1
|
Yang F, Li G, Felix G, Albert M, Guo M. Engineered Agrobacterium improves transformation by mitigating plant immunity detection. THE NEW PHYTOLOGIST 2023; 237:2493-2504. [PMID: 36564969 DOI: 10.1111/nph.18694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Agrobacterium tumefaciens microbe-associated molecular pattern elongation factor Tu (EF-Tu) is perceived by orthologs of the Arabidopsis immune receptor EFR activating pattern-triggered immunity (PTI) that causes reduced T-DNA-mediated transient expression. We altered EF-Tu in A. tumefaciens to reduce PTI and improved transformation efficiency. A robust computational pipeline was established to detect EF-Tu protein variation in a large set of plant bacterial species and identified EF-Tu variants from bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that allow the pathogen to escape EFR perception. Agrobacterium tumefaciens strains were engineered to substitute EF-Tu with DC3000 variants and examined their transformation efficiency in plants. Elongation factor Tu variants with rarely occurred amino acid residues were identified within DC3000 EF-Tu that mitigates recognition by EFR. Agrobacterium tumefaciens strains were engineered by expressing DC3000 EF-Tu instead of native agrobacterial EF-Tu and resulted in decreased plant immunity detection. These engineered A. tumefaciens strains displayed an increased efficiency in transient expression in both Arabidopsis thaliana and Camelina sativa. The results support the potential application of these strains as improved vehicles to introduce transgenic alleles into members of the Brassicaceae family.
Collapse
Affiliation(s)
- Fan Yang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0722, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0660, USA
| | - Guangyong Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0722, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0660, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, 72074, Germany
| | - Markus Albert
- Department of Biology, Molecular Plant Physiology, University of Erlangen, Erlangen, 91054, Germany
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| |
Collapse
|
2
|
Song Y, Zhang S, Ye Z, Song Y, Chen L, Tong A, He Y, Bao R. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Res 2022; 50:10586-10600. [PMID: 36200834 PMCID: PMC9561280 DOI: 10.1093/nar/gkac867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China.,Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zirui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Lin Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
3
|
An ancestral genomic locus in Mycobacterium tuberculosis clinical isolates from India hints the genetic link with Mycobacterium canettii. Int Microbiol 2020; 23:397-404. [PMID: 31898033 DOI: 10.1007/s10123-019-00113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Tuberculosis remains a worldwide public health emergency. To better understand M. tuberculosis and to identify genomic variations characteristic to the Indian clinical isolates by a low-cost method, a genomic subtractive hybridization between M. tuberculosis H37Rv and a clinical isolate from South India was performed. RESULTS This revealed a novel 0.4-kb subtractive fragment which was used as a handle to pull out a 4.5-kb genomic region characteristic to the clinical isolate and was absent in H37Rv. On further studies, this 4.5-kb region was found to be present in 91% of the M. tuberculosis clinical isolates screened from Kerala, a state in South India. Interestingly, this novel region has 99% identity (with 100% query coverage) with genomic regions of M. canettii. DISCUSSION The present study hypothesizes that this locus was present in the recent common environmental ancestor of mycobacteria, retained to the maximum extent in M. canettii and ancestral isolates of M. tuberculosis, and later deleted in other modern lineages of M. tuberculosis. Thus, this region may serve as one of the links between the pathogenic mycobacteria and the environmental species. We also propose that the Indian isolates of M. tuberculosis might be closely related to the putative progenitor M. prototuberculosis with respect to this locus. More studies on other genomic loci from different strains of M. tuberculosis are required to establish more links in this direction.
Collapse
|
4
|
Castillo H, Li X, Schilkey F, Smith GB. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation. PLoS One 2018; 13:e0196472. [PMID: 29768440 PMCID: PMC5955497 DOI: 10.1371/journal.pone.0196472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth.
Collapse
Affiliation(s)
- Hugo Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Xiaoping Li
- Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR, United States of America
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Geoffrey B Smith
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| |
Collapse
|
5
|
Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol 2017; 106:22-34. [PMID: 28710887 DOI: 10.1111/mmi.13750] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole E Brown
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Kacar B, Ge X, Sanyal S, Gaucher EA. Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. J Mol Evol 2017; 84:69-84. [PMID: 28233029 PMCID: PMC5371648 DOI: 10.1007/s00239-017-9781-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023]
Abstract
The ability to design synthetic genes and engineer biological systems at the genome scale opens new means by which to characterize phenotypic states and the responses of biological systems to perturbations. One emerging method involves inserting artificial genes into bacterial genomes and examining how the genome and its new genes adapt to each other. Here we report the development and implementation of a modified approach to this method, in which phylogenetically inferred genes are inserted into a microbial genome, and laboratory evolution is then used to examine the adaptive potential of the resulting hybrid genome. Specifically, we engineered an approximately 700-million-year-old inferred ancestral variant of tufB, an essential gene encoding elongation factor Tu, and inserted it in a modern Escherichia coli genome in place of the native tufB gene. While the ancient homolog was not lethal to the cell, it did cause a twofold decrease in organismal fitness, mainly due to reduced protein dosage. We subsequently evolved replicate hybrid bacterial populations for 2000 generations in the laboratory and examined the adaptive response via fitness assays, whole genome sequencing, proteomics, and biochemical assays. Hybrid lineages exhibit a general adaptive strategy in which the fitness cost of the ancient gene was ameliorated in part by upregulation of protein production. Our results suggest that an ancient-modern recombinant method may pave the way for the synthesis of organisms that exhibit ancient phenotypes, and that laboratory evolution of these organisms may prove useful in elucidating insights into historical adaptive processes.
Collapse
Affiliation(s)
- Betül Kacar
- NASA Astrobiology Institute, Mountain View, CA, 94035, USA.
- Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, 75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, 75124, Uppsala, Sweden
| | - Eric A Gaucher
- School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332, USA
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Takai K. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli. J Theor Biol 2017; 413:66-71. [PMID: 27876621 DOI: 10.1016/j.jtbi.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented.
Collapse
Affiliation(s)
- Kazuyuki Takai
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
8
|
Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase. PLoS Biol 2016; 14:e1002465. [PMID: 27224426 PMCID: PMC4880308 DOI: 10.1371/journal.pbio.1002465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.
Collapse
|
9
|
The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 2016; 397:115-27. [DOI: 10.1016/j.jtbi.2016.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
|
10
|
Brandis G, Bergman JM, Hughes D. Autoregulation of the tufB operon in Salmonella. Mol Microbiol 2016; 100:1004-16. [PMID: 26934594 DOI: 10.1111/mmi.13364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 11/27/2022]
Abstract
In Salmonella enterica and related species, translation elongation factor EF-Tu is encoded by two widely separated but near-identical genes, tufA and tufB. Two thirds of EF-Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF-TuB but the mechanism of this up-regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3'-truncations, and measured tufB expression using tufB-yfp transcriptional and translational fusions. The expression data support the presence of two competing stem-loop structures that can form in the 5'-end of the tufB mRNA. Formation of the 'closed' structure leads to Rho-dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF-Tu concentration and where the expression of tufB is post-transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Jessica M Bergman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| |
Collapse
|
11
|
Krieger JN, Riley DE. Bacteria in the chronic prostatitis-chronic pelvic pain syndrome: molecular approaches to critical research questions. J Urol 2002. [PMID: 11992091 DOI: 10.1016/s0022-5347(05)65041-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE There is a pressing need to determine the causes and consequences of, and optimal therapy for the chronic prostatitis-chronic pelvic pain syndrome. MATERIALS AND METHODS New data suggest that bacterial infection may be critical in some patients. We examined the rationale for and technical approaches to hypothesis driven studies of bacteria in the chronic prostatitis-chronic pelvic pain syndrome. RESULTS The first hypothesis was that patients with the chronic prostatitis-chronic pelvic pain syndrome have prostatic bacteria that distinguish them from controls. In pilot studies patients with inflamed expressed prostatic secretions were more likely to have bacterial DNAs, that is 16S ribosomal DNAs. Current goals are to clone, sequence and compare ribosomal DNAs from patients and controls to determine which bacteria are most specific to the chronic prostatitis-chronic pelvic pain syndrome and which should be targeted in clinical trials. The second hypothesis was that bacterial viability correlates with the severity of the chronic prostatitis-chronic pelvic pain syndrome. Quantitative assays for bacterial elongation factor messenger RNA (tufA messenger RNA) provide tools to correlate bacterial viability with patient characteristics, will provide insights into the potential value of antimicrobial therapy and identify characteristics that distinguish patients most likely to respond. The third hypothesis was that patients with prostatic bacteria have similar bacteria in expressed prostatic secretions or on seminal fluid analysis and, furthermore, these bacteria differ from bacteria in controls. These studies would determine whether expressed prostatic secretions or seminal fluid analysis can be used to identify prostatic bacteria and may result in clinical methods for noninvasive diagnosis of prostatic infection. CONCLUSIONS These studies should provide important insights into the causes of the chronic prostatitis-chronic pelvic pain syndrome and may elucidate optimal clinical evaluation and treatment in patients.
Collapse
Affiliation(s)
- John N Krieger
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
12
|
Bacteria in the Chronic Prostatitis-Chronic Pelvic Pain Syndrome: Molecular Approaches to Critical Research Questions. J Urol 2002. [DOI: 10.1097/00005392-200206000-00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Olsthoorn-Tieleman LN, Plooster LJ, Kraal B. The variant tuf3 gene of Streptomyces coelicolor A3(2) encodes a real elongation factor Tu, as shown in a novel Streptomyces in vitro translation system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3807-15. [PMID: 11432749 DOI: 10.1046/j.1432-1327.2001.02291.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces coelicolor, the regular and abundant elongation factor (EF)-Tu1 is encoded by tuf1, while the actual function of the highly divergent tuf3 gene product is not yet known. Expression of the latter could so far only be detected on the transcriptional level under stress conditions. In this paper we demonstrate the presence of low levels of EF-Tu3 in strains of the J1501 lineage. Enhanced expression was observed for J1501 glkA and relA deletion mutants, which lack glucose kinase and ribosome-bound ppGpp synthetase, respectively. To assess the putative translational capacities of EF-Tu3, a novel Streptomyces in vitro translation assay was designed, based on the full elimination by Ni2+ affinity adsorption of chromosomally encoded (His)6-tagged EF-Tu1 from a S. coelicolor cell-free extract. Translational activity of this system is totally dependent on the addition of purified EF-Tu species or on the presence of an additional elongation factor Tu in the extract, e.g. encoded by a plasmid-borne tuf gene. Using this EF-Tu-dependent translation system, we have established that S. coelicolor EF-Tu3 has translational capacities despite its striking deviation from the common prokaryotic EF-Tu sequence at positions involved in either aminoacyl-tRNA binding or interaction with the guanine-nucleotide exchange factor EF-Ts.
Collapse
Affiliation(s)
- L N Olsthoorn-Tieleman
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Sheridan GE, Szabo EA, Mackey BM. Effect of post-treatment holding conditions on detection of tufA mRNA in ethanol-treated Escherichia coli: implications for RT-PCR-based indirect viability tests. Lett Appl Microbiol 1999; 29:375-9. [PMID: 10664981 DOI: 10.1046/j.1472-765x.1999.00644.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PCR is a rapid and sensitive method for detecting and identifying low numbers of bacteria, but it does not discriminate between living and dead cells. Most messenger RNA (mRNA) molecules have a short half-life in the bacterial cell and their presence may therefore indicate viability. We have compared PCR and RT-PCR (targeted at tufA DNA or mRNA, respectively) for the detection of Escherichia coli, using healthy cells and those killed by exposure to different stress treatments. PCR gave a positive signal in live cells and those killed by autoclaving, boiling, or treatment with 50% ethanol, but was negative after exposure to pH 2.0 for 5 min. RT-PCR was positive in live cells but negative after all treatments except exposure to ethanol. The persistence of tufA mRNA was examined in ethanol-killed cells incubated in LB broth at different temperatures. The RT-PCR signal persisted for up to 16 h at 15 degrees C or 4 degrees C but disappeared within 2 h at 37 degrees C. RT-PCR thus has potential as an indicator of viability provided samples are pre-incubated under appropriate conditions that will ensure decay of any residual mRNA in dead cells.
Collapse
Affiliation(s)
- G E Sheridan
- Department of Food Science and Technology, University of Reading, UK
| | | | | |
Collapse
|
15
|
Sheridan GE, Masters CI, Shallcross JA, MacKey BM. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 1998; 64:1313-8. [PMID: 9546166 PMCID: PMC106147 DOI: 10.1128/aem.64.4.1313-1318.1998] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
The relationship between the detection of mRNA and cellular viability in Escherichia coli was investigated in cells killed by heat or ethanol. Reverse transcription-PCR (RT-PCR) methods were developed for detecting mRNA from rpoH, groEL, and tufA genes. mRNA from all three genes was detected immediately after the cells had been killed by heat or ethanol but gradually disappeared with time when dead cells were held at room temperature. In heat-killed cells, some mRNA targets became undetectable after 2 to 16 h, whereas after ethanol treatment, mRNA was still detected after 16 h. In contrast, 16S rRNA was detected by RT-PCR in all samples containing dead cells and did not disappear during a subsequent incubation of 16 h at room temperature. Of the different types of nucleic acid, mRNA is the most promising candidate for an indicator of viability in bacteria, but its persistence in dead cells depends on the inactivating treatment and subsequent holding conditions.
Collapse
Affiliation(s)
- G E Sheridan
- Institute of Food Research, Reading, United Kingdom
| | | | | | | |
Collapse
|
16
|
Tieleman LN, van Wezel GP, Bibb MJ, Kraal B. Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters. J Bacteriol 1997; 179:3619-24. [PMID: 9171408 PMCID: PMC179156 DOI: 10.1128/jb.179.11.3619-3624.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The str operon of Streptomyces ramocissimus contains the genes for ribosomal proteins S12 (rpsL) and S7 (rpsG) and for the polypeptide chain elongation factors G (EF-G) (fus) and Tu (EF-Tu) (tuf). This kirromycin producer contains three tuf or tuf-like genes; tuf1 encodes the regular EF-Tu and is located immediately downstream of fus. In vivo and in vitro transcription analysis revealed a transcription start site directly upstream of S. ramocissimus tuf1, in addition to the operon promoter rpsLp. Transcription from these promoters appeared to be growth phase dependent, diminishing drastically upon entry into stationary phase and at the onset of production of the EF-Tu-targeted antibiotic kirromycin. In surface-grown cultures, a second round of tuf1 transcription, coinciding with aerial mycelium formation and kirromycin production, was observed. The tuf1-specific promoter (tuf1p) was located in the intercistronic region between fus and tuf1 by high-resolution S1 mapping, in vitro transcription, and in vivo promoter probing. During logarithmic growth, the tuf1p and rpsLp transcripts are present at comparable levels. In contrast to Escherichia coli, which has two almost identical tuf genes, the gram-positive S. ramocissimus contains only tuf1 for its regular EF-Tu. High levels of EF-Tu may therefore be achieved by the compensatory activity of tuf1p.
Collapse
Affiliation(s)
- L N Tieleman
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
17
|
van Wezel GP, Woudt LP, Vervenne R, Verdurmen ML, Vijgenboom E, Bosch L. Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2). BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:543-7. [PMID: 7918656 DOI: 10.1016/0167-4781(94)90085-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two tuf genes are present in Streptomyces coelicolor A3(2), which have been cloned and sequenced. These genes show a high degree of nucleotide sequence identity to the tuf1 and tuf3 genes of Streptomyces ramocissimus: the tuf1 genes are 94% identical, the tuf3 genes 87%. S. coelicolor tuf1 encodes a protein of 396 amino acids, while tuf3 encodes a protein of 391 amino acids.
Collapse
Affiliation(s)
- G P van Wezel
- Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Tubulekas I, Hughes D. Growth and translation elongation rate are sensitive to the concentration of EF-Tu. Mol Microbiol 1993; 8:761-70. [PMID: 8332067 DOI: 10.1111/j.1365-2958.1993.tb01619.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used quantitative immunoblotting to estimate the amount of EF-Tu in a variety of S. typhimurium strains with wild-type, mutant, insertionally inactivated or plasmid-borne tuf genes. In the same strains we have measured translation elongation rate, exponential growth rate and the level of nonsense codon readthrough. In the wild-type strain, at moderate to fast growth rates, our data show that EF-Tu makes up 8-9% of total cell protein. Strains with either of the tuf genes insertionally inactivated have 65% of the wild-type EF-Tu level, irrespective of which tuf gene remains active, or whether that gene is wild-type or a kirromycin-resistant mutant. Strains with only one active tuf gene have reduced growth and translation elongation rates. From the magnitude of the reduction in elongation rate relative to the level of EF-Tu we calculate that in glucose minimal medium the in vivo saturation level of wild-type ribosomes by ternary complexes is only 63%. Strains with a ribosome mutation causing a poor interaction with ternary complex are non-viable on minimal medium when the level of EF-Tu is reduced.
Collapse
Affiliation(s)
- I Tubulekas
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
19
|
Tubulekas I, Hughes D. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. J Bacteriol 1993; 175:240-50. [PMID: 8416899 PMCID: PMC196119 DOI: 10.1128/jb.175.1.240-250.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed.
Collapse
Affiliation(s)
- I Tubulekas
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
20
|
Lippmann C, Lindschau C, Vijgenboom E, Schröder W, Bosch L, Erdmann V. Prokaryotic elongation factor Tu is phosphorylated in vivo. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54193-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Boon K, Vijgenboom E, Madsen LV, Talens A, Kraal B, Bosch L. Isolation and functional analysis of histidine-tagged elongation factor Tu. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:177-83. [PMID: 1446670 DOI: 10.1111/j.1432-1033.1992.tb17406.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of the structure/function relationships of the Escherichia coli elongation factor Tu (EF-Tu) via mutagenesis has been hampered by difficulties encountered in separating the mutated factor from other proteins, in particular native EF-Tu. Here we describe a novel system for the purification of EF-Tu mutant species, based on metal-ion affinity chromatography. To facilitate rapid and efficient purification we designed a recombinant EF-Tu with an additional C-terminal sequence of one serine and six histidine residues. A cell extract containing the His-tagged EF-Tu (EF-TuHis) is applied to a Ni(2+)-nitrilotriacetic acid column. EF-TuHis can be selectively eluted with an imidazole containing buffer, yielding a preparation of more than 95% purity, free of wild-type EF-Tu. In-vitro and in-vivo functional analyses show that EF-TuHis resembles the wild-type EF-Tu, which makes this one-step isolation procedure a promising tool for the study of the interactions of mutant EF-Tu with the various components of the elongation cycle. The new isolation procedure was successfully applied for the purification of a mutant EF-TuHis with a Glu substitution for Lys237, a residue possibly involved in the binding of aminoacyl-tRNA.
Collapse
Affiliation(s)
- K Boon
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Voss RH, Hartmann RK, Lippmann C, Alexander C, Jahn O, Erdmann VA. Sequence of the tufA gene encoding elongation factor EF-Tu from Thermus aquaticus and overproduction of the protein in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:839-46. [PMID: 1499561 DOI: 10.1111/j.1432-1033.1992.tb17115.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sequence of the tufA gene from the extreme thermophilic eubacterium Thermus aquaticus EP 00276 was determined. The GC content in third positions of codons is 89.5%, with an unusual predominance of guanosine (60.7%). The derived protein sequence differs from tufA- and tufB-encoded sequences for elongation factor Tu (EF-Tu) of Thermus thermophilus HB8, another member of the genus Thermus, in 10 of the 405 amino acid residues. Three exchanges are located in the additional loop of ten amino acids (182-191). The loop, probably involved in nucleotide binding, is absent in EF-Tu of the mesophile Escherichia coli. Since EF-Tu from E. coli is quite unstable, the protein is well-suited for analyzing molecular changes that lead to thermostabilization. Comparison of the EF-Tu domain I from E. coli and Thermus strains revealed clustered amino acid exchanges in the C-terminal part of the first helix and in adjacent residues of the second loop inferred to interact with the ribosome. Most other exchanges in the guanine nucleotide binding domain are located in loops or nearest vicinity of loops suggesting their importance for thermostability. The T. aquaticus EF-Tu was overproduced in E. coli using the tac expression system. Identity of the recombinant T. aquaticus EF-Tu was verified by Western blot analysis, N-terminal sequencing and GDP binding assays.
Collapse
Affiliation(s)
- R H Voss
- Institut für Biochemie, Freie Universität Berlin, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Interactions of EF-Ts with EF-Tu at all steps of the elongation cycle were studied by limited trypsinolysis, gel-filtration, analytical centrifugation and fluorescence polarization techniques. It is shown that EF-Ts does not dissociate from EF-Tu after GDP to GTP exchange, but remains bound to the Aa-tRNA.EF-Tu.GTP complex up to GTP hydrolysis stage on the ribosome. The possible role of these interactions is discussed.
Collapse
Affiliation(s)
- M G Bubunenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | |
Collapse
|
24
|
Schlaman HR, Horvath B, Vijgenboom E, Okker RJ, Lugtenberg BJ. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol 1991; 173:4277-87. [PMID: 1712355 PMCID: PMC208087 DOI: 10.1128/jb.173.14.4277-4287.1991] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression of nod genes of Rhizobium leguminosarum bv. viciae in nodules of Pisum sativum was investigated at both the translational and transcriptional levels. By using immunoblots, it was found that the levels of NodA, NodI, NodE, and NodO proteins were reduced at least 14-fold in bacteriods compared with cultured cells, whereas NodD protein was reduced only 3-fold. Northern (RNA) blot hybridization, RNase protection assays, and in situ RNA hybridization together showed that, except for the nodD transcript, none of the other nod gene transcripts were present in bacteroids. The amount of nodD transcript in bacteroids was reduced only two- to threefold compared with that in cultured cells. Identical results were found with a Rhizobium strain harboring multicopies of nodD and with a strain containing a NodD protein (NodD604) which is activated independently of flavonoids. Furthermore, it was found that mature pea nodules contain inhibitors of induced nod gene transcription but that NodD604 was insensitive to these compounds. In situ RNA hybridization on sections from P. sativum and Vicia hirsuta nodules showed that transcription of inducible nod genes is switched off before the bacteria differentiate into bacteroids. This is unlikely to be due to limiting amounts of NodD, the absence of inducing compounds, or the presence of anti-inducers. The observed switch off of transcription during the development of symbiosis is a general phenomenon and is apparently caused by a yet unknown, negative regulation mechanism.
Collapse
Affiliation(s)
- H R Schlaman
- Department of Plant Molecular Biology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Gümüşel F, Cool RH, Weijland A, Anborgh PH, Parmeggiani A. Mutagenesis of the NH2-terminal domain of elongation factor Tu. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:215-21. [PMID: 2119812 DOI: 10.1016/0167-4781(90)90169-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutagenesis was carried out in the N-terminal domain of elongation factor Tu (EF-Tu) to characterize the structure-function relationships of this model GTP binding protein with respect to stability, the interaction with GTP and GDP, and the catalytic activity. The substitutions were introduced in elements around the guanine nucleotide binding site or in the loops defining this site, in the intact molecule or in the isolated N-terminal domain (G domain). The double substitution Val88----Asp and Leu121----Lys, two residues situated on two vicinal alpha-helices, influences the basic activities of the truncated factor to a limited extent, probably via long-range interactions, and induces a destabilisation of the G domain structure. The functional alterations brought about by substitutions on the consensus sequences 18-24 and 80-83 highlight the importance of these residues for the interaction with GTP/GDP and the GTPase activity. Mutations concerning residues interacting with the guanine base lead to proteins in large part insoluble and inactive. In one case, the mutated protein (EF-TuAsn135----Asp) inhibited the growth of the host cell. This demonstrates the crucial role of the base specificity for the active conformation of EF-Tu. The obtained results are discussed in the light of the three-dimensional structure of EF-Tu.
Collapse
Affiliation(s)
- F Gümüşel
- Laboratoire de Biochimie, Laboratoire Associè du C.N.R.S., N0240, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
26
|
Abrahams JP, Acampo JJ, Ott G, Sprinzl M, de Graaf JM, Talens A, Kraal B. The interaction between aminoacyl-tRNA and the mutant elongation factors Tu AR and B0. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:226-9. [PMID: 2207147 DOI: 10.1016/0167-4781(90)90171-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding of Tyr-[AEDANS-s2C]tRNA(Tyr) (Tyr-tRNA(Tyr) modified at the penultimate cytidine residue with a thio group at position 2 of the pyrimidine ring, to which an N-(acetylaminoethyl)-5-naphthylamine-1-sulfonic acid fluorescence group is attached) to mutant elongation factor (EF)-Tu species from E. coli, EF-TuAR (Ala-375----Thr) and EF-TuBO (Gly-222----Asp), both complexed to GTP, was investigated in absence of kirromycin by measuring the change in fluorescence of the modified tRNA induced by complex formation. The calculated dissociation constant in the case of EF-TuAR is about 4 nM and in the case of EF-TuB0, about 1 nM. These values are higher than that of wild-type EF-Tu, which was 0.24 nM measured with the same system. The affinity between either EF-TuB0.kirromycin.GDP or EF-TuB0.kirromycin.GTP on the one hand, and a mixture of aminoacyl-tRNAs on the other, was measured with zone-interference gel electrophoresis. The dissociation constants are 20 microM and 7 microM, respectively, a factor of about two higher than in the case of wild-type EF-Tu.kirromycin. These findings provide a clue for the observed increase in translational errors in strains carrying the mutations. Furthermore, the experiments with EF-TuB0.kirromycin deepen our understanding of the effects of the B0 mutation on the kirromycin phenotype of the mutant cells concerned.
Collapse
Affiliation(s)
- J P Abrahams
- Department of Biochemistry, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Bosch L, Nilsson L, Vijgenboom E, Verbeek H. FIS-dependent trans-activation of tRNA and rRNA operons of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:293-301. [PMID: 2145039 DOI: 10.1016/0167-4781(90)90184-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two mechanisms controlling stable RNA synthesis have been described: growth rate-dependent control and stringent response. Although the mechanism underlying growth rate-dependent control is still a matter of dispute, this control is commonly assumed to operate through repression of transcription initiation of stable RNA operons. The same is true for the stringent response. Here we show that the cell utilizes an additional control system operating through activation of the thrU(tufB) operon. This operon, the tyrT and the rrnB operon share a common trans-activating protein that binds to cis-acting DNA regions upstream of the promoters of the two tRNA operons and of the P1 promoter of the rrnB operon. Conceivably, more stable RNA operons may be regulated by trans-activation. Both in vivo and in vitro experiments show that the Escherichia coli protein FIS (Factor for Inversion Stimulation) is involved in the trans-activation. This protein is known to stimulate the inversion of various DNA segments by binding to cis-acting recombinational enhancers and functions as a host factor for the bacteriophages Mu and Lambda.
Collapse
Affiliation(s)
- L Bosch
- Department of Biochemistry, Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | | | |
Collapse
|
28
|
Zengel JM, Lindahl L. Mapping of two promoters for elongation factor Tu within the structural gene for elongation factor G. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:317-22. [PMID: 2207161 DOI: 10.1016/0167-4781(90)90188-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The str operon of Escherichia coli contains the genes for ribosomal proteins S7 and S12 as well as elongation factors G and Tu (EF-G, EF-Tu). We have previously reported that there is a secondary promoter for expression of EF-Tu mapping within the upstream fus gene encoding EF-G (Zengel, J.M. and Lindahl, L. (1982) Mol. Gen. Genet. 185, 487-492) and have identified several potential promoter sequences within fus (Zengel, J.M., Archer, R.H. and Lindahl, L. (1984) Nucleic Acids Res. 12, 2181-2192). We have now further characterized this promoter activity. Measurements of transcription rates from various regions of the str operon in cells carrying the fus gene and the beginning of the tufA gene on a high copy number plasmid confirmed that transcription was initiated within a 600 bp EcoRI fragment in the distal portion of the fus gene. Furthermore, T1 nuclease mapping studies identified two 5' ends within this region, one about 400 bases upstream of tufA, the other about 270 bases upstream, suggesting that there are two tufA promoters within the fus gene. Both of these promoters are active in the intact chromosomal str operon.
Collapse
Affiliation(s)
- J M Zengel
- Department of Biology, University of Rochester, NY 14627
| | | |
Collapse
|
29
|
Breidenbach E, Leu S, Michaels A, Boschetti A. Synthesis of EF-Tu and distribution of its mRNA between stroma and thylakoids during the cell cycle of Chlamydomonas reinhardii. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1048:209-16. [PMID: 2322577 DOI: 10.1016/0167-4781(90)90058-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Chlamydomonas reinhardii the elongation factor EF-Tu is encoded in the chloroplast DNA. We identified EF-Tu in the electrophoretic product pattern of chloroplast-made proteins and showed that this protein is only synthesized in the first half of the light period in synchronized cells. The newly synthesized EF-Tu contributed little to the almost invariable content of EF-Tu in chloroplasts during the light period of the cell cycle. However, increasing cell volume and the lack of EF-Tu synthesis in the second half of the light period led to a decrease in the concentration of EF-Tu in chloroplasts. At different times in the vegetative cell cycle, the RNA was extracted from whole chloroplasts and from free and thylakoid-bound chloroplast polysomes. The content of mRNA of EF-Tu in chloroplasts and the distribution between stroma and thylakoids were determined. During the light period, the content of the mRNA for EF-Tu varied in parallel to the rate of EF-Tu synthesis. However, in the dark, some mRNA was present even in the absence of EF-Tu synthesis. Most of the mRNA was bound to thylakoids during the whole cell cycle. This suggests that synthesis of EF-Tu is associated with thylakoid membranes.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | | | |
Collapse
|
30
|
Tapio S, Bilgin N, Ehrenberg M. Impaired in vitro kinetics of EF-Tu mutant Aa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:347-54. [PMID: 2180702 DOI: 10.1111/j.1432-1033.1990.tb15410.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kirromycin-resistant EF-Tu mutant Aa, previously shown to be an antisuppressor for nonsense and missense suppressor tRNAs, has been characterised in a poly(U)-primed translation system in vitro. Two major defects were found in the function of the mutant. First, the dissociation constant for Aa binding to Phe-tRNA(Phe) was increased tenfold compared to wild-type EF-Tu. Second, kcat/Km for the interaction between the EF-Tu.GTP.aa-tRNA complex and the ribosome was decreased by the mutation to one third of its wild-type value. No differences were observed between mutant and wild-type factor in the regeneration of EF-Tu.GTP from EF-Tu.GDP via EF-Ts or in the mistranslation frequency by Leu-tRNA(4Leu). The relation between the in vitro results and the mutant phenotype in vivo is discussed.
Collapse
Affiliation(s)
- S Tapio
- Department of Microbiology, University of Uppsala, Sweden
| | | | | |
Collapse
|
31
|
Jacquet E, Parmeggiani A. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:341-6. [PMID: 2684669 DOI: 10.1111/j.1432-1033.1989.tb15121.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Substitution of V20 by G in the consensus element G18HVDHGK24 of EF-Tu (referred to as EF-TuG20) strongly influences the interaction with GDP as well as the GTPase activity [Jacquet, E. & Parmeggiani, A. (1988) EMBO J. 7, 2861-2867]. In an extension of this work we describe additional properties of the mutated factor, paying particular attention to the interaction with the macromolecular ligands. Our results show that the conformational transitions induced by the mutation strongly favor the regeneration of the active complex EF-TuG20.GTP, almost as effectively as with wild-type EF-Tu in the presence of elongation factor Ts. Addition of elongation factor Ts further enhances the rate of the GDP to GTP exchange of the mutated factor. Remarkably, EF-TuG20.GDP can support the enzymatic binding of aminoacyl-tRNA to ribosome.mRNA at low MgCl2 concentration, an effect that with wild-type EF-Tu can only occur in the presence of kirromycin. Our results show that EF-TuG20.GDP shares common features with the GTP-like conformation induced by kirromycin on wild-type EF-Tu. The ability of the ribosome to activate the EF-TuG20 center for GTP hydrolysis is strongly decreased, while the stimulation by aminoacyl-tRNA is conserved. The ribosomal activity is partially restored by addition of aminoacyl-tRNA plus poly(U), showing that codon/anticodon interaction contribute to correct the anomalous interaction between ternary complex and ribosomes. The impaired activity of EF-TuG20 in poly(Phe) synthesis is related to the degree of defective GTP hydrolysis and, most interestingly, it is characterized by a striking increase of the fidelity of translation at high MgCl2 concentration. This effect probably depends on a more selective recognition of the ternary complex by ribosome.mRNA, as a consequence of a longer pausing of EF-TuG20 on the ribosome. In conclusion, position 20 in EF-Tu is important for coordinating the allosteric mechanisms controlling the action of EF-Tu and its ligands.
Collapse
Affiliation(s)
- E Jacquet
- Unité de Recherche Associée no. 240 du Centre National de al Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
32
|
Vijgenboom E, Bosch L. Translational Frameshifts Induced by Mutant Species of the Polypeptide Chain Elongation Factor Tu of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51588-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Vijgenboom E, Nilsson L, Bosch L. The elongation factor EF-Tu from E. coli binds to the upstream activator region of the tRNA-tufB operon. Nucleic Acids Res 1988; 16:10183-97. [PMID: 3057439 PMCID: PMC338845 DOI: 10.1093/nar/16.21.10183] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The polypeptide chain elongation factor EF-Tu of Escherichia coli is encoded by two genes, tufA and tufB, located in two different operons. Experiments in which either tufA or tufB was inactivated demonstrated that expression of the tRNA-tufB operon is dependent on a functioning tufA and thus on EF-Tu (1, to be published). In order to study a possible role of EF-Tu as trans-activator of the tRNA-tufB operon, we have investigated in vitro binding of an EF-Tu. GDP preparation to various DNA fragments of the operon. We demonstrate that specific binding occurs to a cis-acting region delimited from position -134 to the promoter, previously shown to enhance tufB transcription. Electrophoretic retardation assays reveal the formation of maximally three protein/DNA complexes, indicating that more than one protein molecule can bind to the DNA. The EF-Tu preparation used was obtained by affinity chromatography and appeared to be 95% pure. It lost its DNA binding activity upon further purification. That EF-Tu is nonetheless involved in the DNA binding is suggested by the observation that none of the three complexes is formed in the presence of kirromycin, an antibiotic that binds EF-Tu with high specificity. If so, EF-Tu.GDP most likely binds to the activator region of the tRNA-tufB operon in combination with another non-identified protein or component.
Collapse
Affiliation(s)
- E Vijgenboom
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Van Delft JH, Talens A, De Jong PJ, Schmidt DS, Bosch L. Control of the tRNA-tufB operon in Escherichia coli. 2. Mechanisms of the feedback inhibition of tufB expression studied in vivo and in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:363-74. [PMID: 2456927 DOI: 10.1111/j.1432-1033.1988.tb14205.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanism underlying feedback inhibition of tufB expression has been studied in vivo by gene-dosage experiments and by gene and operon fusions involving lacZ. Raising the cellular EF-Tu content, by introducing a multicopy plasmid encoding EF-TuA into the cell, repressed the level of EF-TuB but left the content of tRNA(Thr)3, encoded by the tRNA-tufB operon, unaffected. This indicates that autoregulation of chromosomal tufB expression does not occur by modulating transcription initiation at the promoter of the tRNA-tufB operon. This conclusion is further substantiated by experiments with a tRNA':lacZ operon fusion. The molecular ratio of chromosome-borne tufA and tufB transcripts also remained unaltered under conditions of excess EF-Tu, though experiments with a tRNA-tufB':lacZ operon fusion showed a decrease of tufB transcripts. Our data further exclude drastic effects of the autogenous repressor on processing of the contranscript of the operon into monocistronic tufB RNA and on alteration of EF-TuB turnover. Two possible mechanisms remain, which cannot yet be decided between. One is modulation of EF-Tu by transcription termination either directly or indirectly by affecting antitermination. The second is translational repression. In vitro translation of transcripts derived from SP6 clones did not reveal any feedback inhibition of EF-TuB synthesis. Surprisingly, addition of EF-Tu to a coupled transcription/translation systems was found to block transcription initiation at the primary promoter of the tRNA-tufB operon by over 90%. Although this in vitro effect of EF-Tu could not be demonstrated in vivo, possibly because of a difference in higher-order structure between plasmid-borne and chromosome-borne DNA, it indicates that under certain conditions EF-Tu binds very specifically to the tRNA-tufB operon promoter or its upstream region.
Collapse
Affiliation(s)
- J H Van Delft
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Van Delft JH, Bosch L. Control of the tRNA-tufB operon in Escherichia coli. 3. Feedback inhibition of tufB expression by an EF-Tu with a deletion in the guanine-nucleotide-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:375-8. [PMID: 2456928 DOI: 10.1111/j.1432-1033.1988.tb14206.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The expression of tufB, one of the two EF-Tu-encoding genes in Escherichia coli, is under autogenous control. Feedback inhibition of tufB expression by plasmid-borne EF-Tu has been used to answer the question of whether or not the integrity of the guanine-nucleotide-binding domain of EF-Tu is required for the autoregulatory role of the factor protein. We show that a large deletion of tufB, causing the elimination of an 81-amino-acid segment from the plasmid-borne EF-Tu, does not abolish tufB repression. We conclude that the autoregulation of the cellular EF-Tu level is not dependent on an intact guanine-nucleotide-binding domain and does not require binding of GTP to EF-Tu. The repressor activity of the deletion derivative of EF-Tu can be measured despite a rapid disappearance of the (altered) mutant protein from the soluble cytoplasmic fraction of the cell. Degradation and assembly in larger complexes are responsible for this disappearance.
Collapse
Affiliation(s)
- J H Van Delft
- Department of Biochemistry, University of Leiden, The Netherlands
| | | |
Collapse
|
36
|
Van Delft JH, Verbeek HM, De Jong PJ, Schmidt DS, Talens A, Bosch L. Control of the tRNA-tufB operon in Escherichia coli. 1. rRNA gene dosage effects and growth-rate-dependent regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:355-62. [PMID: 2456926 DOI: 10.1111/j.1432-1033.1988.tb14204.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
'Ribosome feedback' effects on the expression of the genes specifying tRNA and EF-Tu in E. coli have been studied at increased rrnB doses (rRNA gene doses). We confirm previous observations that the introduction into the cell of a multicopy plasmid carrying the rrnB operon reduces the cellular content of most tRNAs, including those encoded by the tRNA-tufB operon, but leaves the 5S rRNA content unaffected. Increase of the dosage of intact, but not of deleted rRNA genes, causes a slight drop in total EF-Tu that can be fully accounted for by a decrease in EF-TuB level. The drop in EF-TuB content (approx. 25%) is much smaller than that in tRNA content (approx. 80%). The synthesis rate of total EF-Tu is hardly affected, indicating that the turnover of EF-Tu has not changed. The ratio of tRNA over tuf RNA synthesis rates remains the same after elevation of rrnB dosage. Considering the large decrease in tRNA content this means that both RNA synthesis rates decrease to approximately the same extent. The relatively small drop in EF-Tu synthesis must be due, therefore, to an enhancement of the number of EF-Tu molecules synthesized per mRNA molecule. Apparently a post-transcriptional mechanism, regulating EF-Tu synthesis, becomes operative under these conditions. Growth-rate-dependent regulation of the tRNA-tufB operon has been studied using lysogens carrying tRNA':lacZ and tRNA-tufB':lacZ operon fusions and a tufB':lacZ' gene fusion. These experiments show that the cellular contents of tRNA, tufB RNA and EF-TuB vary in direct proportion to the growth rate. This indicates that growth rate control of tRNA-tufB operon transcription resembles that of stable RNA operons and not of r-protein operons, and that the read-through of the terminator at the end of the tRNA gene cluster remains unaltered.
Collapse
Affiliation(s)
- J H Van Delft
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
van Delft JH, Mariñon B, Schmidt DS, Bosch L. Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination. Nucleic Acids Res 1987; 15:9515-30. [PMID: 3317280 PMCID: PMC306485 DOI: 10.1093/nar/15.22.9515] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Signals setting the level of transcription of the tRNA-tufB operon have been studied by deletion mapping. TufB transcription was measured in vivo with plasmid-borne tRNA-tufB:galk operon fusions. Removal of the sequences from -133 to -58 with respect to the transcription start point, results in a 90% decrease of tufB transcription. This demonstrates the presence of a region, upstream of the tRNA-tufB promoter, that enhances the expression of the operon. DNA fragments bearing this upstream activator region do not display an abnormal electrophoretic mobility, as has been observed for the rrnB P1 upstream activator. Deletions starting in the first tRNA gene and directing towards tufB reveal at least two sites that influence tufB transcription. One signals transcription termination in the intergenic region between thrT and tufB. The other may be involved in antitermination. Possible mechanisms underlying antitermination and termination are considered in the light of the nucleotide sequence.
Collapse
Affiliation(s)
- J H van Delft
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Van Delft JH, Schmidt DS, Bosch L. The tRNA-tufB operon transcription termination and processing upstream from tufB. J Mol Biol 1987; 197:647-57. [PMID: 2448475 DOI: 10.1016/0022-2836(87)90471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two genes, tufA and tufB, located at 73 and 88 minutes of the Escherichia coli linkage map, code for the polypeptide chain elongation factor EF-Tu. tufB is transcribed with four upstream tRNA genes, thrU, tyrU, glyT and thrT, into a cotranscript of approximately 1800 nucleotides. Here we show that in vivo processing yields a 1320 nucleotide transcript of tufB. S1 nuclease fine mapping reveals that the processing site is located in the intergenic region at about 72 to 74 nucleotides upstream from the initiation codon of the tufB cistron. A deletion in the cloned tRNA-tufB operon, encompassing the 3' half of thrU, the complete tyrU, glyT, thrT genes and ten nucleotides of the intergenic region, causes a threefold increase of the rate of plasmid tufB transcription, a fourfold increase of plasmid-borne tufB RNA and a twofold increase of plasmid-borne EF-TuB. We conclude that the deletion has eliminated a transcription termination site probably located after the thrT gene. Termination at this site uncouples tRNA synthesis from tufB transcription.
Collapse
Affiliation(s)
- J H Van Delft
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | |
Collapse
|
39
|
Tapio S, Kurland CG. Mutant EF-Tu increases missense error in vitro. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:186-8. [PMID: 3540529 DOI: 10.1007/bf02428051] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the consequences of mutational alteration in the structure of EF-Tu on the missense errors and proofreading activity of bacterial ribosomes in vitro. Our data show that the EF-Tu Bo mutant form of EF-Tu (van der Meide et al. 1983a) is inactive in polypeptide synthesis on the ribosome, even though it binds aminoacyl-tRNA. A second mutant form, EF-Tu Ar (van der Meide et al. 1983a), is active in polypeptide synthesis but supports a much higher messense incorporation with either leucine isoacceptor 2 or leucine isoacceptor 4 in the in vitro system. Further analysis of the kinetic basis of this enhanced missense frequency revealed that the mutation responsible for the alteration in EF-Tu Ar increases the errors at both the proofreading step and the initial selection. In this respect the effect of this particular mutation is similar to the mode of action of the antibiotic kanamycin (Jelenc and Kurland 1984).
Collapse
|
40
|
Looman AC, Bodlaender J, de Gruyter M, Vogelaar A, van Knippenberg PH. Secondary structure as primary determinant of the efficiency of ribosomal binding sites in Escherichia coli. Nucleic Acids Res 1986; 14:5481-97. [PMID: 3526283 PMCID: PMC311554 DOI: 10.1093/nar/14.13.5481] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using a previously described vector (pKL203) we fused several heterologous ribosomal binding sites (RBSs) to the lacZ gene of E. coli and then studied the variation in expression of the fusions. The RBSs originated from bacteriophage Q beta and MS2 genes and the E. coli genes for elongation factor EF-Tu A and B and ribosomal protein L11 (rplK). The synthesis of the lacZ fusion proteins was measured by an immuno precipitation method and found to vary at least 100-fold. Lac-specific mRNA synthesis follows the variation in protein production. It appears that there is a correlation between the efficiency of an RBS to function in the expression of the fused gene and the lack of secondary structure, involving the Shine and Dalgarno nucleotides (SDnts) and/or the initiation codon. This efficiency is context dependent. The sequence of the SD nts and the length and sequence of the spacer region up to the initiation codon alone are not able to explain our results. Deletion mutations, created in the phage Q beta replicase RBS, reveal a complex pattern of control of expression, probably involving the use of a "false" initiation site.
Collapse
|
41
|
Looman AC, van Knippenberg PH. Effects of GUG and AUG initiation codons on the expression of lacZ in Escherichia coli. FEBS Lett 1986; 197:315-20. [PMID: 2419166 DOI: 10.1016/0014-5793(86)80349-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have replaced the ribosomal binding site (RBS) of the lacZ gene of E. coli by those of the maturation (A) gene of phage MS2 and that of the tufA gene. Both RBSs contain a GUG initiation codon. The expression with the tufA RBS is at least 25-fold higher than with the phage RBS. Changing the GUG into AUG results in a 3-fold increase in expression in both cases. In general, higher expression is accompanied by an increase of lac-specific mRNA. It is argued that this is a consequence of the more efficient translation of the mRNA.
Collapse
|
42
|
Hughes D. The isolation and mapping of EF-Tu mutations in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1986; 202:108-11. [PMID: 3515126 DOI: 10.1007/bf00330525] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first isolation of EF-Tu mutations in Salmonella typhimurium is reported. The mutations were isolated by selecting for resistance to the antibiotic mocimycin (= kirromycin). The mocimycin resistant phenotype is the result of mutations in each of two genes, tufA and tufB. Strains mutant in only one of the two tuf genes are sensitive to mocimycin. The spontaneous mutation rate of each of the two tuf genes to a mocimycin resistant phenotype differs by an order of magnitude. tufA maps at minute 71-72, closely linked to rpsL. tufB maps at minute 88-89, closely linked to rpoB. These map positions correspond to the locations of tufA and tufB in E. coli.
Collapse
|
43
|
Novel Functions of EF-Tu during Polypeptide Synthesis and tuf Gene Expression. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/978-1-4612-4884-2_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Bosch L, Kraal B, van Noort JM, van Delft J, Talens A, Vijgenboom E. Novel RNA interactions with the elongation factor EF-Tu: consequences for protein synthesis and tuf gene expression. Trends Biochem Sci 1985. [DOI: 10.1016/0968-0004(85)90171-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
Probes derived from the tufA gene of Escherichia coli have been utilized to detect homologous sequences on Spirulina platensis DNA. A 6-kilobase-pair fragment of S. platensis DNA appears to contain two sequences homologous to the E. coli gene. Thus, as reported for gram-negative bacteria, the cyanobacterium presumably contains two tuf genes.
Collapse
|
46
|
Schilstra MJ, Slot JW, van der Meide PH, Posthuma G, Cremers AF, Bosch L. Immunocytochemical localization of the elongation factor Tu in E. coli cells. FEBS Lett 1984; 165:175-9. [PMID: 6363121 DOI: 10.1016/0014-5793(84)80164-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The localization of the elongation factor Tu (EF-Tu) in ultrathin cryosections of E. coli cells was determined with the electron microscope using a highly specific immunological labelling technique. EF-Tu is distributed almost homogeneously throughout the cytoplasm. Although it has often been suggested that EF-Tu could be part of a putative prokaryotic cytoskeleton, we did not find any evidence for supramolecular assemblies, such as fibres or filaments, containing a large amount of EF-Tu. EF-Tu was not observed in association with the outer cell membrane and periplasmic space. A topological relationship with the inner membrane is not apparent in our micrographs. In cells in which the EF-Tu level is raised significantly, the protein piles up in discrete cell regions.
Collapse
|
47
|
van Hemert FJ, Lenstra JA, Möller W. Genes for elongation factor EF-1 alpha in the brine shrimp Artemia. FEBS Lett 1983; 157:295-9. [PMID: 6688052 DOI: 10.1016/0014-5793(83)80564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A plasmid carrying a cDNA sequence coding for elongation factor EF-1 alpha from Artemia was used to probe blots of mRNA and chromosomal DNA from Artemia. A messenger length for EF-1 alpha corresponding to 1850 nucleotides was found. Southern blots pointed to a limited number (1-4) of genes, coding for EF-1 alpha. From an Artemia gene library a recombinant phage was isolated, which contains genomic sequences of EF-1 alpha. S1-nuclease mapping indicated the presence of intervening sequences within this cloned gene.
Collapse
|
48
|
van der Meide PH, Kastelein RA, Vijgenboom E, Bosch L. tuf gene dosage effects on the intracellular concentration of EF-TuB. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 130:409-17. [PMID: 6337848 DOI: 10.1111/j.1432-1033.1983.tb07167.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this paper we have studied the effect of raising the intracellular EF-Tu concentration on the expression of tufB. To this aim cells were transformed with multicopy plasmids carrying either tufA or tufB. The intracellular EF-Tu concentrations were determined by the specific immunoelectrophoresis assay described in the preceding paper in this journal. We have cloned the tufA gene in a plasmid, containing the powerful major leftward promoter (PL) of phage lambda. Transcription from PL can be repressed at low temperature by a temperature-sensitive repressor and activated by heat induction. Cloning occurred in two orientations in a single EcoRI site about 150 base pairs downstream of PL. Cells carrying either plasmid were shown to contain an almost doubled amount of EF-Tu at temperatures from 28 degrees C to 37 degrees C. This indicates that transcription of tufA can proceed from a possible binding site for RNA polymerase on these cloned fragments. The EF-Tu level was further increased to about 30% of total cellular protein after a temperature shift from 37 degrees C to 43 degrees C. The multicopy plasmid pTuB1 described by Miyajima et al. [FEBS Lett. 102, 207-210 (1979)] and a derivative (pTuBo, compare preceding paper in this journal) were used to study the expression of both chromosomal and plasmid-borne tufB. Transformation with either plasmid raised the intracellular EF-Tu concentration by 30-60% depending on the nutritional conditions. Suppression of tufB expression was observed when the intracellular level of EF-Tu increased after transformation with all plasmids mentioned above. The results are in accord with the concept that EF-Tu acts as an autogenous feedback inhibitor involved in the regulation of tufB.
Collapse
|
49
|
Bosch L, Kraal B, Van der Meide PH, Duisterwinkel FJ, Van Noort JM. The elongation factor EF-Tu and its two encoding genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1983; 30:91-126. [PMID: 6364232 DOI: 10.1016/s0079-6603(08)60684-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|