1
|
Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J. Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. PLANT PHYSIOLOGY 2005; 137:848-62. [PMID: 15734919 PMCID: PMC1065386 DOI: 10.1104/pp.104.053637] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 05/18/2023]
Abstract
Analysis of 80S ribosomes of Arabidopsis (Arabidopsis thaliana) by use of high-speed centrifugation, sucrose gradient fractionation, one- and two-dimensional gel electrophoresis, liquid chromatography purification, and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization) identified 74 ribosomal proteins (r-proteins), of which 73 are orthologs of rat r-proteins and one is the plant-specific r-protein P3. Thirty small (40S) subunit and 44 large (60S) subunit r-proteins were confirmed. In addition, an ortholog of the mammalian receptor for activated protein kinase C, a tryptophan-aspartic acid-domain repeat protein, was found to be associated with the 40S subunit and polysomes. Based on the prediction that each r-protein is present in a single copy, the mass of the Arabidopsis 80S ribosome was estimated as 3.2 MD (1,159 kD 40S; 2,010 kD 60S), with the 4 single-copy rRNAs (18S, 26S, 5.8S, and 5S) contributing 53% of the mass. Despite strong evolutionary conservation in r-protein composition among eukaryotes, Arabidopsis 80S ribosomes are variable in composition due to distinctions in mass or charge of approximately 25% of the r-proteins. This is a consequence of amino acid sequence divergence within r-protein gene families and posttranslational modification of individual r-proteins (e.g. amino-terminal acetylation, phosphorylation). For example, distinct types of r-proteins S15a and P2 accumulate in ribosomes due to evolutionarily divergence of r-protein genes. Ribosome variation is also due to amino acid sequence divergence and differential phosphorylation of the carboxy terminus of r-protein S6. The role of ribosome heterogeneity in differential mRNA translation is discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| | | | | | | |
Collapse
|
2
|
Lee SW, Berger SJ, Martinović S, Pasa-Tolić L, Anderson GA, Shen Y, Zhao R, Smith RD. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc Natl Acad Sci U S A 2002; 99:5942-7. [PMID: 11983894 PMCID: PMC122881 DOI: 10.1073/pnas.082119899] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 02/28/2002] [Indexed: 11/18/2022] Open
Abstract
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry coupled with capillary reverse-phase liquid chromatography was used to characterize intact proteins from the large subunit of the yeast ribosome. High mass measurement accuracy, achieved by "mass locking" with an internal standard from a dual electrospray ionization source, allowed identification of ribosomal proteins. Analyses of the intact proteins revealed information on cotranslational and posttranslational modifications of the ribosomal proteins that included loss of the initiating methionine, acetylation, methylation, and proteolytic maturation. High-resolution separations permitted differentiation of protein isoforms having high structural similarity as well as proteins from their modified forms, facilitating unequivocal assignments. The study identified 42 of the 43 core large ribosomal subunit proteins and 58 (of 64 possible) core large subunit protein isoforms having unique masses in a single analysis. These results demonstrate the basis for the high-throughput analyses of complex mixtures of intact proteins, which we believe will be an important complement to other approaches for defining protein modifications and their changes resulting from physiological processes or environmental perturbations.
Collapse
Affiliation(s)
- Sang-Won Lee
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Gonzalo P, Lavergne JP, Reboud JP. Pivotal role of the P1 N-terminal domain in the assembly of the mammalian ribosomal stalk and in the proteosynthetic activity. J Biol Chem 2001; 276:19762-9. [PMID: 11274186 DOI: 10.1074/jbc.m101398200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the 60 S ribosomal subunit, the lateral stalk made of the P-proteins plays a major role in translation. It contains P0, an insoluble protein anchoring P1 and P2 to the ribosome. Here, rat recombinant P0 was overproduced in inclusion bodies and solubilized in complex with the other P-proteins. This method of solubilization appeared suitable to show protein complexes and revealed that P1, but not P2, interacted with P0. Furthermore, the use of truncated mutants of P1 and P2 indicated that residues 1-63 in P1 connected P0 to residues 1-65 in P2. Additional experiments resulted in the conclusion that P1 and P2 bound one another, either connected with P0 or free, as found in the cytoplasm. Accordingly, a model of association for the P-proteins in the stalk is proposed. Recombinant P0 in complex with phosphorylated P2 and either P1 or its (1-63) domain efficiently restored the proteosynthetic activity of 60 S subunits deprived of native P-proteins. Therefore, refolded P0 was functional and residues 1-63 only in P1 were essential. Furthermore, our results emphasize that the refolding principle used here is worth considering for solubilizing other insoluble proteins.
Collapse
Affiliation(s)
- P Gonzalo
- Laboratoire de Biochimie Médicale, Institut de Biologie et de Chimie des Protéines-Unité Mixte de Recherche 5086 CNRS, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | |
Collapse
|
4
|
Tchórzewski M, Boguszewska A, Abramczyk D, Grankowski N. Overexpression in Escherichia coli, purification, and characterization of recombinant 60S ribosomal acidic proteins from Saccharomyces cerevisiae. Protein Expr Purif 1999; 15:40-7. [PMID: 10024468 DOI: 10.1006/prep.1998.0997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 60S ribosomal subunits from Saccharomyces cerevisiae contain a set of four acidic proteins named YP1alpha, YP1beta, YP2alpha, and YP2beta. The genes for each were PCR amplified from a yeast cDNA library, sequenced, and expressed in Escherichia coli cells using two expression systems. The first system, pLM1, was used for YP1beta, YP2alpha, and YP2beta. The second one, pT7-7, was used for YP1alpha. Expression in both cases was under the control of a strong inducible T7 promoter. The amount of induced recombinant proteins in the host cells was around 10 to 20% of the total soluble bacterial proteins. A new protocol for purification of all four recombinant proteins was established. The preliminary steps of purification were done by ammonium sulfate precipitation (YP1alpha, YP1beta) or NH4Cl/ethanol extraction (YP2alpha, YP2beta). The recombinant proteins were then purified to apparent homogeneity by only two steps of classical chromatographies, ion exchange (DEAE-cellulose) and gel filtration (Sephacryl S-200). Isoelectrofocusing analysis of YP2alpha and YP2beta showed the pIs of the recombinant proteins are the same as that of the native yeast ribosomal P2 proteins. The pI of YP1alpha is changed due to the addition of five amino acids attached to the N-terminus of recombinant polypeptide from the expression vector. YP1beta was obtained as a truncated form of polypeptide, similar to its ribosomal counterpart, YP1beta'. This was proved by isoelectrofocusing gel analysis.
Collapse
Affiliation(s)
- M Tchórzewski
- Department of Molecular Biology, Maria Curie-Sklodowska University, Institute of Microbiology and Biotechnology, Akademicka 19 Street, Lublin, 20-033, Poland
| | | | | | | |
Collapse
|
5
|
Briones E, Briones C, Remacha M, Ballesta JP. The GTPase center protein L12 is required for correct ribosomal stalk assembly but not for Saccharomyces cerevisiae viability. J Biol Chem 1998; 273:31956-61. [PMID: 9822666 DOI: 10.1074/jbc.273.48.31956] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L12, together with the P0/P1/P2 protein complex, forms the protein moiety of the GTPase domain in the eukaryotic ribosome. In Saccharomyces cerevisiae protein L12 is encoded by a duplicated gene, rpL12A and rpL12B. Inactivation of both copies has been performed and confirmed by Southern and Western analyses. The resulting strains are viable but grow very slowly. Growth rate is recovered upon transformation with an intact copy of the L12 gene. Ribosomes from the disrupted strain lack protein L12 but are able to carry out translation in vitro at about one fourth of the control rate. The L12-deficient ribosomes have also a defective stalk containing standard amounts of the 12-kDa acidic proteins P1beta and P2alpha, but proteins P1alpha and P2beta are drastically reduced. Moreover, the affinity of P0 is reduced in the defective ribosomes. Footprinting of the 26 S rRNA GTPase domain indicates that protein L12 protects in different extent residues G1235, G1242, A1262, A1270, and A1272 from chemical modification. The results in this report indicate that protein L12 is not essential for cell viability but has a relevant role in the structure and stability of the eukaryotic ribosomal stalk.
Collapse
Affiliation(s)
- E Briones
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Ballesta JP, Remacha M. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:157-93. [PMID: 8787610 DOI: 10.1016/s0079-6603(08)60193-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular "Severo Ochoa" Canto Blanco, Madrid, Spain
| | | |
Collapse
|
7
|
Schlünzen F, Hansen HA, Thygesen J, Bennett WS, Volkmann N, Levin I, Harms J, Bartels H, Zaytzev-Bashan A, Berkovitch-Yellin Z. A milestone in ribosomal crystallography: the construction of preliminary electron density maps at intermediate resolution. Biochem Cell Biol 1995; 73:739-49. [PMID: 8721990 DOI: 10.1139/o95-082] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Preliminary electron density maps of the large and the small ribosomal particles from halophilic and thermophilic sources, phased by the isomorphous replacement method, have been constructed at intermediate resolution. These maps contain features comparable in size with what is expected for the corresponding particles, and their packing arrangements are in accord with the schemes obtained by ab-initio procedures as well as with the motifs observed in thin sections of the crystals by electron microscopy. To phase higher resolution data, procedures are being developed for derivatization by specific labeling of the ribosomal particles at selected locations with rather small and dense clusters. Potential binding sites are being inserted either by site directed mutagenesis or by chemical modifications to facilitate cluster binding on the surface of the halophilic large and the thermophilic small ribosomal particles, which yield the crystals diffracting to highest resolution (2.9 and 7.3 A (1 A = 0.1 nm), respectively). For this purpose, the surface of these ribosomal particles is being characterized and procedures are being developed for quantitative detachment of selected ribosomal proteins and for their incorporation into core particles. The genes of these proteins are being cloned, sequenced, mutated to introduce reactive side groups, mainly cysteines, and overexpressed. In parallel, two in situ small and stable complexes were isolated from the halophilic ribosome. Procedures for their crystal production in large quantities are currently being developed. Models, reconstructed at low resolution from crystalline arrays of ribosomes and their large subunits, are being used for initial low-resolution phasing of the X-ray amplitudes. The interpretation of these models stimulated the design and the crystallization of complexes mimicking defined functional states of a higher quality than those obtained for isolated ribosomes. These models also inspired modelling experiments according to results of functional studies, performed elsewhere, focusing on the progression of nascent proteins.
Collapse
Affiliation(s)
- F Schlünzen
- Max-Planck Laboratory for Ribosomal Structure, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40736-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Naranda T, Remacha M, Ballesta J. The activity-controlling phosphorylation site is not the same in the four acidic ribosomal proteins from Saccharomyces cerevisiae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53797-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Köpke AK, Leggatt PA, Matheson AT. Structure function relationships in the ribosomal stalk proteins of archaebacteria. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48442-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Casiano C, Traut R. Protein topography of Sulfolobus solfataricus ribosomes by cross-linking with 2-iminothiolane. Sso L12e, Sso L10e, and Sso L11e are neighbors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Köpke AK, Hannemann F, Boeckh T. Genetic engineering and overexpression of ribosomal L12 protein genes from three different archaebacteria in E coli. Biochimie 1991; 73:647-55. [PMID: 1764512 DOI: 10.1016/0300-9084(91)90044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genes coding for ribosomal protein L12 from Methanococcus vannielii (Mva), Halobacterium halobium (Hha) and Sulfolobus solfataricus (Sso) have been subcloned in the polylinker region of pUC19. An efficient Shine-Dalgarno sequence has been attached to the 5' end of the genes, and two ochre stop codons have been created at their 3' ends, where necessary. In addition, mutants of the MvaL12 and HhaL12 genes were constructed, which coded for a cysteine residue at the C-terminus of the protein. The constructs were transferred together with the pUC19 polylinker as gene cartridges into different expression vectors. These constructed plasmids were transformed in the appropriate E coli hosts and tested for expression. Two systems were found to work efficiently for overexpression, namely the pKK223-3 vector featuring a tac promoter, and the pT7-5 vector featuring a T7-promoter. The over-expressed proteins were purified to homogeneity; their purity was investigated by one and two-dimensional gel systems, amino acid analysis and N-terminal protein sequencing for 10 steps or more. The amount of protein purified from E coli test cultures bearing the expression plasmids was always more than 2.5 mg/l of medium used.
Collapse
Affiliation(s)
- A K Köpke
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Germany
| | | | | |
Collapse
|
13
|
Vilella MD, Remacha M, Ortiz BL, Mendez E, Ballesta JP. Characterization of the yeast acidic ribosomal phosphoproteins using monoclonal antibodies. Proteins L44/L45 and L44' have different functional roles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:407-14. [PMID: 1706664 DOI: 10.1111/j.1432-1033.1991.tb15831.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to characterize the acidic ribosomal proteins immunologically and functionally, a battery of monoclonal antibodies specific for L44, L44' and L45, the three acidic proteins detected in Saccharomyces cerevisiae, were obtained. Eight monoclonal antibodies were obtained specific for L45, three for L44' and one for L44. In addition, two mAbs recognizing only the phosphorylated forms of the three proteins were obtained. The specific immunogenic determinants are located in the middle region of the protein structure and are differently exposed in the ribosomal surface. The common determinants are present in the carboxyl end of the three proteins. An estimation of the acidic proteins by ELISA indicated that, in contrast to L44 and L45, L44' is practically absent from the cell supernatant; this suggests that protein L44' does not intervene in the exchange that has been shown to take place between the acidic proteins in the ribosome and in the cytoplasmic pool. It has also been found that, while IgGs specific for L44 and L45 do not inhibit the ribosome activity, the anti-L44' effectively blocks the polymerizing activity of the particles. These results show for the first time that the different eukaryotic acidic ribosomal proteins play a different functional role.
Collapse
Affiliation(s)
- M D Vilella
- Centro de Biologia Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Pucciarelli MG, Remacha M, Vilella MD, Ballesta JP. The 26S rRNA binding ribosomal protein equivalent to bacterial protein L11 is encoded by unspliced duplicated genes in Saccharomyces cerevisiae. Nucleic Acids Res 1990; 18:4409-16. [PMID: 2167467 PMCID: PMC331258 DOI: 10.1093/nar/18.15.4409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transformant phages expressing L15, a yeast ribosomal protein which binds to 26S rRNA and interacts with the acidic ribosomal proteins, were isolated by screening a yeast cDNA expression library in lambda gt11 with specific monoclonal antibodies. Using yeast DNA HindIII fragments that hybridize with the cDNA insert from the L15-expressing clones, minilibraries were prepared in pUC18, which were afterward screened with the same cDNA probe. In this way, plasmids carrying two different types of genomic DNA inserts were obtained. The inserts were subcloned and sequenced and we found a similar coding sequence in both cases flanked by 5' and 3' regions with very low homology. Sequences homologous to the consensus TUF-binding UAS boxes are present in the 5' flanking regions of both genes. Southern analysis revealed the presence of two copies of the L15 gene in the Saccharomyces cerevisiae genome, which are located in different chromosomes. The encoded amino acid sequence corresponds, as expected, to protein L15 and shows a high similarity to bacterial ribosomal protein L11.
Collapse
Affiliation(s)
- M G Pucciarelli
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Köpke AK, Paulke C, Gewitz HS. Overexpression of the methanococcal ribosomal protein L12 in Escherichia coli and its incorporation into halobacterial 50 S subunits yielding active ribosomes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39345-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Identification of Neighboring Protein Pairs in the 60 S Ribosomal Subunits from Saccharomyces cerevisiae by Chemical Cross-linking. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81655-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Abstract
The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32, the protein itself causes a feedback inhibition of the splicing of the transcript of its own gene. The synthesis of ribosomes involves a massive transfer of material across the nuclear envelope in both directions. Nuclear localization signals have been identified for at least three ribosomal proteins; they are similar but not identical to those identified for the simian virus 40 T antigen. There is no information about how ribosomal subunits are transported from the nucleus to the cytoplasm.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
18
|
Köpke AK, Baier G, Wittmann-Liebold B. An archaebacterial gene from Methanococcus vannielii encoding a protein homologous to the ribosomal protein L10 family. FEBS Lett 1989; 247:167-72. [PMID: 2497026 DOI: 10.1016/0014-5793(89)81326-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An open reading frame upstream of the Methanococcus vannielii L12 gene has been detected. The beginning of this open reading frame agrees with the N-terminal region of a protein (MvaL10) which has been isolated from the 50 S ribosomal subunit of M. vannielii and sequenced. The length of this gene is 1008 nucleotides, coding for 336 amino acids. Excellent sequence similarities were found to the L10-like ribosomal proteins from Halobacterium halobium and man. The N-terminal part of the MvaL10 protein shows significant sequence similarities to the E. coli L10 protein. MvaL10 is more than twice as long as E. coli L10 but is of length similar to those of the homologous halobacterial and human proteins. Interestingly, the C-terminal region of MvaL10 shows exceptionally high similarity to the C-terminal sequence of the MvaL12 protein. This is not the case for the E. coli proteins but was also observed for the human, Halobacterium and Sulfolobus proteins.
Collapse
Affiliation(s)
- A K Köpke
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Germany
| | | | | |
Collapse
|