1
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J. Understanding FRET as a research tool for cellular studies. Int J Mol Sci 2015; 16:6718-56. [PMID: 25815593 PMCID: PMC4424985 DOI: 10.3390/ijms16046718] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1-10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - Attila Jenei
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - György Vereb
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| |
Collapse
|
3
|
Guzaev AP. Solid-phase supports for oligonucleotide synthesis. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 3:3.1.1-3.1.60. [PMID: 23775808 DOI: 10.1002/0471142700.nc0301s53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This unit attempts to provide a reasonably complete inventory of over 280 solid supports available to oligonucleotide chemists for preparation of natural and 3'-modified oligonucleotides. Emphasis is placed on non-nucleosidic solid supports. The relationship between the structural features of linkers and their behavior in oligonucleotide synthesis and deprotection is discussed wherever the relevant observations are available.
Collapse
|
4
|
Abstract
The main structural characteristic of intrinsically disordered proteins (IDPs) or intrinsically disordered regions of globular proteins is that they exist as ensembles of multiple conformers which can continuously interconvert, and at times, form ensembles of a more restricted number of conformers. Characterization of the disordered state and transitions to partially or fully ordered states of such ensembles must be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer within ensembles of site-specifically labeled IDP molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed.
Collapse
Affiliation(s)
- Elisha Haas
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Epe B, Steinhäuser KG, Woolley P. Theory of measurement of Förster-type energy transfer in macromolecules. Proc Natl Acad Sci U S A 2010; 80:2579-83. [PMID: 16593305 PMCID: PMC393869 DOI: 10.1073/pnas.80.9.2579] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the theoretical basis of an unconventional method for the determination of the amount of energy transferred between two fluorophores by the Förster mechanism. The method involves an internal comparison made by separation of the fluorophores in situ (i.e., in the optical cell), for example, by means of enzymic digestion; it eliminates several important sources of error and it simplifies calculation while making maximal use of the information contained in the fluorescence spectra. The validity of the method is demonstrated by determination of the known distance between two modifiable sites on the transfer RNA molecule, and its usefulness is exemplified by its application to triangulation of the ribosome of Escherichia coli.
Collapse
Affiliation(s)
- B Epe
- Max-Planck-Institut für molekulare Genetik (Abteilung Wittmann), Ihnestrasse 63, D-1000 Berlin (West) 33
| | | | | |
Collapse
|
6
|
Majumdar ZK, Hickerson R, Noller HF, Clegg RM. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 2005; 351:1123-45. [PMID: 16055154 DOI: 10.1016/j.jmb.2005.06.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
We present analytical and experimental procedures for determining distance changes within the 30 S subunit of the Escherichia coli ribosome using Förster resonance energy transfer (FRET). We discuss ways to contend with complexities when using FRET to measure distance changes within large multi-subunit macromolecular complexes, such as the ribosome. Complications can arise due to non-stoichiometric labeling of donor and acceptor probes, as well as environmental effects that are specific to each conjugation site. We show how to account for changes in extinction coefficients, quenching, labeling stoichiometry and other variations in the spectroscopic properties of the dye to enable more accurate calculation of distances from FRET data. We also discuss approximations that concern the orientation of the transition moments of the two dye molecules, as well as the impact of other errors in the measurement of absolute distances. Thirteen dye-pair locations with different distances using 18 independent FRET pairs conjugated to specific 30 S protein residues have been used to determine distance changes within the 30 S subunit upon association with the 50 S subunit, forming the 70 S ribosome. Here, we explain the spectroscopic methods we have used, which should be of general interest in studies that aim at obtaining quantitative distance information from FRET.
Collapse
Affiliation(s)
- Zigurts K Majumdar
- Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
7
|
Yishai Y, Fixler D, Cohen-Kashi M, Zurgil N, Deutsch M. Ratiometric fluorescence polarization as a cytometric functional parameter: theory and practice. Phys Med Biol 2003; 48:2255-68. [PMID: 12953896 DOI: 10.1088/0031-9155/48/15/301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of ratiometric fluorescence polarization (RFP) as a functional parameter in monitoring cellular activation is suggested, based on the physical phenomenon of fluorescence polarization dependency on emission wavelengths in multiple (at least binary) solutions. The theoretical basis of this dependency is thoroughly discussed and examined via simulation. For simulation, aimed to imitate a fluorophore-stained cell, real values of the fluorescence spectrum and polarization of different single fluorophore solutions were used. The simulation as well as the experimentally obtained values of RFP indicated the high sensitivity of this measure. Finally, the RFP parameter was utilized as a cytometric measure in three exemplary cellular bioassays. In the first, the apoptotic effect of oxLDL in a human Jurkat FDA-stained T cell line was monitored by RFP. In the second, the interaction between cell surface membrane receptors of human T lymphocyte cells was monitored by RFP measurements as a complementary means to the fluorescence resonance energy transfer (FRET) technique. In the third bioassay, cellular thiol level of FDA- and CMFDA-labelled Jurkat T cells was monitored via RFP.
Collapse
Affiliation(s)
- Yitzhak Yishai
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | |
Collapse
|
8
|
Cohen-Kashi M, Moshkov S, Zurgil N, Deutsch M. Fluorescence resonance energy transfers measurements on cell surfaces via fluorescence polarization. Biophys J 2002; 83:1395-402. [PMID: 12202365 PMCID: PMC1302238 DOI: 10.1016/s0006-3495(02)73910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method has been developed for the determination of the efficiency of fluorescence resonance energy transfer efficiency between moieties located on cell surfaces by performing individual cell fluorescence polarization (FP) measurements. The absolute value of energy transfer efficiency (E) is calculated on an individual cell basis. The examination of this methodology was carried out using model experiments on human T lymphocyte cells. The cells were labeled with fluorescein-conjugated Concanavalin A (ConA) as donor, or rhodamine-conjugated ConA as acceptor. The experiments and results clearly indicate that determination of E via FP measurements is possible, efficient, and more convenient than other methods.
Collapse
Affiliation(s)
- Meir Cohen-Kashi
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
9
|
Thielen TPGM, Maassen JA, Kriek J, Moeller W. Mutual orientation of the two L7/L12 dimers on the 50S ribosome of Escherichia coli as measured by energy transfer between covalently bound probes. Biochemistry 2002. [DOI: 10.1021/bi00309a031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abstract
Several procedures have been described for fluorescent labeling of DNA and RNA. They are based on the introduction of aldehyde groups by partial depurination of DNA or oxidation of the 3'-terminal ribonucleoside in RNA by sodium periodate. Fluorescent labels with an attached hydrazine group are efficiently coupled with the aldehyde groups and the hydrazone bonds are stabilized by reduction with sodium cyanoborohydride. Alternatively, DNA can be quantitatively split at the depurinated sites with ethylenediamine. The aldimine bond between the aldehyde group in depurinated DNA or oxidized RNA and ethylenediamine is stabilized by reduction with sodium cyanoborohydride and the primary amine group introduced at these sites is used for attachment of isothiocyanate or succinimide derivatives of fluorescent dyes. The fluorescent DNA labeling can be carried out either in solution or on a reverse phase column. These procedures provide simple, inexpensive methods of multiple DNA labeling and of introducing one fluorescent dye molecule per RNA, as well as quantitative DNA fragmentation and incorporation of one label per fragment. These methods of fluorophore attachment were shown to be efficient for use in the hybridization of labeled RNA, DNA and DNA fragments with oligonucleotide microchips.
Collapse
Affiliation(s)
- D Proudnikov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | |
Collapse
|
11
|
Flamion PJ, Cachia C, Schreiber JP. Non-linear least-squares methods applied to the analysis of fluorescence energy transfer measurements. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1992; 24:1-13. [PMID: 1560175 DOI: 10.1016/0165-022x(92)90042-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe a new method for calculating the efficiency of fluorescence energy transfer on labeled macromolecules using steady-state measurements. A single estimation of the efficiency value is obtained by a global analysis of all the measurement data sets (absorption, emission and excitation spectra) using non-linear least-squares. The method was tested on simulated and experimental data obtained from three simple model compounds: an equimolar mixture of tryptophan-tyrosine and two peptides, Trp-Tyr and Trp-Gly-Gly-Tyr, in which transfer efficiencies are respectively nearly 100% and 50%. The method was found to be reliable and provides methodological and quantitative advantages in regard to the sequential methods currently used.
Collapse
Affiliation(s)
- P J Flamion
- Laboratoire de Biophysique, U.F.R. des Sciences Pharmaceutiques et Biologiques, Dijon, France
| | | | | |
Collapse
|
12
|
Geiselmann J, Seifried SE, Yager TD, Liang C, von Hippel PH. Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. Biochemistry 1992; 31:121-32. [PMID: 1370624 DOI: 10.1021/bi00116a018] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under approximately physiological conditions, the transcription termination factor rho from Escherichia coli is a hexamer of planar hexagonal geometry [Geiselmann, J., Yager, T. D., Gill, S. C., Calmettes, P., & von Hippel, P. H. (1992) Biochemistry (preceding paper in this issue)]. Here we describe studies that further define the quaternary structure of this hexamer. We use a combination of chemical cross-linking and treatment with mild denaturants to show that the fundamental unit within the rho hexamer is a dimer stabilized by an isologous (or pseudoisologous) bonding interface. Three identical dimers of rho interact via a second type of isologous bonding interface to yield a hexamer with C3 or D3 symmetry. Cross-linking and denaturation experiments definitely rule out C6 and C2 symmetry for the rho hexamer. Data from fluorescence quenching, lifetime, and energy transfer experiments also argue against C2 symmetry. The simplest symmetry assignment that is not contradicted by any experimental data is D3; thus we conclude that the rho hexamer has D3 symmetry. We also consider the positioning of the binding sites for RNA and ATP relative to the coordinate reference frame of the D3 hexamer. Fluorescence energy transfer data are presented and integrated with data from the literature to arrive at a self-consistent model for the quaternary structure of the rho hexamer.
Collapse
Affiliation(s)
- J Geiselmann
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
13
|
Abstract
Tertiary contact distance information of varying resolution for large biological molecules abounds in the literature. The results provided herein develop a framework by which information of this type can be used to reduce the allowable configuration space of a macromolecule. The approach combines graph theory and distance geometry. Large molecules are represented as simple, undirected graphs, with atoms, or groups, as vertices, and distances between them as edges. It is shown that determination of the exact structure of a molecule in three dimensions only requires the specification of all the distances in a single tetrahedron, and four distances to every other atom. This is 4N-10 distances which is a subset of the total N(N-1)/2 unique distances in a molecule consisting of N atoms. This requirement for only 4N-10 distances has serious implications for distance geometry implementations in which all N(N-1)/2 distances are specified by bounded random numbers. Such distance matrices represent overspecified systems which when solved lead to non-obvious distribution of any error caused by inherent contradictions in the input data. It is also shown that numerous valid subsets of 4N-10 distances can be constructed. It is thus possible to tailor a subset of distances using all known distances as degrees of freedom, and thereby reduce the configuration space of the molecule. Simple algebraic relationships are derived that relate sets of distances, and complicated rotations are avoided. These relationships are used to construct minimum, complete sets of distances necessary to specify the exact structure of the entire molecule in three dimensions from incomplete distance information, and to identify sets of inconsistent distances. The method is illustrated for the flexible structural types present in large ribosomal RNAs: 1.) A five-membered ring; 2.) a chemically bonded chain with its ends in contact (i.e., a hairpin loop); 3.) the spatial orientation of two separate molecules, and; 4.) an RNA helix that can have variation in individual base pairs, giving rise to global deviation from standardized helical forms.
Collapse
Affiliation(s)
- M A Hadwiger
- Department of Biochemical and Biophysical Sciences, University of Houston, Texas 77204-5500
| | | |
Collapse
|
14
|
Stöffler-Meilicke M, Stöffler G. Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. Methods Enzymol 1988; 164:503-20. [PMID: 3071679 DOI: 10.1016/s0076-6879(88)64066-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Woolley P, Steinhäuser KG, Epe B. Förster-type energy transfer Simultaneous ‘forward’ and ‘reverse’ transfer between unlike fluorophores. Biophys Chem 1987; 26:367-74. [PMID: 17010285 DOI: 10.1016/0301-4622(87)80036-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/1987] [Indexed: 11/13/2022]
Abstract
The general case of Förster-type energy transfer is that in which energy is exchanged in both directions between two unlike fluorophores. In such cases, energy is transferred from the conventionally defined donor to the conventionally defined acceptor (forward transfer) and at the same time from the acceptor to the donor (reverse transfer). Expressions are derived to describe the fluorescence intensities and lifetimes of fluorophores undergoing simultaneous forward and reverse transfer; these are compared with corresponding quantities for the case more usually considered, in which only forward transfer is significant. It is shown that the presence of reverse transfer removes the distinction between donor and acceptor, and allows such anomalous effects as 'acceptor quenching'. A confirmatory example is described. It is shown that the equations generally used in distance determination by steady-state fluorescence spectroscopy can also be applied in the presence of reverse transfer, if a correction term is included; however, for lifetime spectroscopy the correction is more complex.
Collapse
Affiliation(s)
- P Woolley
- Kemisk Institut, Aarhus Universitet, 8000 Arhus C, Denmark F.R.G
| | | | | |
Collapse
|
16
|
Agrawal S, Christodoulou C, Gait MJ. Efficient methods for attaching non-radioactive labels to the 5' ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 1986; 14:6227-45. [PMID: 3748808 PMCID: PMC311633 DOI: 10.1093/nar/14.15.6227] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The syntheses are described of two types of linker molecule useful for the specific attachment of non-radioactive labels such as biotin and fluorophores to the 5' terminus of synthetic oligodeoxyribonucleotides. The linkers are designed such that they can be coupled to the oligonucleotide as a final step in solid-phase synthesis using commercial DNA synthesis machines. Increased sensitivity of biotin detection was possible using an anti-biotin hybridoma/peroxidase detection system.
Collapse
|
17
|
|
18
|
Stöffler-Meilicke M, Epe B, Woolley P, Lotti M, Littlechild J, Stöffler G. Location of protein S4 on the small ribosomal subunit of E. coli and B. stearothermophilus with protein- and hapten-specific antibodies. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:8-18. [PMID: 6083434 DOI: 10.1007/bf00327916] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In spite of considerable effort there is still serious disagreement in the literature about the question of whether epitopes of ribosomal protein S4 are accessible for antibody binding on the intact small ribosomal subunit. We have attempted to resolve this issue using three independent approaches: (i) a re-investigation of the exposure and the location of epitopes of ribosomal protein S4 on the surface of the 30S subunit and 30S core particles of the E. coli ribosome, including rigorous controls of antibody specificity, (ii) a similar investigation of protein S4 from Bacillus stearothermophilus and (iii) the labelling of residue Cys-31 of E. coli S4 with a fluorescein derivative the accessibility of which towards a fluorescein-specific antibody was demonstrated directly by fluorimetry. In each of the three cases the antigen (E. coli S4, B. stearothermophilus S4 or fluorescein) was found to reside on the small lobe.
Collapse
|
19
|
Trón L, Szöllósi J, Damjanovich S, Helliwell SH, Arndt-Jovin DJ, Jovin TM. Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 1984; 45:939-46. [PMID: 6428482 PMCID: PMC1434982 DOI: 10.1016/s0006-3495(84)84240-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A method has been developed for the determination of the efficiency (E) of the fluorescence resonance energy transfer between moieties on cell surfaces by use of a computer-controlled flow cytometer capable of dual wavelength excitation. The absolute value of E may be calculated on a single-cell basis. The analysis requires the measurement of samples stained with donor and acceptor conjugated ligands alone as well as together. In model experiments HK 22 murine lymphoma cells labeled with fluorescein-conjugated concanavalin A (Con A) and/or rhodamine conjugated Con A were used to determine energy transfer histograms. Using the analytic solution to energy transfer in two dimensions, a high surface density of Con A binding sites was found that suggests that the Con A receptor sites on the cell surface are to a degree preclustered . We call this technique flow cytometric energy transfer ( FCET ).
Collapse
|
20
|
Giri L, Hill WE, Wittmann HG, Wittmann-Liebold B. Ribosomal proteins: their structure and spatial arrangement in prokaryotic ribosomes. ADVANCES IN PROTEIN CHEMISTRY 1984; 36:1-78. [PMID: 6382961 DOI: 10.1016/s0065-3233(08)60295-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During the last 15 years of ribosomal protein study, enormous progress has been made. Each of the proteins from E. coli ribosomes has been isolated, sequenced, and immunologically and physically characterized. Ribosomal proteins from other sources (e.g., from some bacteria, yeast, and rat) have been isolated and studied as well. Several proteins have recently been crystallized, and from the X-ray studies it is expected that much important information on the three-dimensional structure will be forthcoming. Many other proteins can probably be crystallized if suitable preparative procedures and crystallization conditions are found. Tremendous progress has also been made in deciphering the architecture of the ribosome. A battery of different methods has been used to provide the nearest neighbor distances of the ribosomal proteins in situ. Definitive measurements are now emanating from neutron-scattering experiments which also promise to give reasonably accurate radii of gyration of the proteins in situ. In turn, refined immune electron microscopy results supplement the neutron-scattering data and also position the proteins on the subunits themselves. This cannot be done by the other methods. Determination of the three-dimensional RNA structure within the ribosome is still in its infancy. Nonetheless, it is expected that by combining the data from protein-RNA and from RNA-RNA cross-linking studies, the structure of the RNA in situ can be unraveled. Of great interest is the fact that ribosomal subunits and ribosomes themselves have now been crystallized, and low-resolution structural maps have already been obtained. However, to grow suitable crystals and to resolve the ribosomal structure at a sufficiently high resolution remains a great challenge and task to biochemists and crystallographers.
Collapse
|
21
|
Steinhäuser KG, Woolley P, Dijk J, Epe B. Distance measurement by energy transfer. Ribosomal proteins L6, L10 and L11 of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 137:337-45. [PMID: 6360687 DOI: 10.1111/j.1432-1033.1983.tb07834.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ribosomal proteins L6, L11 and the complex [(L12)4 X L10] were labelled specifically at their respective single thiol groups, either with the acetylaminoethyl-dansyl or with the acetamidofluorescein fluorophore. The labelled proteins were then reconstituted, singly or in pairs, into ribosomal 50S subunits; the presence of the label had no observable effect on the composition, shape or activity of the reconstituted subunits. The distances between the labelled thiol groups were measured by a fluorescence energy transfer method detailed elsewhere [Epe, B. et al. (1983) Proc. Natl Acad. Sci. USA, 80, 2579-2583] and were found to be: for L6-L10, 60 A (6.0 nm); for L6-L11, 46 A (4.6 nm); for L10-L11, 56 A (5.6 nm). Reversal of the direction of energy transfer by exchanging labels gave duplicate distances which differed, on average, by about 4%. The distance between the fluorescent labels on L10 and L11 in the [23 S-RNA X L10 X L11 X (L12)4] ribonucleoprotein complex was the same as in the 50S subunit, but all three distances were greater in 50S subunits which had been reconstituted without the final activation step (incubation at 50 degrees C). This suggests a tightening of the L6/L10/L11 domain of the 50S subunit during the activation step.
Collapse
|
22
|
Stöffler-Meilicke M, Epe B, Steinhäuser KG, Woolley P, Stöffler G. Immunoelectron microscopy of ribosomes carrying a fluorescence label in a defined position. Location of proteins S17 and L6 in the ribosome of Escherichia coli. FEBS Lett 1983; 163:94-8. [PMID: 6354754 DOI: 10.1016/0014-5793(83)81171-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
By coupling fluorescein to a defined amino acid of a single ribosomal protein and incorporating this protein into the ribosome, we have obtained ribosomes labelled at a single, defined position. A fluorescein-specific antibody preparation was used to locate the fluorescein residues bound to the two cysteines at positions 58 and 63 of protein S17 and to the cysteine at position 86 of protein L6. This study demonstrates the advantages which accrue from the combination of electron microscopy and fluorimetry.
Collapse
|