1
|
Nirschl JJ, Magiera MM, Lazarus JE, Janke C, Holzbaur ELF. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons. Cell Rep 2016; 14:2637-52. [PMID: 26972003 PMCID: PMC4819336 DOI: 10.1016/j.celrep.2016.02.046] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/08/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, 91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, 91405 Orsay, France
| | - Jacob E Lazarus
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, 91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, 91405 Orsay, France
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Braeckman BP, Houthoofd K, Vanfleteren JR. Patterns of metabolic activity during aging of the wild type and longevity mutants of Caenorhabditis elegans. J Am Aging Assoc 2013; 23:55-73. [PMID: 23604840 DOI: 10.1007/s11357-000-0007-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At least three mechanisms determine life span in Caenorhabditis elegans. An insulin-like signaling pathway regulates dauer diapause, reproduction and longevity. Reduction-or loss-of-function mutations in this pathway can extend longevity substantially, suggesting that the wild-type alleles shorten life span. The mutations extend life span by activating components of a dauer longevity assurance program in adult life, resulting in altered metabolism and enhanced stress resistance. The Clock (Clk) genes regulate many temporal processes, including life span. Mutation in the Clk genes clk-1 and gro-1 mildly affect energy production, but repress energy consumption dramatically, thereby reducing the rate of anabolic metabolism and lengthening life span. Dietary restriction, either imposed by mutation or by the culture medium increases longevity and uncovers a third mechanism of life span determination. Dietary restriction likely elicits the longevity assurance program. There is still uncertainty as to whether these pathways converge on daf-16 to activate downstream longevity effector genes such as ctl-1 and sod-3. There is overwhelming evidence that the interplay between reactive oxygen species (ROS) and the capacity to resist oxidative stress controls the aging process and longevity. It is as yet not clear whether metabolic homeostasis collapses with age as a direct result of ROS-derived damage or is selectively repressed by longevity-determining genes. The dramatic decline of protein turnover during senescence results in the accumulation of altered enzymes and in a gradual decline of metabolic performance eventually followed by fatal failure of the system.
Collapse
Affiliation(s)
- B P Braeckman
- Department of Biology, University of Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
3
|
Brower CS, Piatkov KI, Varshavsky A. Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell 2013; 50:161-71. [PMID: 23499006 DOI: 10.1016/j.molcel.2013.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Protein aggregates are a common feature of neurodegenerative syndromes. Specific protein fragments were found to be aggregated in disorders including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Here, we show that the natural C-terminal fragments of Tau, TDP43, and α-synuclein are short-lived substrates of the Arg/N-end rule pathway, a processive proteolytic system that targets proteins bearing "destabilizing" N-terminal residues. Furthermore, a natural TDP43 fragment is shown to be metabolically stabilized in Ate1(-/-) fibroblasts that lack the arginylation branch of the Arg/N-end rule pathway, leading to accumulation and aggregation of this fragment. We also found that a fraction of Aβ42, the Alzheimer's disease-associated fragment of APP, is N-terminally arginylated in the brains of 5xFAD mice and is degraded by the Arg/N-end rule pathway. The discovery that neurodegeneration-associated natural fragments of TDP43, Tau, α-synuclein, and APP can be selectively destroyed by the Arg/N-end rule pathway suggests that this pathway counteracts neurodegeneration.
Collapse
Affiliation(s)
- Christopher S Brower
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
4
|
Kato C, Miyazaki K, Nakagawa A, Ohira M, Nakamura Y, Ozaki T, Imai T, Nakagawara A. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 2004; 112:365-75. [PMID: 15382060 DOI: 10.1002/ijc.20431] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma (NBL), one of the most common childhood solid tumors, has a distinct nature in different prognostic subgroups. However, the precise mechanism underlying this phenomenon remains largely unknown. To understand the molecular and genetic bases of neuroblastoma, we have generated its cDNA libraries and identified a human ortholog of tubulin tyrosine ligase gene (hTTL/Nbla0660) as a differentially expressed gene at high levels in a favorable subset of the tumor. Tubulin is subjected to several types of evolutionarily conserved posttranslational modification, including tyrosination and detyrosination. Tubulin tyrosine ligase catalyzes ligation of the tyrosine residue to the COOH terminus of the detyrosinated form of alpha-tubulin. The measurement of hTTL mRNA expression in 74 primary neuroblastomas by quantitative real-time reverse transcription-PCR revealed that its high expression was significantly associated with favorable stages (1, 2 and 4s; p = 0.0069), high TrkA expression (p = 0.002), a single copy of MYCN (p < 0.00005), tumors found by mass screening (p = 0.0042), nonadrenal origin (p = 0.0042) and good prognosis (p = 0.023). The log-rank test showed that high expression of hTTL was an indicator of favorable prognosis (p = 0.026). Immunohistochemical analysis using specific antibodies generated by us demonstrated that tyrosinated tubulin (Tyr-tubulin), detyrosinated tubulin (Glu-tubulin) and hTTL as well as Delta2-tubulin were positive in favorable tumors, whereas only Delta2-tubulin was positive in the tumors with MYCN amplification. In an RTBM1 neuroblastoma cell line, hTTL was increased after treating the cells with bone morphogenetic protein 2 (BMP2) or all-trans retinoic acid (RA), which induced neuronal differentiation. These results suggest that the deregulated tubulin tyrosination/detyrosination cycle caused by decreased expression of hTTL is associated with inhibition of neuronal differentiation and enhancement of cell growth in the primary neuroblastomas with poor outcome.
Collapse
Affiliation(s)
- Chiaki Kato
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kron M, Petridis M, Milev Y, Leykam J, Härtlein M. Expression, localization and alternative function of cytoplasmic asparaginyl-tRNA synthetase in Brugia malayi. Mol Biochem Parasitol 2003; 129:33-9. [PMID: 12798504 DOI: 10.1016/s0166-6851(03)00080-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (AARS) are a family of enzymes that exhibit primary and various secondary functions in different species. In Brugia malayi, the gene for asparaginyl-tRNA synthetase (AsnRS), a class II AARS, previously has been identified as a multicopy gene encoding an immunodominant antigen in the serum of humans with lymphatic filariasis. However, the relative level of expression and alternative functions of AARS in nematode parasites is not well understood. We searched the Filarial Genome Project database to identify the number and amino acid specificity of B. malayi AARS cDNAs to gain insight into the role of different AARS in filaria. These data showed that cytoplasmic AsnRS was present in five gene clusters, and is the most frequently represented member of the aminoacyl-tRNA synthetase family in adult B. malayi. The relative level of AsnRS transcribed in adult female B. malayi was compared to the levels of a low abundance and medium abundance AARS by quantitative real-time RT-PCR. By this method, AsnRS cDNA was 11 times greater than arginyl-tRNA synthetase and methionyl-tRNA synthetase cDNA. In situ hybridization using a B. malayi AsnRS-specific oligonucleotide probe identified abundant cytoplasmic mRNA, particularly in the hypodermis of adult B. malayi. In the absence of tRNA, AsnRS synthesizes diadenosine triphosphate, a potent regulator of cell growth in other eukaryotes. These data support the hypothesis that all AARS are not equally expressed in B. malayi and that these enzymes may demonstrate important alternative functions in filaria.
Collapse
Affiliation(s)
- Michael Kron
- Department of Medicine, Michigan State University, B323 Life Science Building, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Tubulin normally undergoes a cycle of detyrosination/tyrosination on the carboxy terminus of its alpha-subunit and this results in subpopulations of tyrosinated tubulin and detyrosinated tubulin. Brain tubulin preparations also contain a third major tubulin subpopulation which is non-tyrosinatable. This review describes the purification and the structural characterization of non-tyrosinatable tubulin. This tubulin variant lacks a carboxyterminal glutamyl-tyrosine group on its alpha-subunit (delta2-tubulin). Delta2-tubulin is generated from detyrosinated tubulin through an irreversible reaction. Delta2-tubulin accumulates in neurons and in stable microtubule assemblies. It also accumulates in some tumor cells due to the frequent loss of tubulin tyrosine ligase in such cells. Delta2-tubulin may be a useful marker of malignancy in human tumors.
Collapse
Affiliation(s)
- L Lafanechère
- Laboratoire du Cytosquelette, INSERM U366, DBMS, Commissariat à l'Energie Atomique/Grenoble, France.
| | | |
Collapse
|
7
|
Lafanechère L, Courtay-Cahen C, Kawakami T, Jacrot M, Rüdiger M, Wehland J, Job D, Margolis RL. Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 1998; 111 ( Pt 2):171-81. [PMID: 9405300 DOI: 10.1242/jcs.111.2.171] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The C terminus of the tubulin alpha-subunit of most eukaryotic cells undergoes a cycle of tyrosination and detyrosination using two specific enzymes, a tubulin tyrosine ligase (TTL) and a tubulin carboxypeptidase. Although this enzyme cycle is conserved in evolution and exhibits rapid turnover, the meaning of this modification has remained elusive. We have isolated several NIH-3T3 derived clonal cell lines that lack TTL (TTL-). TTL- cells contain a unique tubulin isotype (delta2-tubulin) that can be detected with specific antibodies. When injected into nude mice, both TTL- cells and TTL- cells stably transfected with TTL cDNA form sarcomas. But in tumors formed from TTL rescued cells, TTL is systematically lost during tumor growth. A strong selection process has thus acted during tumor growth to suppress TTL activity. In accord with this result, we find suppression of TTL activity in the majority of human tumors assayed with delta2-tubulin antibody. We conclude there is a widespread loss of TTL activity during tumor growth in situ, suggesting that TTL activity may play a role in tumor cell regulation.
Collapse
Affiliation(s)
- L Lafanechère
- Laboratoire du Cytosquelette, INSERM U366, DBMS, Commisariat a l'Energie Atomique/Grenoble, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- S I Rattan
- Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
9
|
Rüdiger M, Wehland J, Weber K. The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:309-20. [PMID: 7510228 DOI: 10.1111/j.1432-1033.1994.tb18627.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ATP-dependent tubulin-tyrosine ligase (TTL) restores the carboxy-terminal tyrosine of alpha tubulin in alpha beta tubulin that has been previously detyrosinated. Here we show that the carboxy-terminal tetradecapeptide of detyrosinated alpha tubulin is used by TTL as a substrate, albeit at 50-fold lower efficiency than alpha beta tubulin. The minimal system provided by the TTL/peptide combination mirrors the TTL/tubulin system in all aspects tested, and shows a pronounced substrate inhibition. Synthetic peptides varying in length and/or containing single amino acid replacements were used to analyze the TTL specificity for the carboxy-terminal sequence of detyrosinated alpha tubulin. Peptides ending like alpha tubulin with the sequence Gly-Glu-Glu are optimally tyrosinated once a peptide length of 12 residues is reached. Position -1 of this recognition sequence, to which the tyrosine is added, must be glutamic acid. Position -2 accepts only an acidic amino acid but glutamic acid is by far preferred over aspartic acid. These results explain why a subpopulation of brain alpha tubulin, which ends with the sequence Gly-Glu, is not tyrosinated by TTL. The carboxy-terminal dodecapeptide of brain alpha tubulin with its polyglutamyl side-chain on position -6 shows the same substrate activity as the corresponding synthetic peptide lacking the side-chain. We discuss the substrate specificity of TTL for different alpha tubulins and speculate why tubulin is a better substrate than the optimal peptide covering the carboxy-terminal of detyrosinated alpha tubulin.
Collapse
Affiliation(s)
- M Rüdiger
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Göttingen, Germany
| | | | | |
Collapse
|
10
|
Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K. Characterization of the tubulin-tyrosine ligase. J Cell Biol 1993; 120:725-32. [PMID: 8093886 PMCID: PMC2119537 DOI: 10.1083/jcb.120.3.725] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sequence of tubulin-tyrosine ligase (TTL), the enzyme catalyzing the ATP-dependent posttranslational addition of a tyrosine to the carboxyterminal end of detyrosinated alpha-tubulin, has been determined. TTL from bovine and porcine brain was purified by immunoaffinity chromatography and extensively characterized by protein sequencing. Oligonucleotides derived from the protein sequence were synthesized and partial cDNA sequences were obtained using reversed transcribed brain mRNA in polymerase chain reactions. Polymerase chain reaction fragments were used to isolate a full-length cDNA clone from a randomly primed lambda gt10 cDNA library obtained from embryonic porcine brain mRNA. Porcine TTL is encoded by 1,137 nucleotides corresponding to 379 amino acid residues. It has a molecular weight of 43,425 and a calculated isoelectric point of 6.51. Northern blot analysis revealed a surprisingly long mRNA (approximately 6 kb in embryonic porcine brain). The protein sequence of TTL shares no extended homology with the sequences in the data banks. TTL contains a potential serine phosphorylation site for cAMP-dependent protein kinase (RKAS at positions 73 to 76). Residues 244 to 258 lie at the surface of the molecule. A rabbit antibody raised against a synthetic peptide corresponding to this sequence binds to native TTL. The same sequence contains the cleavage site for endoproteinase Glu-C (residue 248) previously shown to convert TTL into a nicked derivative in which the two fragments still form a tight complex but don't display enzymatic activity.
Collapse
Affiliation(s)
- K Ersfeld
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Rubin B, Anderson S, Xing L, Powell R, Tate W. Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54219-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Bulinski JC, Gundersen GG. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 1991; 13:285-93. [PMID: 1892478 DOI: 10.1002/bies.950130605] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review discusses the possible role of alpha-tubulin detyrosination, a reversible post-translational modification that occurs at the protein's C-terminus, in cellular morphogenesis. Higher eukaryotic cells possess a cyclic post-translational mechanism by which dynamic microtubules are differentiated from their more stable counterparts; a tubulin-specific carboxypeptidase detyrosinates tubulin protomers within microtubules, while the reverse reaction, tyrosination, is performed on the soluble protomer by a second tubulin-specific enzyme, tubulin tyrosine ligase. In general, the turnover of microtubules in undifferentiated, proliferating cells is so rapid that the microtubules accumulate very little detyrosinated tubulin; that is, they are enriched in tyrosinated tubulin. However, an early event common to at least three well-studied morphogenetic events--myogenesis, neuritogenesis, and directed cell motility--is the elaboration of a polarized array of stable microtubules that become enriched in detyrosinated tubulin. The formation of this specialized array of microtubules in specific locations in cells undergoing morphogenesis suggests that it plays an important role in generating cellular asymmetries.
Collapse
Affiliation(s)
- J C Bulinski
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032
| | | |
Collapse
|
13
|
Webster DR, Wehland J, Weber K, Borisy GG. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Biophys Biochem Cytol 1990; 111:113-22. [PMID: 1973168 PMCID: PMC2116167 DOI: 10.1083/jcb.111.1.113] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The relationship between alpha tubulin detyrosination and microtubule (MT) stability was examined directly in cultured fibroblasts by experimentally converting the predominantly tyrosinated MT array to a detyrosinated (Glu) array and then assaying MT stability. MTs in mouse Swiss 3T3 cells displayed an increase in Glu immunostaining fluorescence approximately 1 h after microinjecting antibodies to the tyrosinating enzyme, tubulin tyrosine ligase. Detyrosination progressed to virtual completion after 12 h and persisted for 30-35 h before tyrosinated subunits within MTs were again detected. The stability of these experimentally detyrosinated MTs was tested by first injecting either biotinylated or Xrhodamine-labeled tubulin and then measuring bulk turnover by hapten-mediated immunocytochemistry or fluorescence recovery after photobleaching, respectively. By both methods, turnover was found to be similarly rapid, possessing a half time of approximately 3 min. As a final test of MT stability, the level of acetylated tubulin staining in antibody-injected cells was compared with that observed in adjacent, uninjected cells and also with the staining observed in cells whose MTs had been stabilized with taxol. Although intense Glu staining was observed in both injected and taxol-treated cells, increased acetylated tubulin staining was observed only in the taxol-stabilized MTs, indicating that the MTs were not stabilized by detyrosination. Together, these results demonstrated clearly that detyrosination does not directly confer stability on MTs. Therefore, the stable MTs observed in these and other cell lines must have arisen by another mechanism, and may have become posttranslationally modified after their stabilization.
Collapse
Affiliation(s)
- D R Webster
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
14
|
Warn RM, Harrison A, Planques V, Robert-Nicoud N, Wehland J. Distribution of microtubules containing post-translationally modified alpha-tubulin during Drosophila embryogenesis. CELL MOTILITY AND THE CYTOSKELETON 1990; 17:34-45. [PMID: 2121376 DOI: 10.1002/cm.970170106] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of microtubules (MTs) enriched in detyrosinated alpha-tubulin (Glu-tubulin) was studied in Drosophila embryos by immunofluorescence microscopy by using a monoclonal antibody (ID5) which was raised against a 14-residue synthetic peptide spanning the carboxyterminal sequence of Glu-tubulin (Wehland and Weber: J. Cell Sci. 88:185-203, 1987). While all MT arrays contained tyrosinated alpha-tubulin (Tyr-tubulin), MTs rich in Glu-tubulin were not found during early stages of development even by using an image intensification camera. Elevated levels of microtubular Glu-tubulin were first detected after CNS condensation in neurone processes. In addition, sperm tails, which remained remarkably stable inside the embryo until late stages of development, were decorated by ID5. This was in marked contrast to the distribution of microtubule arrays containing acetylated alpha-tubulin, which could already be detected during the cellular blastoderm stage. Additional experiments with taxol suggested that the absence of MTs rich in Glu-tubulin during early stages of development was not due to the rapid turnover rate of MTs, which would be too fast for alpha-tubulin to be detyrosinated. The possible significance of the differential detyrosination and acetylation of microtubules during development is discussed.
Collapse
Affiliation(s)
- R M Warn
- School of Biological Sciences, University of East Anglia, Norwich, England
| | | | | | | | | |
Collapse
|
15
|
Alonso AC, Arce CA, Barra HS. Relationship between the tyrosination state of tubulin and the activities of tubulin:tyrosine ligase and tubulin carboxypeptidase in rat muscle during development. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:517-22. [PMID: 3197717 DOI: 10.1111/j.1432-1033.1988.tb14403.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tubulin can be post-translationally modified by the incorporation or the release of a tyrosine residue at the COOH-terminus of the alpha subunit. The present study demonstrates that rat muscle soluble preparations contain tubulin carboxypeptidase besides tubulin:tyrosine ligase. The state of tyrosination of tubulin and the activities of both the ligase and the carboxypeptidase were examined in rat muscle during development. The proportion of tyrosinated tubulin with respect to tyrosinable tubulin (tyrosinated plus detyrosinated tubulin) decreased from 83% (new-born rats) to 28% (adult rats) with the corresponding increase in detyrosinated tubulin. The activities of the enzymes decreased continuously and in a near parallel fashion during development. These results indicate that the changes in the tyrosination state of tubulin can not be explained merely by changes in the enzyme activities. We also compared the ability of rat muscle and brain [14C]tyrosinated tubulin to act as substrate of the carboxypeptidase. Muscle tubulin was found to be a less efficient substrate than brain tubulin.
Collapse
Affiliation(s)
- A C Alonso
- Centro de Investigaciones en Química Biológica de Córdoba, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
16
|
Abstract
Tubulin can be posttranslationally modified at the carboxyl terminus of the alpha-subunit by the addition or release of a tyrosine residue. These reactions involve two enzymes, tubulin: tyrosine ligase and tubulin carboxypeptidase. The tyrosine incorporation reaction has been described mainly in nervous tissue but it has also been found in a great variety of tissues and different species. Molecular aspects of the reactions catalyzed by these enzymes are at present well known, especially the reaction carried out by the ligase. Several lines of evidence indicate that assembled tubulin is the preferred substrate of the carboxypeptidase, whereas nonassembled tubulin is preferred by the ligase. Apparently this posttranslational modification does not affect the capacity of tubulin to form microtubules but it generates microtubules with different degrees of tyrosination. Variation in the content of the carboxyterminal tyrosine of alpha-tubulin as well as changes in the activity of the ligase and the carboxypeptidase are manifested during development. Changes in the cellular microtubular network modify the turnover of the carboxyterminal tyrosine of alpha-tubulin. Different subsets of microtubules with different degrees of tyrosination have been detected in interphase cells and during the mitotic cycle. Data from biochemical, immunological, and genetic studies have been compiled in this review; these are presented, with pertinent comments, with the hope of facilitating the comprehension of this particular aspect of the microtubule field.
Collapse
Affiliation(s)
- H S Barra
- Centro de Investigaciones en Químíca Biológica de Córdoba, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
17
|
Rapaport E, Remy P, Kleinkauf H, Vater J, Zamecnik PC. Aminoacyl-tRNA synthetases catalyze AMP----ADP----ATP exchange reactions, indicating labile covalent enzyme-amino-acid intermediates. Proc Natl Acad Sci U S A 1987; 84:7891-5. [PMID: 2960970 PMCID: PMC299441 DOI: 10.1073/pnas.84.22.7891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aminoacyl-tRNA synthetases (amino acid-tRNA ligases, EC 6.1.1.-) catalyze the aminoacylation of specific amino acids onto their cognate tRNAs with extraordinary accuracy. Recent reports, however, indicate that this class of enzymes may play other roles in cellular metabolism. Several aminoacyl-tRNA synthetases are herein shown to catalyze the AMP----ADP and ADP----ATP exchange reactions (in the absence of tRNAs) by utilizing a transfer of the gamma-phosphate of ATP to reactive AMP and ADP intermediates that are probably the mixed anhydrides of the nucleotide and the corresponding amino acid. AMP and ADP produce active intermediates with amino acids by entering the back-reaction of amino acid activation, reacting with labile covalent amino acid-enzyme intermediates. Gramicidin synthetases 1 and 2, which are known to activate certain amino acids through the formation of intermediate thiol-esters of the amino acids and the enzymes, catalyze the same set of reactions with similar characteristics. Several lines of evidence suggest that these activities are an inherent part of the enzymatic reactions catalyzed by the aminoacyl-tRNA synthetases and gramicidin synthetases and are not due to impurities of adenylate kinase, NDP kinase, or low levels of tRNAs bound to the enzymes. The covalent amino acid-enzyme adducts are likely intermediates in the aminoacylation of their cognate tRNAs. The use of gramicidin synthetases has thus helped to illuminate mechanistic details of amino acid activation catalyzed by the aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- E Rapaport
- Department of Microbiology, Boston University School of Medicine, MA 02118
| | | | | | | | | |
Collapse
|
18
|
Wehland J, Weber K. Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two-domain structure of the enzyme. J Cell Biol 1987; 104:1059-67. [PMID: 3558478 PMCID: PMC2114445 DOI: 10.1083/jcb.104.4.1059] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tubulin-tyrosine ligase and alpha beta-tubulin form a tight complex which is conveniently monitored by glycerol gradient centrifugation. Using two distinct ligase monoclonal antibodies, several subunit-specific tubulin monoclonal antibodies, and chemical cross-linking, a ligase-binding site was identified on beta-tubulin. This site is retained when the carboxy-terminal domains of both tubulin subunits are removed by subtilisin treatment. The ligase-tubulin complex is also formed when ligase is added to alpha beta-tubulin carrying the monoclonal antibody YL 1/2 which binds only to the carboxyl end of tyrosinated alpha-tubulin. The beta-tubulin-binding site described here explains the extreme substrate specificity of ligase, which does not act on other cellular proteins or carboxy-terminal peptides derived from detyrosinated alpha-tubulin. Differential accessibility of this site in tubulin and in microtubules seems to explain why ligase acts preferentially on unpolymerized tubulin. Ligase exposed to V8-protease is converted to a nicked derivative. This is devoid of enzymatic activity but still forms the complex with tubulin. Gel electrophoresis documents both 30- and a 14-kD domains, each which is immunologically and biochemically distinct and seems to cover the entire molecule. The two domains interact tightly under physiological conditions. The 30-kD domain carries the binding sites for beta-tubulin and ATP. The 14-kD domain can possibly form an additional part of the catalytic site as it harbors the epitope for the monoclonal antibody ID3 which inhibits enzymatic activity but not the formation of the ligase-tubulin complex.
Collapse
|
19
|
Sherwin T, Schneider A, Sasse R, Seebeck T, Gull K. Distinct localization and cell cycle dependence of COOH terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei. J Biophys Biochem Cytol 1987; 104:439-46. [PMID: 3546334 PMCID: PMC2114556 DOI: 10.1083/jcb.104.3.439] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
alpha-Tubulin can be posttranslationally modified in that its COOH-terminal amino acid residue, tyrosine, can be selectively removed and replaced again. This reaction cycle involves two enzymes, tubulin carboxypeptidase and tubulin tyrosine ligase. The functional significance of this unusual modification is unclear. The present study demonstrates that posttranslational tyrosinolation of alpha-tubulin does occur in the parasitic hemoflagellate Trypanosoma brucei brucei and that posttranslational tyrosinolation can be detected in both alpha-tubulin isoforms found in this organism. Trypanosomes contain a number of microtubular structures: the flagellar axoneme; the subpellicular layer of singlet microtubules which are closely associated with the cell membrane; the basal bodies; and a cytoplasmic pool of soluble tubulin. Tyrosinolated alpha-tubulin is present in all these populations. However, immunofluorescence studies demonstrate a distinct localization of tyrosinolated alpha-tubulin within individual microtubules and organelles. This localization is subject to a temporal modulation that correlates strongly with progress of a cell through the cell cycle. Our results indicate that the presence of tyrosinolated alpha-tubulin is a marker for newly formed microtubules.
Collapse
|
20
|
Sallafranque ML, Garret M, Benedetto JP, Fournier M, Labouesse B, Bonnet J. Tryptophanyl-tRNA synthetase is a major soluble protein species in bovine pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 882:192-9. [PMID: 3518805 DOI: 10.1016/0304-4165(86)90155-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Besides their central role in protein synthesis, aminoacyl-tRNA synthetases have been found or thought to be involved in other processes. We present here a study showing that tryptophanyl-tRNA synthetase has a surprising tissular distribution. Indeed, immunochemical determinations showed that in several bovine organs such as liver, kidney and heart, tryptophanyl-tRNA synthetase constitutes, as expected, about 0.02% of soluble proteins. In spleen, brain cortex, stomach, cerebellum or duodenum, this amount is about 10-times higher, and in pancreas it is 100-fold. There is no correlation between these amounts and the RNA content of the organs. Moreover, the concentration of another aminoacyl-tRNA synthetase (methionyl-tRNA synthetase) is higher in liver than in pancreas, while the amount of tRNATrp is not higher in pancreas than in liver as compared to other tRNAs. Among several interpretations, it is possible that tryptophanyl-tRNA synthetase is involved in a function other than tRNA aminoacylation. This unknown function would be specific to the differentiated organs, since fetal cerebellum and fetal pancreas contain the same amount of tryptophanyl-tRNA synthetase as adult liver.
Collapse
|
21
|
Rauhut R, Gabius HJ, Kühn W, Cramer F. Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)82146-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|