaA2 transcripts is light-dependent, whereas transcripts from rbcS2 and rbcL genes are present in high amounts in the light and in the dark. Dioxoheptanoic acid, an inhibitor blocking chlorophyll synthesis prior to porphyrin formation, does not affect the accumulation of all five mRNAs. However, inhibition of chlorophyll synthesis by incubating cells with dipyridyl, cycloheximide or nitrogen promotes the accumulation of porphyrin compounds, but specifically prevents the accumulation of light-dependent transcripts. Although functionally unrelated, these inhibitors are known to block an Fe-dependent oxygenase, which is involved in the formation of the isocyclic ring in the chlorophyll molecule. The data are explained as a control by chlorophyll precursors over the accumulation of light-dependent transcripts.
Collapse
Affiliation(s)
- U Johanningmeier
- Ruhr-Universität Bochum, Lehrstuhl Biochemie der Pflanzen, Federal Republic of Germany
| |
Collapse
|
12
|
Airas RK. ATP-induced activation of the aminoacylation of tRNA by the isoleucyl-tRNA synthetase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:359-63. [PMID: 3046945 DOI: 10.1111/j.1432-1033.1988.tb14289.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rate of aminoacylation of tRNA catalyzed by the isoleucyl-tRNA synthetase form Escherichia coli has been measured. A steady-state kinetic analysis of the rate as a function of the concentration of ATP gave nonlinear Hanes plots. ATP behaves as an activator of the reaction. The activation is observed at a low magnesium ion concentration and in the presence of spermidine. The presence of inorganic pyrophosphate or AMP enhances the activation. The results are consistent with a mechanism in which the binding of a second molecule of ATP increases the rate of dissociation of Ile-tRNA from the enzyme.
Collapse
Affiliation(s)
- R K Airas
- Department of Biochemistry, University of Turku, Finland
| |
Collapse
|
13
|
Freist W. Isoleucyl-tRNA Synthetase: An Enzyme with Several Catalytic Cycles Displaying Variation in Specificity and Energy Consumption. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/anie.198807731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Freist W. Isoleucyl-tRNA-Synthetase: Ein Enzym mit mehreren Katalysewegen, variabel in Spezifität und Energieverbrauch. Angew Chem Int Ed Engl 1988. [DOI: 10.1002/ange.19881000605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Freist W, Sternbach H, Cramer F. Isoleucyl-tRNA synthetase from baker's yeast and from Escherichia coli MRE 600. Discrimination of 20 amino acids in aminoacylation of tRNA(Ile)-C-C-A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:27-34. [PMID: 3281834 DOI: 10.1111/j.1432-1033.1988.tb13962.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For discrimination between isoleucine and 19 other amino acids by isoleucyl-tRNA synthetase from baker's yeast and from Escherichia coli MRE 600, discrimination factors D have been determined from kcat and Km values in amino-acylation of cognate tRNA(Ile)-C-C-A. Factors D are also products of initial discrimination factors I' and proof-reading factors II'; D = I' II'. Factors II' were calculated from AMP formation stoichiometries and factors I' as quotients of D and II'; I' = D/II'. II' is considered as a product of a pre- and post-transfer proof-reading factor (II' = II1II2), I' as a product of initial discrimination factors I1 and I2 which are due to two steps of initial discrimination. With the yeast enzyme the highest accuracy is achieved in discrimination between isoleucine and valine (D = 38,000); other D values in a high range (10,000-20,000) are observed for Gly, Ser, Thr, Leu and Met; the lowest factors D belong to Cys, Asp, Asn and Trp (300-700); the remaining amino acids are discriminated with medium D values (1000-10,000). Discrimination factors D observed for isoleucyl-tRNA synthetase from E. coli are on average 2-3 times higher than for the yeast enzyme. Highest values were found in discrimination against Gly, Ala and Val (60,000-72,000), the lowest values for Cys, Arg and Trp (600-3000); the other amino acids exhibit D values between 20,000 and 50,000. Initial discrimination factors can be related to hydrophobic interaction forces between the substrates and the enzyme; a hypothetical model of the amino acid binding site is discussed.
Collapse
Affiliation(s)
- W Freist
- Abteilung Chemie, Max-Planck-Institut, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Freist W, Sternbach H, Cramer F. Isoleucyl-tRNA synthetase from baker's yeast and from Escherichia coli MRE 600. Discrimination of 20 amino acids in aminoacylation of tRNA(Ile)-C-C-A(3'NH2). EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 169:33-9. [PMID: 3315663 DOI: 10.1111/j.1432-1033.1987.tb13577.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For discrimination between isoleucine and the other 19 naturally occurring amino acids by isoleucyl-tRNA synthetases from baker's yeast and from Escherichia coli MRE 600 discrimination factors have been determined from kcat and Km values in aminoacylation of the modified tRNA(Ile)-C-C-A(3'NH2). Discrimination factors D1 are products of an initial discrimination factor and a proof-reading factor: D1 = I1.II1. From discrimination factors and AMP formation stoichiometry factors I1 and II1 were calculated. D1 values obtained with the enzyme from E. coli are generally higher than those observed with the yeast enzyme, in some cases up to ten times. With both enzymes low D1 values are found for cysteine, valine, and tryptophan (20-200), the highest values for glycine, alanine, and serine (600-4000). I1 values calculated for the E. coli enzyme are slightly higher (4-145) than the factors observed with the yeast enzyme (1-85), proof-reading factors II1 of the E. coli enzyme are scattering about a mean value about 70, those of the yeast enzyme about a mean value about 50. Initial discrimination factors I1 are directly related to hydrophobic interaction forces between the substrates and the enzymes. Plots of Gibbs free energy differences calculated from these factors are linearly related to the accessible surface areas of the amino acids. A hypothetical model of the binding site can be given in which selection of amino acids is achieved by hydrophobic forces and removal of steric hindrance.
Collapse
Affiliation(s)
- W Freist
- Abteilung Chemie, Max-Planck-Institut für Experimentelle Medizin, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Airas RK, Cramer F. Pyrophosphate-caused inhibition of the aminoacylation of tRNA by the leucyl-tRNA synthetase from Neurospora crassa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:291-6. [PMID: 3021454 DOI: 10.1111/j.1432-1033.1986.tb09970.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inorganic pyrophosphate inhibits the aminoacylation of tRNALeu by the leucyl-tRNA synthetase from Neurospora crassa giving very low Kapp.i, PPi values of 3-20 microM. The inhibition by pyrophosphate, together with earlier kinetic data, suggest a reaction mechanism where leucine, ATP and tRNA are bound to the enzyme in almost random order, and pyrophosphate is dissociated before the rate-limiting step. A kinetic analysis of this mechanism shows that the measured Kapp.i values do not give the real dissociation constant but it is about 0.4 mM. Other dissociation constants are 90 microM for leucine, 2.2 mM for ATP and 1 microM for tRNALeu. At the approximate conditions of the living cell (2 mM ATP, 100 microM leucine and 150 microM PPi) the leucyl-tRNA synthetase is about 85% inhibited by pyrophosphate.
Collapse
|
18
|
Freist W, Sternbach H. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Biochemistry 1984; 23:5742-52. [PMID: 6151853 DOI: 10.1021/bi00319a012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Error rates in discrimination between cognate tRNAIle and noncognate tRNAVal in the aminoacylation reaction with isoleucine catalyzed by isoleucyl-tRNA synthetase from yeast have been investigated in three sets of experiments under different assay conditions. The overall discrimination factor was first determined by isoleucylation of tRNAVal/tRNAIle mixtures. In the second set of experiments, the number of AMP molecules formed per Ile-tRNA in the cognate and noncognate reactions was measured. The higher AMP formation in the noncognate aminoacylation is assigned to a proofreading reaction step. The calculated proofreading factors and an estimated initial discrimination factor yield overall discriminations that are consistent with those obtained from the first set of experiments. In the third series of studies, the orders of substrate addition and product release of cognate and noncognate isoleucylation reactions were investigated by initial rate kinetic methods. From kcat and Km values, the overall discrimination factors were calculated and showed again a good coincidence with those observed in the preceding sets of experiments. Besides under standard assay conditions, aminoacylation reactions were studied in the presence of pyrophosphatase or elongation factor Tu-GTP complex, under addition of both these proteins, in presence of these two additional proteins and spermine at high and low magnesium concentrations, and under special conditions that favor misacylations. Furthermore, isoleucylation of tRNAIle was tested at increased and decreased pH in the standard enzyme assay. Variation of the assay conditions results in changing discrimination factors, which differ by a factor of about 10. Substitution of tRNAIle by tRNAVal in the isoleucylation reaction causes changes in substrate addition and product release orders and thus of the whole catalytic cycle. For aminoacylation of tRNAIle, four different orders of substrate addition and product release appear: the sequential ordered ter-ter, the rapid equilibrium sequential random ter-ter, the random bi-uni uni-bi ping-pong, and a bi-bi uni-uni ping-pong mechanism with a rapid equilibrium segment. tRNAVal is aminoacylated in rapid equilibrium random ter-ter order, in a bi-bi uni-uni ping-pong mechanism with a rapid equilibrium segment, and in two bi-uni uni-bi ping-pong mechanisms. It is assumed that the different assay conditions can be regarded as a stepwise approximation to physiological conditions and that considerable changes in error rates may be also possible in vivo up to 1 order of magnitude.
Collapse
|
19
|
Kohda D, Yokoyama S, Miyazawa T. Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases from an extreme thermophile Thermus thermophilus HB8: protein structure and Zn2+ binding. FEBS Lett 1984; 174:20-3. [PMID: 6468656 DOI: 10.1016/0014-5793(84)81069-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases have been purified from an extreme thermophile, Thermus thermophilus HB8. Valyl-tRNA and isoleucyl-tRNA synthetases are found to be monomer proteins (Mr 108000 and 129000, respectively), while methionyl-tRNA synthetase is a dimer protein (Mr 150000). These enzymes are very similar with respect to amino acid compositions and alpha-helix contents as estimated by circular dichroism analyses. Furthermore, two Zn2+ are tightly bound to each of these synthetases. These data suggest that valyl-tRNA and isoleucyl-tRNA synthetases consist of two domains, each corresponding to the subunit of methionyl-tRNA synthetase.
Collapse
|
20
|
Freist W, Cramer F. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:65-80. [PMID: 6339236 DOI: 10.1111/j.1432-1033.1983.tb07232.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aminoacylation of three modified tRNAIle species with isoleucine and with valine by isoleucyl-tRNA synthetase has been investigated by initial rate kinetics. For aminoacylation of tRNAIle-C-C-3'dA with isoleucine, a bi-bi uni-uni ping-pong mechanism has been found by bisubstrate kinetics and inhibition by products and by 3'dATP; for aminoacylation with valine a bi-uni uni-bi ping-pong mechanism. For isoleucylation of tRNAIle-C-C-A(3'NH2) bisubstrate kinetics, inhibition by products and by isoleucinol show a random uni-bi uni-uni-uni ping-pong mechanism; for valylation of this tRNA a bi-bi uni-uni ping-pong mechanism is observed by bisubstrate kinetics and product inhibition. tRNAIle-C-C-2'dA was aminoacylated under modified conditions with isoleucine in a bi-bi uni-uni ping-pong mechanism with a rapid equilibrium segment as observed by bisubstrate kinetics, inhibition by AMP, by P[NH]P as product analog and by isoleucinol. Aminoacylation with valine is achieved in a rapid-equilibrium sequential random AB, ordered C mechanism indicated by bisubstrate kinetics and inhibition by 3'dATP and valinol. All six reactions exhibit orders of substrate addition and product release which are different from those observed in aminoacylation of the natural tRNAIle-C-C-A. The Km values of the three substrates and the kcat values of the six reactions are given. For aminoacylation at the terminal 2'OH group of the tRNA differences of 13.38 and 13.17 kJ in binding energies between valine and isoleucine have been calculated which result in discrimination factors of 181 and 167. For aminoacylation at the terminal 3'-OH group a difference of only 4.43 kJ and a low discrimination factor of only 6 is observed. Thus maximal discrimination between the cognate and the noncognate amino acid is only achieved in aminoacylation at the 2'-OH group and conclusions drawn from experiments with modified tRNAs concerning 2',3'-specificity have led to correct results in spite of different catalytic cycles in aminoacylation of the natural and the modified tRNAs. The stability of Ile-tRNAIle-C-C-2'dA and Val-tRNAIle-C-C-2'dA, the lesser stability of Val-tRNAVal-C-C-2'dA and the instability of Thr-tRNAVal-C-C-2'dA are consistent with postulations for a 'pre-transfer' proofreading step for isoleucyl-tRNA synthetase and a 'post-transfer' hydrolytic editing step for valyl-tRNA synthetase at the terminal 3'OH group of the tRNA.
Collapse
|