1
|
Sanden SA, Butch CJ, Bartlett S, Virgo N, Sekine Y, McGlynn SE. Rapid hydrolysis rates of thio- and phosphate esters constrain the origin of metabolism to cool, acidic to neutral environments. iScience 2024; 27:111088. [PMID: 39493872 PMCID: PMC11530844 DOI: 10.1016/j.isci.2024.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Universal to all life is a reliance on energy carriers such as adenosine triphosphate (ATP) which connect energy-releasing reactions to energy-consuming processes. While ATP is ubiquitously used today, simpler molecules such as thioesters and polyphosphates are hypothesized to be primordial energy carriers. Investigating environmental constraints on the non-enzymatic emergence of metabolism, we find that hydrolysis rates-not hydrolysis energies-differentiate phosphate esters and thioesters. At temperatures consistent with thermophilic microbes, thioesters are favored at acidic pH and phosphate esters at basic pH. Thioacids have a high stability across pH 5-10. The planetary availability of sulfur and phosphate is coincident with these calculations, with phosphate being abundant in alkaline and sulfur in acidic environments. Since both sulfur esters and phosphate esters are uniquely required in metabolism, our results point to a non-thermophilic origin of early metabolism at cool, acidic to neutral environments.
Collapse
Affiliation(s)
- Sebastian A. Sanden
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Inorganic Chemistry I, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Christopher J. Butch
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Stuart Bartlett
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathaniel Virgo
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhito Sekine
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
- Planetary Plasma and Atmospheric Research Center, Tohoku University, Miyagi, Japan
| | - Shawn Erin McGlynn
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
2
|
Leuschner C, Antranikian G. Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 2014; 11:95-114. [PMID: 24414414 DOI: 10.1007/bf00339139] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Only in the last decade have microorganisms been discovered which grow near or above 100°C. The enzymes that are formed by these extremely thermophilic (growth temperature 65 to 85°C) and hyperthermophilic (growth temperature 85 to 110°C) microorganisms are of great interest. This review covers the extracellular and intracellular enzymes of these exotic microorganisms that have recently been described. Polymer-hydrolysing enzymes, such as amylolytic, cellulolytic, hemicellulolytic and proteolytic enzymes, will be discussed. In addition, the properties of the intracellular enzymes involved in carbohydrate and amino-acid metabolism and DNA-binding and chaperones and chaperone-like proteins from hyperthermophiles are described. Due to the unusual properties of these heat-stable enzymes, they are expected to fill the gap between biological and chemical processes.
Collapse
|
3
|
Vologodskii A. Unlinking of supercoiled DNA catenanes by type IIA topoisomerases. Biophys J 2011; 101:1403-11. [PMID: 21943421 DOI: 10.1016/j.bpj.2011.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 11/29/2022] Open
Abstract
It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (-) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (-) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (-) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (-) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking.
Collapse
|
4
|
Nadal M. Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie 2007; 89:447-55. [PMID: 17316953 DOI: 10.1016/j.biochi.2006.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 12/28/2006] [Indexed: 01/01/2023]
Abstract
Reverse gyrase was discovered more than twenty years ago. Recent biochemical and structural results have greatly enhanced our understanding of their positive supercoiling mechanism. In addition to new biochemical properties, a fine tuning of reverse gyrase regulation in response to DNA damaging agents has been recently described. These data give us a new insight in the cellular role of reverse gyrase. Moreover, it has been proposed that reverse gyrase has been implicated in genome stability.
Collapse
Affiliation(s)
- Marc Nadal
- Equipe Virologie Moléculaire et Microbiologie, Laboratoire de Génétique et de Biologie Cellulaire, CNRS UMR 8159, Université de Versailles St-Quentin-en-Yvelines, Bâtiment Buffon, 78 035 Versailles, France.
| |
Collapse
|
5
|
Abstract
We disrupted the reverse gyrase gene from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. An apparent positive supercoiling activity that was observed in the host strain was not found in the disruptant strain. We found that a lack of reverse gyrase led to a retardation in growth that was more striking at higher temperatures. However, the disruption of the reverse gyrase gene did not lead to a lethal phenotype at 90 degrees C. This study provides experimental evidence that reverse gyrase is not a prerequisite for hyperthermophilic life.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
6
|
Rodríguez AC. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. Biochemistry 2003; 42:5993-6004. [PMID: 12755601 DOI: 10.1021/bi034188l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reverse gyrase is the only topoisomerase known to positively supercoil DNA and the only protein unique to hyperthermophiles. The enzyme comprises an N-terminal ATPase domain and a C-terminal topoisomerase I domain, which interact to couple the hydrolysis of ATP to the overwinding of DNA. The part of the ATPase domain termed the "latch" represses topoisomerase activity in the absence of nucleotide. Here I provide evidence that the latch, in addition to its regulatory role, participates in the supercoiling mechanism during the DNA cleavage and religation steps. The latch also contributes to the coordination of ATP hydrolysis and positive supercoiling by inhibiting ATPase activity in the absence of supercoiling. The latch therefore plays an important role in the communication between the two domains of reverse gyrase.
Collapse
Affiliation(s)
- A Chapin Rodríguez
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
7
|
Rodriguez AC. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase. J Biol Chem 2002; 277:29865-73. [PMID: 12048189 DOI: 10.1074/jbc.m202853200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse gyrase, the only topoisomerase known to positively supercoil DNA, has an N-terminal ATPase domain that drives the activity of a topoisomerase domain. This study shows that the N-terminal domain represses topoisomerase activity in the absence of nucleotide, and nucleotide binding is sufficient to relieve the repression. A "latch" region in the N-terminal part was observed to close over the topoisomerase domain in the reverse gyrase crystal structure. Mutants lacking all or part of the latch relax DNA in the absence of nucleotide, indicating that this region mediates topoisomerase repression. The mutants also show altered DNA-dependent ATPase activity, suggesting that the latch may be involved in coupling nucleotide hydrolysis to supercoiling. It is not required for this process, however, because the mutants can still positively supercoil DNA. Nucleotide hydrolysis is essential to the specificity of reverse gyrase for increasing the linking number of DNA. Although with ATP the enzyme performs strand passage always toward increasing linking number, it can increase or decrease the linking number in the presence of a nonhydrolyzable ATP analog. This suggests that the mechanism of reverse gyrase is best described by a combination of recently proposed models.
Collapse
Affiliation(s)
- A Chapin Rodriguez
- Medical Research Council Laboratory of Molecular Biology, Hills Rd., Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
8
|
Affiliation(s)
- A C Déclais
- Department of Biochemistry, CRC Nucleic Acid Structure Research Group, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
9
|
Belova GI, Prasad R, Kozyavkin SA, Lake JA, Wilson SH, Slesarev AI. A type IB topoisomerase with DNA repair activities. Proc Natl Acad Sci U S A 2001; 98:6015-20. [PMID: 11353838 PMCID: PMC33414 DOI: 10.1073/pnas.111040498] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously we have characterized type IB DNA topoisomerase V (topo V) in the hyperthermophile Methanopyrus kandleri. The enzyme has a powerful topoisomerase activity and is abundant in M. kandleri. Here we report two characterizations of topo V. First, we found that its N-terminal domain has sequence homology with both eukaryotic type IB topoisomerases and the integrase family of tyrosine recombinases. The C-terminal part of the sequence includes 12 repeats, each repeat consisting of two similar but distinct helix-hairpin-helix motifs; the same arrangement is seen in recombination protein RuvA and mammalian DNA polymerase beta. Second, on the basis of sequence homology between topo V and polymerase beta, we predict and demonstrate that topo V possesses apurinic/apyrimidinic (AP) site-processing activities that are important in base excision DNA repair: (i) it incises the phosphodiester backbone at the AP site, and (ii) at the AP endonuclease cleaved AP site, it removes the 5' 2-deoxyribose 5-phosphate moiety so that a single-nucleotide gap with a 3'-hydroxyl and 5'-phosphate can be filled by a DNA polymerase. Topo V is thus the prototype for a new subfamily of type IB topoisomerases and is the first example of a topoisomerase with associated DNA repair activities.
Collapse
Affiliation(s)
- G I Belova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Kil YV, Baitin DM, Masui R, Bonch-Osmolovskaya EA, Kuramitsu S, Lanzov VA. Efficient strand transfer by the RadA recombinase from the hyperthermophilic archaeon Desulfurococcus amylolyticus. J Bacteriol 2000; 182:130-4. [PMID: 10613871 PMCID: PMC94248 DOI: 10.1128/jb.182.1.130-134.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1999] [Accepted: 10/04/1999] [Indexed: 11/20/2022] Open
Abstract
The radA gene predicted to be responsible for homologous recombination in a hyperthermophilic archaeon, Desulfurococcus amylolyticus, was cloned, sequenced, and overexpressed in Escherichia coli cells. The deduced amino acid sequence of the gene product, RadA, was more similar to the human Rad51 protein (65% homology) than to the E. coli RecA protein (35%). A highly purified RadA protein was shown to exclusively catalyze single-stranded DNA-dependent ATP hydrolysis, which monitored presynaptic recombinational complex formation, at temperatures above 65 degrees C (catalytic rate constant of 1.2 to 2.5 min(-1) at 80 to 95 degrees C). The RadA protein alone efficiently promoted the strand exchange reaction at the range of temperatures from 80 to 90 degrees C, i.e., at temperatures approaching the melting point of DNA. It is noteworthy that both ATP hydrolysis and strand exchange are very efficient at temperatures optimal for host cell growth (90 to 92 degrees C).
Collapse
Affiliation(s)
- Y V Kil
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg 188350, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Ohyama T, Miyano M, Sakuma S. Influence of highly curved DNA segments on in vivo topology of plasmids. Mol Biol Rep 1999; 26:269-76. [PMID: 10634510 DOI: 10.1023/a:1007017121313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recombinant plasmids carrying a highly curved DNA structure are sometimes unstable in Escherichia coli. In order to know the underlying mechanism, several plasmids carrying one or two highly bent DNA segment(s) from the human adenovirus type 2 (Ad2) enhancer and/or origin region of phage lambda replication were systematically constructed and propagated in E. coli. The highly bent DNA segments disturbed the action of DNA topoisomerases: i.e. they were shown to be able to produce an anomalously wide spectrum of linking number topoisomers that tails toward lower supercoiling with a little of the DNA actually positively supercoiled. Furthermore, bent DNA caused multimeric plasmid formation. The linking number topoisomers and multimers seemed to be intermediate topological states of the bent DNA-containing plasmids that would lead to the deletion occurring in them. The nucleotide sequence of a deletion product of a bent DNA-containing plasmid showed that the putative source of the severe topological constraint was entirely eliminated from the plasmid.
Collapse
Affiliation(s)
- T Ohyama
- Department of Biology, Faculty of Science, Konan University, Kobe, Japan.
| | | | | |
Collapse
|
12
|
Jaxel C, Duguet M, Nadal M. Analysis of DNA cleavage by reverse gyrase from Sulfolobus shibatae B12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:103-11. [PMID: 10091589 DOI: 10.1046/j.1432-1327.1999.00128.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reverse gyrase is a type I-5' topoisomerase, which catalyzes a positive DNA supercoiling reaction in vitro. To ascertain how this reaction takes places, we looked at the DNA sequences recognized by reverse gyrase. We used linear DNA fragments of its preferred substrate, the viral SSV1 DNA, which has been shown to be positively supercoiled in vivo. The Sulfolobus shibatae B12 strain, an SSV1 virus host, was chosen for production of reverse gyrase. This naturally occurring system (SSV1 DNA-S. shibatae reverse gyrase) allowed us to determine which SSV1 DNA sequences are bound and cleaved by the enzyme with particularly high selectivity. We show that the presence of ATP decreases the number of cleaved complexes obtained whereas the non-hydrolyzable ATP analog adenosine 5'-[beta, gamma-imido]triphosphate increases it without changing the sequence specificity.
Collapse
Affiliation(s)
- C Jaxel
- Laboratoire d'Enzymologie des Acides Nucléiques, Université Paris Sud, France.
| | | | | |
Collapse
|
13
|
Herzel H, Weiss O, Trifonov EN. Sequence periodicity in complete genomes of archaea suggests positive supercoiling. J Biomol Struct Dyn 1998; 16:341-5. [PMID: 9833672 DOI: 10.1080/07391102.1998.10508251] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The topological state of genomic DNA is of importance for its replication, recombination and transcription. The wrapping of the DNA around nucleosomes is associated with sequence periodicities (Trifonov and Sussman, Proc. Natl. Acad. Sci. USA, 77, pp. 3816-20). Recently, also the negative supercoiling of eubacterial DNA was related to 11 base pair (bp) periodicity (Herzel et al. Physica A, 249, pp. 449-59). Archaeal plasmids and a virus-like particle from Sulfolobus are positively supercoiled, but the superhelical conformation of archaeal genomic DNA is still uncertain. The problem of superhelicity can now be addressed via a comparative statistical analysis of the available complete genomes. For this purpose one has to look for periodicities which are in phase with the helical repeat of 10-11 bp. Similar periodicities are induced, however, by the amphipatic character of alpha-helices of encoded proteins (Zhurkin, Nucl. Acids Res., 9, pp. 1963-71). We show that these protein-induced periodicities are extended over a few periods only. The periods of additional long-ranging oscillations deviate significantly from the value for free DNA. A period of 11 bp in Eubacteria reflects negative supercoiling, whereas the significantly different period of thermophilic Archaea close to 10 bp suggests positive supercoiling of archaeal genomes.
Collapse
Affiliation(s)
- H Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
14
|
Abstract
Over the last several years topoisomerases have finally begun to yield to high-resolution structural studies. These models have greatly aided our understanding of the mechanisms of topoisomerase catalysis and drug interactions. This review will cover advances in the structural biology of topoisomerases and discuss their implications for topoisomerase function.
Collapse
Affiliation(s)
- J M Berger
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, 229 Stanley Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Krah R, O'Dea MH, Gellert M. Reverse gyrase from Methanopyrus kandleri. Reconstitution of an active extremozyme from its two recombinant subunits. J Biol Chem 1997; 272:13986-90. [PMID: 9153263 DOI: 10.1074/jbc.272.21.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reverse gyrases are ATP-dependent type I 5'-topoisomerases that positively supercoil DNA. Reverse gyrase from Methanopyrus kandleri is unique as the first heterodimeric type I 5'-topoisomerase described, consisting of a 138-kDa subunit involved in the hydrolysis of ATP (RgyB) and a 43-kDa subunit that forms the covalent complex with DNA during the topoisomerase reaction (RgyA). Here we report the reconstitution of active reverse gyrase from the two recombinant proteins overexpressed in Escherichia coli. Both proteins have been purified by column chromatography to >90% homogeneity. RgyB has a DNA-dependent ATPase activity at high temperature (80 degrees C) and is independent of the presence of RgyA. RgyA alone has no detectable activity. The addition of RgyA to RgyB reconstitutes positive supercoiling activity, but the RgyB and RgyA subunits form a stable heterodimer only after being heated together. This is the first case in which it has been possible to reconstitute an active heterodimeric enzyme of a hyperthermophilic prokaryote from recombinant proteins.
Collapse
Affiliation(s)
- R Krah
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0540, USA
| | | | | |
Collapse
|
16
|
Borges KM, Bergerat A, Bogert AM, DiRuggiero J, Forterre P, Robb FT. Characterization of the reverse gyrase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1997; 179:1721-6. [PMID: 9045834 PMCID: PMC178887 DOI: 10.1128/jb.179.5.1721-1726.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The reverse gyrase gene rgy from the hyperthermophilic archaeon Pyrococcus furiosus was cloned and sequenced. The gene is 3,642 bp (1,214 amino acids) in length. The deduced amino acid sequence has relatively high similarity to the sequences of the Methanococcus jannaschii reverse gyrase (48% overall identity), the Sulfolobus acidocaldarius reverse gyrase (41% identity), and the Methanopynrus kandleri reverse gyrase (37% identity). The P. furiosus reverse gyrase is a monomeric protein, containing a helicase-like module and a type I topoisomerase module, which resembles the enzyme from S. acidocaldarius more than that from M. kandleri, a heterodimeric protein encoded by two separate genes. The control region of the P. furiosus rgy gene contains a typical archaeal putative box A promoter element which is located at position -26 from the transcription start identified by primer extension experiments. The initiating ATG codon is preceded by a possible prokaryote-type ribosome-binding site. Purified P. furiosus reverse gyrase has a sedimentation coefficient of 6S, suggesting a monomeric structure for the native protein. The enzyme is a single polypeptide with an apparent molecular mass of 120 kDa, in agreement with the gene structure. The sequence of the N terminus of the protein corresponded to the deduced amino acid sequence. Phylogenetic analysis indicates that all known reverse gyrase topoisomerase modules form a subgroup inside subfamily IA of type I DNA topoisomerases (sensu Wang [J. C. Wang, Annu. Rev. Biochem. 65:635-692, 1996]). Our results suggest that the fusion between the topoisomerase and helicase modules of reverse gyrase occurred before the divergence of the two archaeal phyla, Crenoarchaeota and Euryarchaeota.
Collapse
Affiliation(s)
- K M Borges
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
17
|
Benham CJ. Theoretical analysis of the helix-coil transition in positively superhelical DNA at high temperatures. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1996; 53:2984-2987. [PMID: 9964592 DOI: 10.1103/physreve.53.2984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
18
|
Grayling RA, Sandman K, Reeve JN. DNA stability and DNA binding proteins. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:437-67. [PMID: 8791631 DOI: 10.1016/s0065-3233(08)60368-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R A Grayling
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
19
|
Kozyavkin SA, Pushkin AV, Eiserling FA, Stetter KO, Lake JA, Slesarev AI. DNA enzymology above 100 degrees C. Topoisomerase V unlinks circular DNA at 80-122 degrees C. J Biol Chem 1995; 270:13593-5. [PMID: 7775408 DOI: 10.1074/jbc.270.23.13593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The widespread application of polymerase chain reaction and related techniques in biology and medicine has led to a heightened interest in thermophilic enzymes of DNA metabolism. Some of these enzymes are stable for hours at 100 degrees C, but no enzymatic activity on duplex DNA at temperatures above 100 degrees C has so far been demonstrated. Recently, we isolated topoisomerase V from the hyperthermophile Methanopyrus kandleri, which grows up to 110 degrees C. This novel enzyme is similar to eukaryotic topoisomerase I and acts on duplex DNA regions. We now show that topoisomerase V catalyzes the unlinking of double-stranded circular DNA at temperatures up to 122 degrees C. In this in vitro system, maximal DNA unlinking occurs at 108 degrees C and corresponds to complementary strands being linked at most once. These results further imply that in the presence of sufficient positive supercoiling DNA can exist as a double helix even at 122 degrees C.
Collapse
Affiliation(s)
- S A Kozyavkin
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, 20892-0540, USA
| | | | | | | | | | | |
Collapse
|
20
|
Forterre P, Confalonieri F, Charbonnier F, Duguet M. Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. ORIGINS LIFE EVOL B 1995; 25:235-49. [PMID: 11536676 DOI: 10.1007/bf01581587] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All present-day hyperthermophiles studied so far (either Bacteria or Archaea) contain a unique DNA topoisomerase, reverse gyrase, which probably helps to stabilize genomic DNA at high temperature. Herein the data relating this enzyme is reviewed and discussed from the perspective of the nature of the last detectable common ancestor and the origin of life. The sequence of the gene encoding reverse gyrase from an archaeon, Sulfolobus acidocaldarius, suggests that this enzyme contains both a helicase and a topoisomerase domains (Confalonieri et al., Proc. Natl. Acad. Sci., 1993, 90, 4735). Accordingly, it has been proposed that reversed gyrase originated by the fusion of DNA helicase and DNA topoisomerase genes. If reverse gyrase is essential for life at high temperature, its composite structure suggests that DNA helicases and topoisomerases appeared independently and first evolved in a mesophilic world. Such scenario contradicts the hypothesis that a direct link connects present day hyperthermophiles to a hot origin of life. We discuss different patterns for the early cellular evolution in which reverse gyrase appeared either before the emergence of the last common ancestor of Archaea, Bacteria and Eucarya, or in a lineage common to the two procaryotic domains. The later scenario could explain why all today hyperthermophiles are procaryotes.
Collapse
Affiliation(s)
- P Forterre
- Laboratoire des Archéobactéries, Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | | | | | |
Collapse
|
21
|
|
22
|
Kozyavkin S, Krah R, Gellert M, Stetter K, Lake J, Slesarev A. A reverse gyrase with an unusual structure. A type I DNA topoisomerase from the hyperthermophile Methanopyrus kandleri is a two-subunit protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78094-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Purification and characterization of reverse gyrase from Sulfolobus shibatae. Its proteolytic product appears as an ATP-independent topoisomerase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37682-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Slesarev A, Lake J, Stetter K, Gellert M, Kozyavkin S. Purification and characterization of DNA topoisomerase V. An enzyme from the hyperthermophilic prokaryote Methanopyrus kandleri that resembles eukaryotic topoisomerase I. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41862-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Tse-Dinh YC. Biochemistry of bacterial type I DNA topoisomerases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:21-37. [PMID: 7826860 DOI: 10.1016/s1054-3589(08)60538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y C Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| |
Collapse
|
26
|
Bouthier de la Tour C, Portemer C, Forterre P, Huber R, Duguet M. ATP-independent DNA topoisomerase from Fervidobacterium islandicum. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:213-20. [PMID: 8241262 DOI: 10.1016/0167-4781(93)90147-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thermotogales are thermophilic eubacteria belonging to a very slowly evolving branch in the eubacterial tree. In this report, we describe the purification and characterization of an ATP-independent DNA topoisomerase from the Thermotogale, Fervidobacterium islandicum. The enzyme, a monomer of about 75 kDa, is a type I DNA topoisomerase sharing many properties with the other bacterial topoisomerases I: it absolutely requires Mg2+ for activity, relaxes negatively but not positively supercoiled DNA and is inhibited by single-stranded M13 DNA and spermidine. A feature of the F. islandicum ATP-independent DNA topoisomerase I is its thermophily. The optimal temperature for the enzymatic activity is 75 degrees C. Studies about thermostability show that the enzyme is more stable when incubated undiluted in the storage buffer. In these conditions, 60% activity was retained after a 30 min preincubation at 75 degrees C.
Collapse
Affiliation(s)
- C Bouthier de la Tour
- Laboratoire d'Enzymologie des Acides Nucléiques, URA 1354 Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
27
|
Slesarev AI, Stetter KO, Lake JA, Gellert M, Krah R, Kozyavkin SA. DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature 1993; 364:735-7. [PMID: 8395022 DOI: 10.1038/364735a0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA topoisomerases are ubiquitous enzymes that fulfil vital roles in the replication, transcription and recombination of DNA by carrying out DNA-strand passage reactions. Here we characterize a prokaryotic counterpart to the eukaryotic topoisomerase I in the hyperthermophilic methanogen Methanopyrus kandleri. The new enzyme, called topoisomerase V, has the following properties in common with eukaryotic topoisomerase I, which distinguish it from all other known prokaryotic topoisomerases: (1) its activity is Mg(2+)-independent; (2) it relaxes both negatively and positively supercoiled DNA; (3) it makes a covalent complex with the 3' end of the broken DNA strand; and (4) it is recognized by antibody raised against human topoisomerase I. Eukaryotic-like enzymes have been discovered in some hyperthermophilic prokaryotes, namely the eocytes and the extremely thermophilic archaebacteria, and hyperthermophilic homologues of eukaryotic DNA polymerase-alpha, transcription factor IIB and DNA ligase have all been reported. Thus our findings support the idea that some essential parts of the eukaryotic transcription-translation and replication machineries were in place before the emergence of eukaryotes, and that the closest living relatives of eukaryotes may be hyperthermophiles.
Collapse
Affiliation(s)
- A I Slesarev
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | | | | | |
Collapse
|
28
|
Andera L, Mikulik K, Savelyeva ND. Characterization of a reverse gyrase from the extremely thermophilic hydrogen-oxidizing eubacteriumCalderobacterium hydrogenophilum. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06303.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Chapter 7 Proteins of extreme thermophiles. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Chapter 11 Chromosome structure, DNA topoisomerases, and DNA polymerases in archaebacteria (archaea). ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Charbonnier F, Erauso G, Barbeyron T, Prieur D, Forterre P. Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol 1992; 174:6103-8. [PMID: 1328151 PMCID: PMC207676 DOI: 10.1128/jb.174.19.6103-6108.1992] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A plasmid of 3.45 kb (pGT5) was recently discovered in a strain of hyperthermophilic archaebacterium which was isolated from samples collected in a deep-sea hydrothermal vent. This strain (GE5) grows within a temperature range of 68 to 101.5 degrees C, and we show here that it contains a strong ATP-dependent reverse gyrase activity (positive DNA supercoiling). By comparison with eubacterial plasmids of known superhelical densities, we estimated the superhelical density of the archaebacterial plasmid pGT5 to be -0.026 at 25 degrees C. The equation which relates the change of the rotation angle of the DNA double helix with temperature was validated at 95 degrees C, the optimal growth temperature of the GE5 strain. Considering these new data, the superhelical density of plasmid pGT5 was calculated to be -0.006 at the physiological temperature of 95 degrees C, which is close to the relaxed state. This finding shows that the DNA topology of a plasmid isolated from a hyperthermophilic archaebacterium containing reverse gyrase activity is strikingly different from that of typical eubacterial plasmids.
Collapse
Affiliation(s)
- F Charbonnier
- Institut de Génétique et Microbiologie, URA 1354 Centre National de la Recherche Scientifique, Université Paris Sud, Orsay, France
| | | | | | | | | |
Collapse
|
32
|
DNA topoisomerase III from extremely thermophilic archaebacteria. ATP-independent type I topoisomerase from Desulfurococcus amylolyticus drives extensive unwinding of closed circular DNA at high temperature. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98899-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Bouthier de la Tour C, Portemer C, Nadal M, Stetter KO, Forterre P, Duguet M. Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. J Bacteriol 1990; 172:6803-8. [PMID: 2174859 PMCID: PMC210796 DOI: 10.1128/jb.172.12.6803-6808.1990] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigation of the presence of a reverse gyrase-like activity in archaebacteria revealed wide distribution of this activity in hyperthermophilic species, including methanogens and sulfur-dependent organisms. In contrast, no reverse gyrase activity was detected in mesophilic and moderately thermophilic organisms, which exhibited only an ATP-independent activity of DNA relaxation. These results suggest that the presence of reverse gyrase in archaebacteria is tightly linked to the high growth temperatures of these organisms. With respect to antigenic properties, the enzyme appeared similar among members of the genus Sulfolobus. In contrast, no close antigenic relatedness was found between the reverse gyrase of members of the order Sulfolobales and that of the other hyperthermophilic organisms.
Collapse
Affiliation(s)
- C Bouthier de la Tour
- Laboratoire d'Enzymologie des Acides Nucléiques, URA 554 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Kovalsky OI, Kozyavkin SA, Slesarev AI. Archaebacterial reverse gyrase cleavage-site specificity is similar to that of eubacterial DNA topoisomerases I. Nucleic Acids Res 1990; 18:2801-5. [PMID: 2160070 PMCID: PMC330767 DOI: 10.1093/nar/18.9.2801] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ATP-dependent type I topoisomerases from extremely thermophilic archaebacteria--reverse gyrases--drive positive supercoiling of DNA. We showed that reverse gyrase from Desulfurococcus amylolyticus breaks the DNA at specific sites and covalently binds to the 5' end. In 30 out of 31 sites located in pBR322 DNA fragments, cleavage occurs at the sequence 5'---CNNN/---(N is any base). The same rule was previously shown to hold for single-stranded DNA breakage by eubacterial topoisomerases I. The relative cleavage frequencies at different sites depend on Mg2+ and temperature. We discuss the possible physiological and mechanistic role of the above specificity of the bacterial topoisomerases I.
Collapse
Affiliation(s)
- O I Kovalsky
- Institute of Molecular Genetics, USSR Academy of Sciences, Moscow
| | | | | |
Collapse
|
35
|
Slesarev AI, Kozyavkin SA. DNA substrate specificity of reverse gyrase from extremely thermophilic archaebacteria. J Biomol Struct Dyn 1990; 7:935-42. [PMID: 2155623 DOI: 10.1080/07391102.1990.10508533] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been shown earlier that eukaryotic type I DNA topoisomerases act on duplex DNA regions, while eubacterial type I topoisomerases require single-stranded regions. The present paper demonstrates that the type I topoisomerase from extremely thermophilic archaebacteria, reverse gyrase, winds DNA by binding to single-stranded DNA regions. Thus, type I topoisomerases, both relaxing one in eubacteria and reverse gyrase in extremely thermophilic archaebacteria share a substrate specificity to melted DNA regions. The important consequence of this specificity is that the cellular DNA superhelical stress actively controlled by bacterial topoisomerases is confined to a narrow range characterized by a low stability of the double helix. Hence we suppose that bacterial topoisomerase systems control duplex stability near its minimum, for which purpose they create an appropriate negative superhelicity at moderate temperatures or a positive one at extremely high temperatures, the feedback being ensured by the aforesaid specificity of type I bacterial topoisomerases.
Collapse
Affiliation(s)
- A I Slesarev
- Institute of Molecular Genetics, USSR Academy of Sciences, Moscow
| | | |
Collapse
|
36
|
Zimmer C, Störl K, Störl J. Microbial DNA topoisomerases and their inhibition by antibiotics. J Basic Microbiol 1990; 30:209-24. [PMID: 2164580 DOI: 10.1002/jobm.3620300312] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Supercoiling of bacterial DNA is regulated by topoisomerases and influences most of the metabolic processes involving DNA. The present review is devoted to a brief outline of the supercoiled state of DNA in bacteria and to all microbial topoisomerases hitherto described. Recent studies on topoisomerases of archaebacteria led to the discovery of a so-called reverse gyrase, the properties of which are also discussed. Special emphasis is given to a selective treatment of the effects of those antibiotics which act as gyrase inhibitors.
Collapse
Affiliation(s)
- C Zimmer
- Akademie der Wissenschaften der DDR
| | | | | |
Collapse
|