1
|
Rochaix JD, Kim C, Apel W. Klaus Apel (1942-2017): a pioneer of photosynthesis research. PHOTOSYNTHESIS RESEARCH 2018; 137:153-159. [PMID: 29453665 DOI: 10.1007/s11120-018-0488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
We present here a Tribute to Klaus Apel (1942-2017), a photosynthesis pioneer-an authority on plant molecular genetics-in five parts. The first section is a prologue. The second section deals with a chronological discussion of Apel's research life, prepared by the editor Govindjee; it is based on a website article at the Boyce Thompson Institute (BTI) by Patricia Waldron ( https://btiscience.org/explore-bti/news/post/bti-says-goodbye-klaus-apel/ ), as approved for use here by Keith C. Hannon and David Stern of BTI. The third section, which focuses on Apel's pioneering work on singlet oxygen-mediated EXECUTER-dependent signaling in plants, is written by two of us (J-DR and CK). The fourth section includes three selected reminiscences, one from BTI and two from ETH (Eidgenössische Technische Hochschule). This tribute ends with section five, which is a very brief presentation of Klaus Apel's personal life, by Wiebke Apel.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1205, Geneva, Switzerland.
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Wiebke Apel
- Hegemann Lab, Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| |
Collapse
|
2
|
Grimm R, Eckerskorn C, Lottspeich F, Schäfer E. Rapid Phosphorylation of H3 Histone in Isolated Nuclei of Barley (Hordeum vulgareL.). ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00196.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
|
4
|
Fluhr R, Kuhlemeier C, Nagy F, Chua NH. Organ-specific and light-induced expression of plant genes. Science 2010; 232:1106-12. [PMID: 17754498 DOI: 10.1126/science.232.4754.1106] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Light plays a pivotal role in the development of plants. The photoregulation of plant genes involves recognition of light quality and quantity by phytochrome and other light receptors. Two gene families, rbcS and Cab, which code for abundant proteins active in photosynthesis, the small subunit of ribulose bisphosphate carboxylase and the chlorophyll a/b binding protein, show a 20-to 50-fold increase in transcript abundance in the light. Analyses in calli and transgenic plants of deletions of the rbcS gene and of chimeric constructions has allowed localization of two regions involved in light-induced transcription. One element is confined to a 33-base pair region surrounding the TATA box. In addition, an enhancer-like element contained within a 240-base pair fragment can confer phytochrome-induced transcription and organ specificity on nonregulated promoters.
Collapse
|
5
|
Kaufman LS, Watson JC, Thompson WF. Light-regulated changes in DNase I hypersensitive sites in the rRNA genes of Pisum sativum. Proc Natl Acad Sci U S A 2010; 84:1550-4. [PMID: 16578799 PMCID: PMC304473 DOI: 10.1073/pnas.84.6.1550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the rDNA chromatin of Pisum sativum plants grown with or without exposure to light for the presence of DNase I hypersensitive sites and possible developmental changes in their distribution. Isolated nuclei from pea seedlings were incubated with various concentrations of DNase I. To visualize the hypersensitive sites, DNA purified from these nuclei was restricted and analyzed by gel blot hybridization. We find that several sites exist in both the coding and noncoding regions of rDNA repeating units. Several of the sites in the nontranscribed spacer region are present in the light but are absent in the dark. Conversely, the hypersensitive sites within the mature rRNA coding regions are present in the dark but absent in the light. There are two major length variants of the rRNA genes in P. sativum var. Alaska. The sites in the nontranscribed spacer region that appear during the light treatment occur only in the shorter of these two length variants in this cultivar.
Collapse
Affiliation(s)
- L S Kaufman
- Carnegie Institution of Washington, 290 Panama Street, Stanford, CA 94305
| | | | | |
Collapse
|
6
|
Marrs KA, Kaufman LS. Blue-light regulation of transcription for nuclear genes in pea. Proc Natl Acad Sci U S A 2010; 86:4492-5. [PMID: 16578843 PMCID: PMC287296 DOI: 10.1073/pnas.86.12.4492] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of many nuclear genes in plants is light regulated. Previous investigations have shown that the excitation of phytochrome can affect transcription rate and steady-state RNA levels for several of these genes. No direct demonstration of the effects of blue light has been reported. We have identified several nuclear genes in pea whose transcription rate and steady-state RNA levels are affected by a single pulse of blue light. Pea seedlings, grown in continuous red light to saturate any phytochrome response, were treated with a single pulse (10(3) mumol.m(-2)) of blue light 6 days after planting. The blue-light treatment resulted in an increase in the steady-state RNA level and rate of transcription for the Cab (chlorophyll a/b binding protein) gene family and a decrease in the steady-state RNA level and the rate of transcription for the gene families corresponding to cDNA clones pEA25 and pEA207. Changes in the rate of transcription for Cab and pEA207 are apparent within 3 hr of the blue-light treatment.
Collapse
Affiliation(s)
- K A Marrs
- University of Illinois at Chicago, Laboratory for Cell, Molecular and Developmental Biology, Department of Biological Sciences, Chicago, IL 60680
| | | |
Collapse
|
7
|
Aronsson H, Sundqvist C, Dahlin C. POR - import and membrane association of a key element in chloroplast development. PHYSIOLOGIA PLANTARUM 2003; 118:1-9. [PMID: 12702007 DOI: 10.1034/j.1399-3054.2003.00088.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of proplastids or etioplasts to chloroplast is visualized by the accumulation of chlorophyll in leaves of higher plants. The biosynthesis of chlorophyll includes a light-dependent reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This light-dependent step is catalysed by the nucleus-encoded NADPH:Pchlide oxidoreductase (POR, EC 1.6.99.1). POR is active within plastids and therefore has to be translocated over the plastid envelope membranes. The import of chloroplast proteins seems to follow a general import pathway using translocons at the outer and inner envelope membrane. POR cross-linking to Toc75, one of the major translocon components at the outer envelope membrane, indicates its use of the general import pathway. However, since variations exist within the so-called general import pathway one has to consider previous data suggesting a novel totally Pchlide-dependent import pathway of one POR isoform, PORA. The suggested Pchlide dependency of POR import is discussed since recent observations contradict this idea. In the stroma the POR transit peptide is cleaved off and the mature POR protein is targeted to the plastid inner membranes. The correct and stable association of POR to the membrane requires the cofactor NADPH. Functional activity of POR calls for formation of an NADPH-Pchlide-POR complex, a formation that probably takes place after the membrane association and is dependent on a phosphorylation reaction.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biology, Leicester University, University Road, Leicester, LE1 7RH, United Kingdom Department of Plant Physiology, Göteborg University, Box 461, SE-405 30 Göteborg, Sweden School of Business and Engineering, Halmstad University, Box 823, SE-301 18 Halmstad, Sweden
| | | | | |
Collapse
|
8
|
Lee SW, Hahn TR. Light-regulated differential expression of pea chloroplast and cytosolic fructose-1,6-bisphosphatases. PLANT CELL REPORTS 2003; 21:611-8. [PMID: 12789438 DOI: 10.1007/s00299-002-0563-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 10/30/2002] [Accepted: 11/02/2002] [Indexed: 05/24/2023]
Abstract
The light-regulated differential expression of pea chloroplast and cytosolic fructose-1,6-bisphosphatases (FBPase) was investigated using enzyme activity assay, immunoblot, and Northern blot analyses. The enzyme activities of both chloroplast and cytosolic FBPases gradually increased under continuous white light illumination, although the increase in chloroplast FBPase was more drastic. Northern and immunoblot analyses also indicated that light stimulated the expression of both enzymes. Enzyme activity and the transcript levels of both enzymes gradually decreased under the dark treatment, although protein levels were unchanged for up to 24 h following the initiation of culture in the dark, indicating that reversible modifications of the enzymes may occur during the transition from light to dark (or the reverse). Light pulse experiments using blue (420 nm) and red/far-red (660/730 nm) light were carried out to analyze the photoreceptors related to the light-mediated expression of both enzymes. Expression of the chloroplast enzyme was very sensitive to red or far-red light pulses-it was induced by red light, but suppressed by far-red light pulses, as determined by enzyme activity, immunoblot, and Northern blot analyses, suggesting that red light signaling is involved in the control of chloroplast FBPase expression. However, cytosolic FBPase was virtually insensitive to blue or red/far-red light pulses in terms of enzyme activity, as determined by protein and transcript levels, indicating that cytosolic enzyme expression is not directly regulated by light signals. Instead, the expression of the cytosolic enzyme may be closely related to photosynthetic energy conversion accompanied by continuous white light irradiation.
Collapse
Affiliation(s)
- S-W Lee
- Plant Metabolism Research Center, Kyung Hee University, 449-701 Suwon, Korea
| | | |
Collapse
|
9
|
Barnett LK, Clugston CK, Jenkins GI. Two phytochrome-mediated effects of light on transcription of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase in dark-grown pea (Pisum sativum
) plants. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)80471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Osuna D, Gálvez G, Pineda M, Aguilar M. RT-PCR cloning, characterization and mRNA expression analysis of a cDNA encoding a type II asparagine synthetase in common bean. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:75-85. [PMID: 10209260 DOI: 10.1016/s0167-4781(99)00016-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following a RT-PCR strategy based on the design of degenerate oligonucleotides resembling conserved domains of asparagine synthetase (AS; EC 6.3.5.4), we isolated a 2 kb cDNA clone (PVAS2) from root tissue of the common bean (Phaseolus vulgaris). PVAS2 encodes a protein of 584 amino acids with a predicted relative molecular mass of 65810 Da, an isoelectric point of 6.4, and a net charge of -7.2 at pH 7.0. The amino acid sequence of the protein encoded by PVAS2 is very similar to that encoded by the soybean SAS2 asparagine synthetase gene. The amino-terminal residues of the predicted PVAS2 protein are identical to the amino acids that constitute the glutamine-binding (GAT) domain of AS from other plant species, which suggests that the PVAS2 cDNA encodes a type II glutamine-dependent form of asparagine synthetase. Southern blot analysis indicates that the common bean AS is part of a small family composed of at least two genes. Expression analysis by Northern blot revealed that the PVAS2 transcript accumulates to a high level in roots and, to a lesser extent, in nodules and developing pods. Accumulation of the PVAS2 transcript in the root seems to be negatively regulated by light and sucrose, and positively regulated by nitrate.
Collapse
Affiliation(s)
- D Osuna
- Departamento de Bioquímica y Biología Molecular, e Instituto Andaluz de Biotecnología, Facultad de Ciencias, Universidad de Córdoba, Avda. San Alberto Magno, s/n. 14071, Córdoba, Spain
| | | | | | | |
Collapse
|
11
|
Abstract
In this review, we address the phylogenetic and structural relationships between light-responsive promoter regions from a range of plant genes, that could explain both their common dependence on specific photoreceptor-associated transduction pathways and their functional versatility. The well-known multipartite light-responsive elements (LREs) of flowering plants share sequences very similar to motifs in the promoters of orthologous genes from conifers, ferns, and mosses, whose genes are expressed in absence of light. Therefore, composite LREs have apparently evolved from cis-regulatory units involved in other promoter functions, a notion with significant implications to our understanding of the structural and functional organization of angiosperm LREs.
Collapse
Affiliation(s)
- Gerardo Arguello-Astorga
- Departamento de Ingenieria Genetica de Plantas, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, 36500 Mexico
| | | |
Collapse
|
12
|
Abstract
During this decade, there have been major advancements in the understanding of genetic loci involved in synthesis of the family of Mg-tetrapyrroles known as chlorophylls and bacteriochlorophylls. Molecular genetic analysis of Mg-tetrapyrrole biosynthesis was initiated by the performance of detailed sequence and mutational analysis of the photosynthesis gene cluster from Rhodobacter capsulatus. These studies provided the first detailed understanding of genes involved in bacteriochlorophyll a biosynthesis. In the short time since these studies were initiated, most of the chlorophyll biosynthesis genes have been identified by virtue of their ability to complement bacteriochlorophyll a biosynthesis mutants as well as by sequence homology comparisons. This review is centered on a discussion of our current understanding of bacterial, algal, and plant genes that code for enzymes in the Mg-branch of the tetrapyrrole biosynthetic pathway that are responsible for synthesis of chlorophylls and bacteriochlorophylls.
Collapse
Affiliation(s)
- J Y Suzuki
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
13
|
Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH. Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 1997; 16:2554-64. [PMID: 9184203 PMCID: PMC1169867 DOI: 10.1093/emboj/16.10.2554] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The plant photoreceptor phytochrome A utilizes three signal transduction pathways, dependent upon calcium and/or cGMP, to activate genes in the light. In this report, we have studied the phytochrome A regulation of a gene that is down-regulated by light, asparagine synthetase (AS1). We show that AS1 is expressed in the dark and repressed in the light. Repression of AS1 in the light is likely controlled by the same calcium/cGMP-dependent pathway that is used to activate other light responses. The use of the same signal transduction pathway for both activating and repressing different responses provides an interesting mechanism for phytochrome action. Using complementary loss- and gain-of-function experiments we have identified a 17 bp cis-element within the AS1 promoter that is both necessary and sufficient for this regulation. This sequence is likely to be the target for a highly conserved phytochrome-generated repressor whose activity is regulated by both calcium and cGMP.
Collapse
Affiliation(s)
- G Neuhaus
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains, and light induction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:708-18. [PMID: 9057836 DOI: 10.1111/j.1432-1033.1997.00708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ferredoxin (Fd)-dependent glutamate synthase is present in green leaves, etiolated leaves, shoots and roots of Arabidopsis thaliana (ecotype Columbia). In photosynthetic green leaves and shoots, Fd-dependent glutamate synthase accounts for more than 96% of the total glutamate synthase activity in vitro with the remaining activity derived from an enzyme that uses NADH as the electron donor. In etiolated leaves and roots, Fd-dependent glutamate synthase is 3-4-fold less active than in green leaves, but represents 70-85% of the total glutamate synthase activity in these tissues. Fd-dependent glutamate synthase is detected as a single peptide of 165 kDa on a western blot of green leaf and shoot tissues, and this Fd-dependent glutamate synthase polypeptide is 3-4-fold less abundant in etiolated leaves and roots. In these non-photosynthetic tissues, there is a higher activity of NADH-dependent glutamate synthase. The A. thaliana gltS mutant (strain CS254) contains only 1.7% and 17.5% of the wild-type Fd-dependent glutamate synthase activity in leaves and roots, respectively. Western blots indicate that the Fd-dependent glutamate synthase peptide of 165 kDa is absent from leaves and roots of the gltS mutant. In contrast, NADH-dependent glutamate synthase activity in leaves and roots is unaffected. During illumination of wild-type dark-grown leaves for 72 h, the levels of Fd-dependent glutamate synthase protein and its activity increased threefold to levels equivalent to those in green leaves. In contrast, NADH-dependent glutamate synthase activity decrease twofold during illumination. The complete nucleotide sequence of the complementary DNA for A. thaliana Fd-dependent glutamate synthase has been determined. Analysis of the amino acid sequence deduced from the complete cDNA sequence (5178 bp) has revealed that A. thaliana Fd-dependent glutamate synthase is synthesized as a 1648-amino-acid precursor protein (180090 Da) which consists of a 131-amino-acid transit peptide (14603 Da) and a 1517-amino-acid mature peptide (165487 Da). The A. thaliana Fd-dependent glutamate synthase has a high similarity to maize Fd-dependent glutamate synthase (83%) and to the analogous region of NADH-dependent glutamate synthase (42%) and NADPH-dependent glutamate synthases (40-43%) from different organisms. The A. thaliana Fd-dependent glutamate synthase contains the purF-type glutamine-amido-transfer domain as well as flavin and iron-sulfur-cluster-binding domains. The deduced primary structures of A. thaliana Fd-dependent glutamate synthase and of glutamate synthases from other organisms indicate that Fd-dependent glutamate synthase may have evolved from bacterial NADPH-dependent glutamate synthase. The cDNA hybridized to RNA of about 5.3 kb from different tissues of A. thaliana. A high steady-state level of Fd-dependent glutamate synthase mRNA is found in photosynthetic green leaves and shoots, and roots contain less mRNA for Fd-dependent glutamate synthase. In the gltS mutant, there are twofold and fourfold lower levels of Fd-dependent glutamate synthase mRNA in leaves and roots, respectively, relative to those in wild-type A. thaliana. Under continuous illumination of dark-grown leaves, the Fd-dependent glutamate synthase mRNA is induced twofold to a level equivalent to that in green leaves.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, Institut National de la Recherche Agronomique, Versailles, France
| | | |
Collapse
|
16
|
Adamska I, Funk C, Renger G, Andersson B. Developmental regulation of the PsbS gene expression in spinach seedlings: the role of phytochrome. PLANT MOLECULAR BIOLOGY 1996; 31:793-802. [PMID: 8806410 DOI: 10.1007/bf00019467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The PsbS gene product (PSII-S) which is an integral subunit of photosystem II has recently been reported to be a new type of pigment-binding protein [11]. The chlorophylls of the PSII-S protein exhibit weak excitonic coupling and this protein is stable also in the absence of pigments. Here we investigated the expression of the PsbS gene in etiolated spinach seedlings grown either in complete darkness or exposed to light of various qualities. The results obtained reveal that the PsbS gene expression in etiolated spinach plants is subjected to endogenous control. This developmental control occurs at different levels of gene expression and results in transient accumulation of the PsbS transcripts with progressing etiolation. During the first two days after emerging of the cotyledons from the seed coat the steady-state level of the PsbS transcripts is regulated mainly through increased transcriptional activity of the PsbS gene. Prolonged growth of the seedlings in the dark resulted in additional post-transcriptional control of the PsbS transcript level. Translational activity of PsbS mRNA estimated by an integration of mRNA into polysomal complexes shows that the translation rate of PsbS mRNA is less influenced by seedling age. The maximal rate of translation is reached at the first day after cotyledons emergence but the translational activity of PsbS mRNA remains still high (50% of maximum) in 8-day old etiolated spinach plants. In addition to the light-independent developmental control, the PsbS gene expression is positively regulated by phytochrome in etiolated seedlings exposed to light. Red light, however, negatively influences the abundance of PsbS transcripts at post-transcriptional level. Studies on blue or far-red light effects reveal that the accumulation of PsbS transcripts exhibits the characteristics of very-low-fluence responses of the phytochrome receptor.
Collapse
Affiliation(s)
- I Adamska
- Botanisches Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | |
Collapse
|
17
|
Holtorf H, Apel K. Transcripts of the two NADPH protochlorophyllide oxidereductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. PLANT MOLECULAR BIOLOGY 1996; 31:387-92. [PMID: 8756602 DOI: 10.1007/bf00021799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The light-dependent reduction of protochlorophyllide to chlorophyllide in higher plants is catalyzed by two closely related enzymes, the NADPH-Pchlide oxidoreductases A and B that are encoded by the nuclear genes PorA and PorB, respectively. The expression of the PorA gene is negatively regulated by light. It has formerly been reasoned that, apart from the well-studied transcriptional down-regulation, a post-transcriptional mechanism may exist that contributes markedly to the light-induced decline of PorA mRNA steady-state levels. We investigated the degradation kinetics of the PorA messenger after inhibiting RNA synthesis with cordycepin. The PorA mRNA was found to be inherently unstable. In contrast, the PorB mRNA was shown to be stabilized in the presence of cordycepin, suggesting degradation by a mechanism different from that of PorA mRNA degradation. The PorA messenger instability is postulated to be conferred by a previously described plant-specific DST element in its 3'UTR.
Collapse
Affiliation(s)
- H Holtorf
- Swiss Federal Institute of Technology Zürich (ETH, Institute for Plant Sciences), ETH-Zentrum, Switzerland
| | | |
Collapse
|
18
|
Carabelli M, Morelli G, Whitelam G, Ruberti I. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci U S A 1996; 93:3530-5. [PMID: 11607652 PMCID: PMC39644 DOI: 10.1073/pnas.93.8.3530] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present evidence that a novel phytochrome (other than phytochromes A and B, PHYA and PHYB) operative in green plants regulates the "twilight-inducible" expression of a plant homeobox gene (Athb-2). Light regulation of the Athb-2 gene is unique in that it is not induced by red (R)-rich daylight or by the light-dark transition but is instead induced by changes in the ratio of R to far-red (FR) light. These changes, which normally occur at dawn and dusk (end-of-day FR), also occur during the daytime under the canopy (shade avoidance). By using pure light sources and phyA/phyB null mutants, we demonstrated that the induction of Athb-2 by changes in the R/FR ratio is mediated for the most part by a novel phytochrome operative in green plants. Furthermore, PHYB plays a negative role in repressing the accumulation of Athb-2 mRNA in the dark and a minor role in the FR response. The strict correlation of Athb-2 expression with FR-induced growth phenomena suggests a role for the Athb-2 gene in mediating cell elongation. This interpretation is supported by the finding that the Athb-2 gene is expressed at high levels in rapidly elongating etiolated seedlings. Furthermore, as either R or FR light inhibits cell elongation in etiolated tissues, they also down-regulate the expression of Athb-2 mRNA. Thus, these data support the notion that changes in light quality perceived by a novel phytochrome regulate plant development through the action of the Athb-2 homeobox gene.
Collapse
Affiliation(s)
- M Carabelli
- Centro di studio per gli Acide Nucleici, Dipartimento e Biologia Molecolare, Università di Roma La Sapienza P.le Aldo Moro 5, Rome, Italy
| | | | | | | |
Collapse
|
19
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|
20
|
Li J, Timko MP. The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. PLANT MOLECULAR BIOLOGY 1996; 30:15-37. [PMID: 8616232 DOI: 10.1007/bf00017800] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The pc-1 mutant of Chlamydomonas reinhardtii has been shown to be incapable of protochlorophyllide photoconversion in vivo and is thought to be defective in light-dependent NADPH:protochlorophyllide oxidoreductase activity. We have isolated and characterized the nuclear genes encoding this enzyme from wild-type and pc-1 mutant Chlamydomonas cells. The wild-type CRlpcr-1 gene encodes a 397 amino acid polypeptide of which the N-terminal 57 residues comprise the chloroplast transit sequence. The Chlamydomonas protochlorophyllide reductase has 66-70% identity (79-82% similarity) to the higher plant enzymes. Transcripts encoding protochlorophyllide reductase are abundant in dark-grown wild-type cells, but absent or at very low levels in cells grown in the light. Similarly, immunoreactive protochlorophyllide reductase protein is also present to a greater extent in dark- versus light-grown wild-type cells. Both pc-1 and pc-1 y-7 cells lack CRlpcr-1 mRNA and the major (36 kDa) immunodetectable form of protochlorophyllide reductase consistent with their inability to photoreduce protochlorophyllide. DNA sequence analysis revealed that the lpcr gene in pc-1 y-7 cells contains a two-nucleotide deletion within the fourth and fifth codons of the protochlorophyllide reductase precursor that causes a shift in the reading frame and results in premature termination of translation. The absence of protochlorophyllide reductase message in pc-1 and pc-1 y-7 cells is likely the consequence of this frameshift mutation in the lpcr gene. Introduction of the CRlpcr-1 gene into pc-1 y-7 cells by nuclear transformation was sufficient to restore the wild-type phenotype. Transformants contained both protochlorophyllide reductase mRNA and immunodetectable enzyme protein. These studies demonstrate that pc-1 was in fact a defect in protochlorophyllide reductase activity and provide the first in vivo molecular evidence that the lpcr gene product is essential for light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- J Li
- Department of Biology, University of Virginia, Charlottesville, 22903, USA
| | | |
Collapse
|
21
|
The greening process in cress seedlings IV. Light regulated expression of single Lhc genes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 1995. [DOI: 10.1016/1011-1344(94)07076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Griffith GW, Jenkins GI, Milner-White EJ, Clutterbuck AJ. Homology at the amino acid level between plant phytochromes and a regulator of asexual sporulation in Emericella (= Aspergillus) nidulans. Photochem Photobiol 1994; 59:252-6. [PMID: 8165242 DOI: 10.1111/j.1751-1097.1994.tb05030.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein sequence comparison between the N-terminal regions of the BRLA (bristle A) protein of the ascomycete fungus Aspergillus nidulans and a number of plant phytochromes has demonstrated a moderate level of sequence similarity. The region of similarity corresponds to the phytochrome domains believed to be responsible for photoreception and which undergo light-induced conformational changes, although a putative chromophore-binding site is not evident. Over 22% of residues are conserved and 24% conservatively substituted between residues 1 and 272 of BRLA and the N-terminal domains of Type 1 phytochromes from dicotyledonous species. A lower level of similarity, but over the same region, is observed in comparison with a wider range of phytochromes. Given the known role of BRLA as a transcriptional activator involved in conidiation, and the red/far-red reversible photoregulation of this developmental process, the similarity with phytochromes may be significant.
Collapse
Affiliation(s)
- G W Griffith
- Department of Genetics, University of Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
23
|
Hess WR, Müller A, Nagy F, Börner T. Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:305-12. [PMID: 8107678 DOI: 10.1007/bf00280420] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcription of ten nuclear genes was analysed in the albostrians mutant of barley (Hordeum vulgare L.). The lack of plastid ribosomes in white seedlings of this mutant results in a complex alteration of nuclear gene expression at the transcriptional level. We found a strong reduction in the accumulation of mRNAs transcribed from nuclear genes encoding chloroplast enzymes involved in the Calvin cycle, the chlorophyll a/b binding protein, and the cytosolic enzyme nitrate reductase. In contrast, the levels of transcripts of the genes encoding the cytosolic glycolytic enzymes glyceraldehyde phosphate dehydrogenase and phosphoglycerate kinase were slightly enhanced. Accumulation of chalcone synthase mRNA even reaches much higher levels in white than in green leaves. Ribosome-deficient plastids were combined by crossing with a nuclear genotype heterozygous for the albostrians allele. Analysis of transcript levels in F1 plants having the same nuclear genotype and differing only with respect to their content of normally developed chloroplasts versus undifferentiated mutant plastids, provided strong genetic evidence for the plastid being the origin of a signal (chain) involved in regulation of nuclear gene expression. Results of run-on transcription in isolated nuclei demonstrated that the plastid signal acts at the level of transcription; it does not interfere with gene regulation in general. Mechanisms triggering nuclear gene expression in response to light operate in white mutant leaves: the very low levels of mRNAs derived from nuclear genes encoding chloroplast proteins and the strongly enhanced level of chalcone synthase mRNA were both light inducible. Also the negative regulation of leaf thionein gene expression by light is observed in white albostrians seedlings.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W R Hess
- Humboldt-Universität Berlin, Institut für Genetik, Germany
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- P Schweizer
- Institute de Biologie Végétale, Université de Fribourg, Switzerland
| |
Collapse
|
25
|
Yoshida K, Nagano Y, Murai N, Sasaki Y. Phytochrome-regulated expression of the genes encoding the small GTP-binding proteins in peas. Proc Natl Acad Sci U S A 1993; 90:6636-40. [PMID: 11607412 PMCID: PMC46987 DOI: 10.1073/pnas.90.14.6636] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the effect of light on the mRNA levels of 11 genes (pra1-pra9A, pra9B, and pra9C) encoding the small GTP-binding proteins that belong to the ras superfamily in Pisum sativum. When the dark-grown seedlings were exposed to continuous white light for 24 hr, the levels of several pra mRNAs in the pea buds decreased: pra2 and pra3 mRNAs decreased markedly; pra4, pra6, and pra9A mRNAs decreased slightly; the other 6 pra mRNAs did not decrease. We studied the kinetics of mRNA accumulation for pra2, pra3, and pra9B in detail during white light illumination and compared them with those of the phytochrome gene and the small subunit gene of ribulose bisphosphate carboxylase: mRNA levels of pra2 and pra3 decreased in a manner similar to that of phytochrome while that of the small subunit increased as was expected. The decreases were triggered by a 2-min monochromatic red light (660 nm) irradiation. The effect of red light was reversed by subsequent exposure to far-red light, indicating an involvement of phytochrome as a photoreceptor in this light-regulated event. This work reports negative regulation of mRNA levels of small GTP-binding proteins by light, mediated by phytochrome.
Collapse
Affiliation(s)
- K Yoshida
- Department of Agricultural Biology, Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
26
|
Spano AJ, He Z, Timko MP. NADPH : protochlorophyllide oxidoreductases in white pine (Pines strobes) and loblolly pine (P. taeda). ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf00279646] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Brusslan JA, Tobin EM. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci U S A 1992; 89:7791-5. [PMID: 1380166 PMCID: PMC49797 DOI: 10.1073/pnas.89.16.7791] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We found a transient increase in the amount of mRNA for four nuclear genes encoding chloroplast proteins during early development of Arabidopsis thaliana. This increase began soon after germination as cotyledons emerged from the seed coat; it occurred in total darkness and was not affected by external factors, such as gibberellins or light treatments used to stimulate germination. Three members of the cab gene family and the rbcS-1A gene exhibited this expression pattern. Because timing of the increase coincided with cotyledon emergence and because it occurred independently of external stimuli, we suggest that this increase represents developmental regulation of these genes. Further, 1.34 kilobases of the cab1 promoter was sufficient to confer this expression pattern on a reporter gene in transgenic Arabidopsis seedlings. The ability of the cab genes to respond to phytochrome preceded this developmental increase, showing that these two types of regulation are independent.
Collapse
Affiliation(s)
- J A Brusslan
- Department of Biology, University of California, Los Angeles 90024-1606
| | | |
Collapse
|
28
|
Spano AJ, He Z, Michel H, Hunt DF, Timko MP. Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). PLANT MOLECULAR BIOLOGY 1992; 18:967-72. [PMID: 1581573 DOI: 10.1007/bf00019210] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complementary DNA clones and a corresponding nuclear gene (lpcr) encoding the NADPH-dependent protochlorophyllide oxidoreductase (pchlide reductase, EC 1.6.99.1) have been characterized from pea (Pisum sativum L.). The pea lpcr gene encodes a 43,118 Da precursor polypeptide comprised of a transit peptide of 64 amino acids and a mature protein of 336 amino acids. The coding portion of the gene is interrupted by four introns, two of which are located within the transit peptide coding portion of the gene. The deduced primary structure for the pea protein is similar to those reported for Arabidopsis and two monocot species. Northern blot analysis revealed little to no decrease in steady-state levels of mRNA encoding the enzyme in etiolated leaves illuminated with continuous white light for up to 48 h. In contrast, western blot analysis showed that the major immunoreactive species present in whole leaf extracts decreased to nearly undetectable levels during this same 48 h period. These results suggest that pchlide reductase activity in pea is primarily regulated post-transcriptionally, most likely at the level of translation initiation/elongation or protein turnover.
Collapse
Affiliation(s)
- A J Spano
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | | | | | |
Collapse
|
29
|
Brunner H, Thümmler F, Song G, Rüdiger W. Phytochrome-dependent mRNA accumulation for nuclear coded photosystem I subunits in spinach seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1991. [DOI: 10.1016/1011-1344(91)80255-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Mol Cell Biol 1991. [PMID: 1681424 DOI: 10.1128/mcb.11.10.4966] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.
Collapse
|
31
|
|
32
|
Tsai FY, Coruzzi G. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Mol Cell Biol 1991; 11:4966-72. [PMID: 1681424 PMCID: PMC361478 DOI: 10.1128/mcb.11.10.4966-4972.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.
Collapse
Affiliation(s)
- F Y Tsai
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021-6399
| | | |
Collapse
|
33
|
Fritz CC, Herget T, Wolter FP, Schell J, Schreier PH. Reduced steady-state levels of rbcS mRNA in plants kept in the dark are due to differential degradation. Proc Natl Acad Sci U S A 1991; 88:4458-62. [PMID: 2034683 PMCID: PMC51679 DOI: 10.1073/pnas.88.10.4458] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When plants are placed in the dark, the level of the abundant mRNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS) declines rapidly. We present evidence demonstrating an active degradation of rbcS mRNA in the dark. Detailed analysis shows that transcripts originating from different members of the rbcS gene family are differentially affected by this degradation. This phenomenon is not common to all light-regulated plant genes since the mRNA for ST-LS1, another leaf-specific and light-induced gene, is not degraded in the dark within the same time scale.
Collapse
Affiliation(s)
- C C Fritz
- Max-Planck-Institut für Züchtungsforschung, Cologne, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
34
|
Benli M, Schulz R, Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1991; 16:615-625. [PMID: 1714319 DOI: 10.1007/bf00023426] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA encoding the NADPH-protochlorophyllide oxidoreductase (Pchlide reductase) of Arabidopsis thaliana has been isolated and sequenced. The cDNA contains the complete reading frame for the precursor of the Pchlide reductase. The deduced amino acid sequence of the Arabidopsis enzyme closely resembles the corresponding sequences of barley and oat. The cDNA has been used as a template for the synthesis of the enzyme protein in Escherichia coli. An antiserum was raised against this enzyme protein and both the antiserum and the cDNA were used as experimental tools to study the effects of light on the Pchlide reductase in A. thaliana. When etiolated seedlings of Arabidopsis were exposed to light the enzyme activity and the concentration of the enzyme protein rapidly declined. Similar light effects have been described previously for other angiosperms. In contrast to most of these species, however, in Arabidopsis only minor changes in Pchlide reductase mRNA content could be observed when etiolated seedlings were exposed to light.
Collapse
Affiliation(s)
- M Benli
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Germany
| | | | | |
Collapse
|
35
|
Cruz-Alvarez M, Kirihara JA, Messing J. Post-transcriptional regulation of methionine content in maize kernels. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:331-9. [PMID: 2005874 DOI: 10.1007/bf00269866] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Message levels for a methionine-rich 10 kDa zein were determined in three inbred lines of maize and their reciprocal crosses at various stages during endosperm development. Inbred line BSSS-53, which overexpresses the 10 kDa protein in mature kernels, was shown to have higher mRNA levels in developing endosperm, as compared to inbred lines W23 and W64A. Differences in mRNA levels could not be explained by differences in transcription rate of the 10 kDa zein gene, indicating differential post-transcriptional regulation of this storage protein in the different inbred lines analyzed. Among progeny segregating for the BSSS-53 allele of the 10 kDa zein structural gene Zps10/(22), mRNA levels are independent of Zps10/(22) segregation, indicating that post-transcriptional regulation of mRNA levels takes place via a trans-acting mechanism. In the same progeny, mRNA levels are also independent of allelic segregation of the regulatory locus Zpr10/(22). Thus, the trans-acting factor encoded by Zpr10/(22) determines accumulation of 10 kDa zein at a translational or post-translational step. Multiple trans-acting factors are therefore involved in post-transcriptional regulation of the methionine-rich 10 kDa zein.
Collapse
Affiliation(s)
- M Cruz-Alvarez
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855
| | | | | |
Collapse
|
36
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77385-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Clugston CK, Barnett LK, Urwin NA, Jenkins GI. Photoreceptors controlling transcription of rbcS genes in green leaf tissue of Pisum sativum. Photochem Photobiol 1990; 52:23-8. [PMID: 2399284 DOI: 10.1111/j.1751-1097.1990.tb01750.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have investigated the photoreceptors controlling transcription of genes encoding the small subunit (rbcS) of ribulose 1,5-bisphosphate carboxylase-oxygenase in green leaf tissue of pea (Pisum sativum). RbcS transcription was measured by hybridising labelled transcripts of isolated nuclei to rbcS cDNA clones. Transfer of green Pisum leaf tissue to darkness for 5 h causes a substantial decrease in the rate of rbcS transcription and the rate is restored rapidly when the plants are returned to white light. Low fluence rates of red light are ineffective in restoring the rate of rbcS transcription, suggesting that phytochrome alone does not fully mediate the response. Blue light is similarly effective to white light of an equal fluence rate (120 mumol m-2 s-1) in restoring the rate of rbcS transcription in the dark-treated plants, indicating that a blue light photoreceptor is involved. However, red light at the same fluence rate produces about 65% of the effect of blue or white light, showing that the blue light photoreceptor is not the only photoreceptor controlling rbcS transcription in the green leaf tissue. The identity of the photoreceptor responsible for the red light effect is discussed. Similar effects of blue and red light are observed at the level of transcript abundance in dark-grown pea leaf tissue given a brief illumination with red light, which potentiates the tissue for rapid transcript accumulation in white light.
Collapse
Affiliation(s)
- C K Clugston
- Department of Biochemistry, University of Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
39
|
Ernst D, Apfelböck A, Bergmann A, Weyrauch C. Rhythmic regulation of the light-harvesting chlorophyll a/b protein and the small subunit of ribulose-1,5-bisphosphate carboxylase mRNA in rye seedlings. Photochem Photobiol 1990; 52:29-33. [PMID: 2204946 DOI: 10.1111/j.1751-1097.1990.tb01751.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In etiolated rye seedlings transferred to light the expression of chlorophyll a/b binding protein mRNA varies when the seedlings are grown in a day/night cycle. The fluctuation pattern follows a circadian rhythm. Exposure of 4-day old etiolated seedlings to continuous white light revealed two maxima within the first 24 h before the 24 h cycle period appeared. These first two maxima are also observable after a pulse of white light or after a pulse of red light. These results indicate a possible involvement of phytochrome in the endogenous regulation of the rhythm.
Collapse
Affiliation(s)
- D Ernst
- Max Planck Institut für Biochemie, Martinsried, W. Germany
| | | | | | | |
Collapse
|
40
|
Bruce WB, Christensen AH, Klein T, Fromm M, Quail PH. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc Natl Acad Sci U S A 1989; 86:9692-6. [PMID: 2602370 PMCID: PMC298567 DOI: 10.1073/pnas.86.24.9692] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The regulatory photoreceptor phytochrome controls the transcription of its own phy genes in a negative feedback fashion. We have exploited microprojectile-mediated gene transfer to develop a rapid transient expression assay system for the study of DNA sequences involved in the phytochrome-regulated expression of these genes. The 5'-flanking sequence and part of the structural region of an oat phy gene have been fused to a reporter coding sequence (chloramphenicol acetyltransferase, CAT) and introduced into intact darkgrown seedlings by using high-velocity microprojectiles. Expression is assayable in less than 24 hr from bombardment. The introduced oat phy-CAT fusion gene is expressed and down-regulated by white light in barley, rice, and oat, whereas no expression is detected in three dicots tested, tobacco, cucumber, and Arabidopsis thaliana. In bombarded rice shoots, red/far-red light-reversible repression of expression of the heterologous oat phy-CAT gene shows that it is regulated by phytochrome in a manner parallel to that of the endogenous rice phy genes. These data indicate that the transduction pathway components and promoter sequences involved in autoregulation of phy expression have been evolutionarily conserved between oat and rice. The experiments show the feasibility of using high-velocity microprojectile-mediated gene transfer for the rapid analysis of light-controlled monocot gene promoters in monocot tissues that until now have been recalcitrant to such studies.
Collapse
Affiliation(s)
- W B Bruce
- University of California, Berkeley/U.S. Department of Agriculture Plant Gene Expression Center, Albany 94710
| | | | | | | | | |
Collapse
|
41
|
Krupinska K, Apel K. Light-induced transformation of etioplasts to chloroplasts of barley without transcriptional control of plastid gene expression. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf00259621] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Schulz R, Steinmüller K, Klaas M, Forreiter C, Rasmussen S, Hiller C, Apel K. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:355-61. [PMID: 2671659 DOI: 10.1007/bf02464904] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The primary structure of the NADPH-protochlorophyllide oxidoreductase of barley has been deduced from the nucleotide sequence of a cloned full-length cDNA. This cDNA hybridizes to a 1.7 kb RNA whose steady-state level in dark-grown seedlings is drastically reduced upon illumination. The predicted amino acid sequence (388 residues in length) includes a transit peptide of 74 amino acids whose end point has been delimited by sequencing the N-terminus of the mature protein. Expression of the cDNA in Escherichia coli leads to the synthesis of an enzymatically active precursor of the NADPH-protochlorophyllide oxidoreductase. Activity of this protein in bacterial lysates is completely dependent on the presence of NADPH and protochlorophyllide and requires light.
Collapse
Affiliation(s)
- R Schulz
- Botanisches Institut, Christian-Albrechts-Universität Kiel, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Schweizer P, Hunziker W, Mösinger E. cDNA cloning, in vitro transcription and partial sequence analysis of mRNAs from winter wheat (Triticum aestivum L.) with induced resistance to Erysiphe graminis f. sp. tritici. PLANT MOLECULAR BIOLOGY 1989; 12:643-654. [PMID: 24271197 DOI: 10.1007/bf00044155] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/1988] [Accepted: 02/14/1989] [Indexed: 06/02/2023]
Abstract
Under normal growth conditions wheat shows 100% non-host resistance to the barley powdery mildew Erysiphe graminis f. sp. hordei (Egh.). Primary inoculation of 7-day-old wheat seedlings with this fungus induced partial (60-70%) local resistance to challenge inoculation 12 hours later with the compatible pathogen Erysiphe graminis f. sp. tritici (Egt). mRNA was isolated from induced resistant first leaves (13 hours after primary inoculation) and a cDNA library was established in lambda ZAP. Differential screening of the library with sDNA probes (from induced resistant versus non-inoculated plants) resulted in isolation of 6 cDNA clones corresponding to 6 different induced, plant-encoded mRNA species. Hybridization of in vitro transcripts derived from wheat nuclei to cDNA dot blots showed that the transcription of these genes was induced rapidly, 3 hours after inoculation with either Egt or Egh. At this time point neither fungus had formed appressorial germ tubes yet. When induced resistant first leaves were challenged with the compatible pathogen (Egt), transcription of the host genes was enhanced a second time. No difference in kinetics of induction of transcription could be observed between noninduced and induced resistant leaves. One of the cloned induced mRNAs codes for a peroxidase, as shown by cDNA derived partial peptide sequence analysis. Peroxidase activity increased in intercellular washing fluids of first leaves from 6 to 36 hours after inoculation.
Collapse
Affiliation(s)
- P Schweizer
- Pflanzenphysiologisches Institut der Universität, Altenbergrain 21, CH-3013, Bern, Switzerland
| | | | | |
Collapse
|
44
|
Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Mol Cell Biol 1989. [PMID: 2463467 DOI: 10.1128/mcb.8.11.4840] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined phytochrome-regulated transcription of phytochrome (phy) and chlorophyll a/b binding protein (cab) genes in dark-grown Avena seedlings by using run-on transcription in isolated nuclei. Kinetic analysis of phy transcription following pulse-light treatments to produce various amounts of Pfr, the active form of phytochrome, leads to these conclusions. (i) Transcription decreases rapidly (discernible within 5 min) after Pfr formation, reaching an essentially undetectable level by 1 h. (ii) The response is very sensitive; less than 1% Pfr is sufficient to produce maximum feedback repression over the first 30 min. (iii) The duration of transcriptional repression is proportional to the Pfr concentration; derepression begins once the concentration falls below some saturation level because of degradation of Pfr. Concurrent analysis of cab transcription leads to these conclusions. (i) After Pfr formation, transcription increases approximately 10-fold by 3 h, but this response is not detectable until after a 30-min lag. (ii) Detectable induction of cab requires a greater than 30-fold-higher Pfr level than is needed to repress phy expression. (iii) Transcription returns to the preirradiation level considerably sooner than does phy transcription (less than 12 h versus greater than 24 h respectively), indicating that a high level of Pfr is needed to sustain the increased transcription of cab. Taken together, these results suggest that differences in the phytochrome signal transduction pathway are responsible for the distinct patterns of regulation of these genes. Full repression of phy occurs even when protein synthesis is inhibited greater than 90% by cycloheximide and chloramphenicol. In conjunction with the rapidity of the response to Pfr, this result provides evidence that feedback repression of phy gene transcription does not require expression of an intervening regulatory gene(s). Thus, phy is the first gene for which there is evidence for direct control of transcription by the phytochrome signal transduction chain.
Collapse
|
45
|
Ohl S, Hahlbrock K, Schäfer E. A stable blue-light-derived signal modulates ultraviolet-light-induced activation of the chalcone-synthase gene in cultured parsley cells. PLANTA 1989; 177:228-236. [PMID: 24212345 DOI: 10.1007/bf00392811] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/1988] [Accepted: 08/23/1988] [Indexed: 06/02/2023]
Abstract
Run-off transcription assays were used to demonstrate that both the ultraviolet (UV)-B and blue-light receptors control transcription rates for chalcone-synthase mRNA in the course of light-induced flavonoid synthesis in parsley (Petroselinum crispum Miller (A.W. Hill)) cell-suspension cultures. Blue and red light alone, presumably acting via a blue-light receptor and active phytochrome (far-red absorbing form) respectively, can induce accumulation of chalcone-synthase mRNA. The extent of the response is however considerably smaller than that obtained when these wavebands are applied in combination with UV light. A preirradiation with blue light strongly increases the response to a subsequent UV pulse and this modulating effect of blue light is stable for at least 20 h. The modulating effect is abolished by a UV induction but can be reestablished by a second irradiation with blue light.
Collapse
Affiliation(s)
- S Ohl
- Institut für Biologie II/Botanik der Universität Freiburg, Schänzlestrasse 1, D-7800, Freiburg i.Br., Federal Republic of Germany
| | | | | |
Collapse
|
46
|
|
47
|
Schuster G, Nechushtai R, Ferreira PC, Thornber JP, Ohad I. Structure and biogenesis of Chlamydomonas reinhardtii photosystem I. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:411-6. [PMID: 3056724 DOI: 10.1111/j.1432-1033.1988.tb14390.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photosystem I complex of the green alga Chlamydomonas reinhardtii was isolated and fractionated into its two subcomplex components: the core complex (CC I), which contained the reaction center (P-700) and had four polypeptide subunits, and the light-harvesting complex (LHC I) which contained four polypeptides of about 22, 25, 26 and 27 kDa. The 22-kDa apoprotein was isolated as a chlorophyll a and b binding protein. In the isolated photosystem I holocomplex, about ten copies of the 22-kDa LHC I apoprotein are present for each CC I unit. The 22-kDa polypeptide as well as the other three polypeptides of this complex and the subunit II of CC I are translated on 80S cytoplasmic ribosomes, and therefore are coded in the nucleus. During the greening process of the Chlamydomonas reinhardtii y-1 mutant the 22-kDa LHC I polypeptide, which cross-reacts with polyclonal antibodies raised against the Lemna gibba 20-kDa LHC I apoprotein, accumulates in thylakoids at a late stage of their development, and about 2-3 h after the LHC II and CC I subunit II polypeptides have accumulated. Accumulation of the 22-kDa protein during greening is inhibited by cycloheximide but not by chloramphenicol.
Collapse
Affiliation(s)
- G Schuster
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
48
|
Lissemore JL, Quail PH. Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Mol Cell Biol 1988; 8:4840-50. [PMID: 2463467 PMCID: PMC365577 DOI: 10.1128/mcb.8.11.4840-4850.1988] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have examined phytochrome-regulated transcription of phytochrome (phy) and chlorophyll a/b binding protein (cab) genes in dark-grown Avena seedlings by using run-on transcription in isolated nuclei. Kinetic analysis of phy transcription following pulse-light treatments to produce various amounts of Pfr, the active form of phytochrome, leads to these conclusions. (i) Transcription decreases rapidly (discernible within 5 min) after Pfr formation, reaching an essentially undetectable level by 1 h. (ii) The response is very sensitive; less than 1% Pfr is sufficient to produce maximum feedback repression over the first 30 min. (iii) The duration of transcriptional repression is proportional to the Pfr concentration; derepression begins once the concentration falls below some saturation level because of degradation of Pfr. Concurrent analysis of cab transcription leads to these conclusions. (i) After Pfr formation, transcription increases approximately 10-fold by 3 h, but this response is not detectable until after a 30-min lag. (ii) Detectable induction of cab requires a greater than 30-fold-higher Pfr level than is needed to repress phy expression. (iii) Transcription returns to the preirradiation level considerably sooner than does phy transcription (less than 12 h versus greater than 24 h respectively), indicating that a high level of Pfr is needed to sustain the increased transcription of cab. Taken together, these results suggest that differences in the phytochrome signal transduction pathway are responsible for the distinct patterns of regulation of these genes. Full repression of phy occurs even when protein synthesis is inhibited greater than 90% by cycloheximide and chloramphenicol. In conjunction with the rapidity of the response to Pfr, this result provides evidence that feedback repression of phy gene transcription does not require expression of an intervening regulatory gene(s). Thus, phy is the first gene for which there is evidence for direct control of transcription by the phytochrome signal transduction chain.
Collapse
Affiliation(s)
- J L Lissemore
- Department of Botany, University of Wisconsin, Madison
| | | |
Collapse
|
49
|
Laing W, Kreuz K, Apel K. Light-dependent, but phytochrome-independent, translational control of the accumulation of the P700 chlorophyll-a protein of photosystem I in barley (Hordeum vulgare L.). PLANTA 1988; 176:269-276. [PMID: 24220783 DOI: 10.1007/bf00392455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/1988] [Accepted: 05/26/1988] [Indexed: 06/02/2023]
Abstract
This work reports on the regulation of synthesis of the P700 chlorophyll-a apoprotein of photosystem I in barley. The mRNA for the P700 apoprotein is almost exclusively confined to the plastid membrane-bound polysomes. However, the mRNA for the 32-kDa herbicide-binding protein of photosystem II is found in both the soluble and membrane-bound polysomes.The mRNA for the P700 apoprotein is found in similar amounts in dark-grown and light-grown wild-type as well as mutant xantha-l(81) barley. The latter mutant is deficient in chlorophyll biosynthesis. However, while wild-type leaves accumulate the P700 chlorophyll-a protein only in the light, mutant leaves never accumulate the P700 apoprotein.A more sensitive approach was taken using isolated plastids to study P700 apoprotein synthesis. Etioplasts did not synthesize detectable P700 apoprotein even when the etioplasts were exposed to light. However, only a 1-min exposure of leaves to light was necessary to induce P700 apoprotein synthesis by isolated plastids.Phytochrome involvement in controlling P700 apoprotein synthesis was tested by using red/farred light treatment of leaves. These treatments showed no far-red reversibility of red-induced P700-apoprotein synthesis in isolated plastids even after 3 h of darkness after the light treatments. From these data we conclude that the accumulation of P700 apopootein is not under the control of phytochrome and that the light induction of P700 apoprotein is most likely mediated through the protochlorophyllide/chlorophyllide system. This control, however, may also involve cytoplasmic signals as the synthesis of the P700 apoprotein is not turned on in illuminated etioplasts.
Collapse
Affiliation(s)
- W Laing
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-2300, Kiel, Federal Republic of Germany
| | | | | |
Collapse
|
50
|
Buetow DE, Chen H, Erdő G, Yi LS. Regulation and expression of the multigene family coding light-harvesting chlorophyll a/b-binding proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 1988; 18:61-97. [PMID: 24425161 DOI: 10.1007/bf00042980] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/1987] [Accepted: 02/24/1988] [Indexed: 06/03/2023]
Abstract
The current state of knowledge concerning the expression of the nuclear genes that code the light-harvesting chlorophyll a/b-binding polypeptides of photosystem II is presented. This review covers the structure of these genes, the complex multistep pathway involved in their expression, and the environmental and other factors which regulate their expression. Some of the effects of these factors are mediated, at least in part, at the level of transcription, but other effects can be explained only by the existence of multiple posttranscriptional regulatory steps.
Collapse
Affiliation(s)
- D E Buetow
- Department of Physiology and Biophysics, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Avenue, 61801, Urbana, IL, USA
| | | | | | | |
Collapse
|