1
|
Yamasaki K, Yamasaki T, Takahashi M, Suematsu H. A mixing microfluidic chip for real-time NMR monitoring of macromolecular reaction. J Biochem 2021; 170:363-368. [PMID: 33831188 DOI: 10.1093/jb/mvab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
NMR spectroscopy permits real-time monitoring of reactions that involve changes in the spectra of reactants. MICCS (MIcro Channeled Cell for Synthesis monitoring) is a microfluidic chip for such purposes, which is used to rapidly activate reactions by mixing the reactant solutions in the chip inserted into the typical NMR tube. Although it allows monitoring of chemical reactions of small compounds, its simple mixing system dependent on diffusion in the microchannel was not suitable for macromolecules such as proteins with low diffusion rates. Here we developed a new microfluidic chip based on MICCS by incorporating a mixer of split-and-recombination type within the microchannel. We applied it to monitoring of the protein-folding reaction in a stopped-flow mode. A solution of denaturant-unfolded RNase A was injected from a syringe pump into the microchip set inside the NMR magnet and mixed with a buffer for dilution to reach the folding condition. Immediately after dilution, the reaction was initiated and detected by a series of NMR measurements that were synchronized with activation and inactivation of the pump. The process was repeated for accumulation of the data. By analyzing the change of the spectra by factor analysis, a kinetic constant of 0.57 min-1 was obtained.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 3058566, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 3058566, Japan
| | - Masaharu Takahashi
- Planning Headquarters, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 3058560, Japan
| | - Hiroto Suematsu
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 1968558, Japan
| |
Collapse
|
2
|
Fagagnini A, Montioli R, Caloiu A, Ribó M, Laurents DV, Gotte G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:76-87. [PMID: 27783927 DOI: 10.1016/j.bbapap.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Andra Caloiu
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071, y Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Douglas V Laurents
- Instituto de Quimica Fisica "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
3
|
Interactions of gemini surfactants with two model proteins: NMR, CD, and fluorescence spectroscopies. J Colloid Interface Sci 2012; 369:245-55. [DOI: 10.1016/j.jcis.2011.11.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 11/15/2022]
|
4
|
Tripathy DR, Singha Roy A, Dasgupta S. Complex formation of rutin and quercetin with copper alters the mode of inhibition of Ribonuclease A. FEBS Lett 2011; 585:3270-6. [DOI: 10.1016/j.febslet.2011.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
5
|
López-Alonso JP, Diez-García F, Font J, Ribó M, Vilanova M, Scholtz JM, González C, Vottariello F, Gotte G, Libonati M, Laurents DV. Carbodiimide EDC Induces Cross-Links That Stabilize RNase A C-Dimer against Dissociation: EDC Adducts Can Affect Protein Net Charge, Conformation, and Activity. Bioconjug Chem 2009; 20:1459-73. [DOI: 10.1021/bc9001486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jorge P. López-Alonso
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Fernando Diez-García
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Josep Font
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Marc Ribó
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Maria Vilanova
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - J. Martin Scholtz
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Carlos González
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Francesca Vottariello
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Giovanni Gotte
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Massimo Libonati
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano” (C.S.I.C.), Serrano 119, E-28006, Madrid, Spain, Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134, Verona, Italy, Laboratori d’Enginyeria de Proteïnes, Departament de Biología, Facultad de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain, and Department of Medical Biochemistry, Texas A&M University School of Medicine, College
| |
Collapse
|
6
|
Day IJ, Maeda K, Paisley HJ, Mok KH, Hore PJ. Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2009; 44:77-86. [PMID: 19436956 DOI: 10.1007/s10858-009-9322-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
Photo-CIDNP NMR spectroscopy is a powerful method for investigating the solvent accessibility of histidine, tyrosine and tryptophan residues in a protein. When coupled to real-time NMR, this technique allows changes in the environments of these residues to be used as a probe of protein folding. In this paper we describe experiments performed to monitor the refolding of ribonuclease A following dilution from a high concentration of chemical denaturant. These experiments provide a good example of the utility of this technique which provides information that is difficult to obtain by other biophysical methods. Real-time photo-CIDNP measurements yield residue-specific kinetic data pertaining to the folding reaction, interpreted in terms of current knowledge of the folding of bovine pancreatic ribonuclease A.
Collapse
Affiliation(s)
- Iain J Day
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX13QZ, UK
| | | | | | | | | |
Collapse
|
7
|
Blanchard V, Frank M, Leeflang BR, Boelens R, Kamerling JP. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS. Biochemistry 2008; 47:3435-46. [PMID: 18293928 DOI: 10.1021/bi7012504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.
Collapse
Affiliation(s)
- Véronique Blanchard
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Abstract
The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35 degrees C), the I106A variant (35 degrees C), and the V108G variant (10 degrees C) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 + EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions.
Collapse
|
9
|
Teng CL, Hinderliter B, Bryant RG. Oxygen accessibility to ribonuclease a: quantitative interpretation of nuclear spin relaxation induced by a freely diffusing paramagnet. J Phys Chem A 2007; 110:580-8. [PMID: 16405330 DOI: 10.1021/jp0526593] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclear spin relaxation induced by a freely diffusing paramagnetic center provides a direct measure of intermolecular accessibility. A number of factors are involved in a quantitative interpretation of relaxation data including excluded volume effects, solvation differences, and the details of the electron spin relaxation in the paramagnetic center. In the case where the electron relaxation time is short compared with correlation times describing the electron-nuclear coupling, the nuclear spin relaxation rates may be related to the effective local concentration of the paramagnetic center at different locations about the solute of interest. The local concentrations may in turn be related to differences in the local free energies of interaction between the diffusing paramagnet and the cosolute. We demonstrate this approach for the case of ribonuclease A and deduce surface free energy differences for a large number of protein proton sites. We find that the oxygen accessibility is poorly represented by hard-sphere models such as computed solvent or steric accessibility. There is a distribution of local intermolecular interactions with a width of the order of RT that dominates the report of the intermolecular exploration of the protein by this simple solute.
Collapse
Affiliation(s)
- Ching-Ling Teng
- The Biophysics Program and Chemistry Department, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | | | |
Collapse
|
10
|
Lee YC, Jackson PL, Jablonsky MJ, Muccio DD. Conformation of 3'CMP bound to RNase A using TrNOESY. Arch Biochem Biophys 2007; 463:37-46. [PMID: 17416340 DOI: 10.1016/j.abb.2007.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3'CMP) bound to a small protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3'CMP bound to RNase A was determined (glycosidic torsion angle, chi=-166 degrees ; pseudorotational phase angle, 0 degrees < or = P < or =36 degrees ). Ligand-protein NOESY cross peaks were also observed and used to dock 3'CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the 3'CMP:RNase A complex was similar to the X-ray structure (1 rpf) except that a C3'-endo conformation for the ribose ring (rather than C2'-exo conformation) was found in the TrNOESY structure.
Collapse
Affiliation(s)
- Yi-Chien Lee
- National Cancer Institute at Frederick, Laboratory of Medical Chemistry, 376 Boyles Street, Building 376, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
11
|
López-Alonso JP, Bruix M, Font J, Ribó M, Vilanova M, Rico M, Gotte G, Libonati M, González C, Laurents DV. Formation, structure, and dissociation of the ribonuclease S three-dimensional domain-swapped dimer. J Biol Chem 2006; 281:9400-6. [PMID: 16415350 DOI: 10.1074/jbc.m510491200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational events, such as proteolysis, are believed to play essential roles in amyloid formation in vivo. Ribonuclease A forms oligomers by the three-dimensional domain-swapping mechanism. Here, we demonstrate the ability of ribonuclease S, a proteolytically cleaved form of ribonuclease A, to oligomerize efficiently. This unexpected capacity has been investigated to study the effect of proteolysis on oligomerization and amyloid formation. The yield of the RNase S dimer was found to be significantly higher than that of RNase A dimers, which suggests that proteolysis can activate oligomerization via the three-dimensional domain-swapping mechanism. Characterization by chromatography, enzymatic assays, and NMR spectroscopy indicate that the structure of the RNase S dimer is similar to that of the RNase A C-dimer. The RNase S dimer dissociates much more readily than the RNase A C-dimer does. By measuring the dissociation rate as a function of temperature, the activation enthalpy and entropy for RNase S dimer dissociation were found to resemble those for the release of the small fragment (S-peptide) from monomeric RNase S. Excess S-peptide strongly slows RNase S dimer dissociation. These results strongly suggest that S-peptide release is the rate-limiting step of RNase S dimer dissociation.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Instituto de Química-Física "Rocasolano" CSIC, Serrano 119, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Teng CL, Bryant RG. Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy. Biophys J 2004; 86:1713-25. [PMID: 14990499 PMCID: PMC1304007 DOI: 10.1016/s0006-3495(04)74240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Paramagnetic contributions to nuclear magnetic spin-lattice relaxation rate constant induced by freely diffusing molecular oxygen measured at hundreds of different protein proton sites provide a direct means for characterizing the exploration of the protein by oxygen. This report focuses on regions of ribonuclease A where the rate constant enhancements are either quite large or quite small. We find that there are several regions of enhanced oxygen affinity for the protein both on the surface and in interior pockets where sufficient free volume permits. Oxygen has weak associative interactions with a number of surface crevices that are generally between secondary structural elements of the protein fold. Several regions near the surface have higher than expected accessibility to oxygen indicating that structural fluctuations in the protein provide intermolecular access. Oxygen penetrates part of the hydrophobic interior, but affinity does not correlate simply with hydrophobicity indices. Oxygen is excluded from regions of high interior packing density and a few surface sites where x-ray diffraction data have indicated the presence of specific hydration with high occupancy.
Collapse
Affiliation(s)
- Ching-Ling Teng
- Biophysics Program and Chemistry Department, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | |
Collapse
|
13
|
Abstract
A key paradigm in the biology of adaptation holds that urea affects protein function by increasing the fluctuations of the native state, while trimethylamine N-oxide (TMAO) affects function in the opposite direction by decreasing the normal fluctuations of the native ensemble. Using urea and TMAO separately and together, hydrogen exchange (HX) studies on RNase A at pH* 6.35 were used to investigate the basic tenets of the urea:TMAO paradigm. TMAO (1 M) alone decreases HX rate constants of a select number of sites exchanging from the native ensemble, and low urea alone increases the rate constants of some of the same sites. Addition of TMAO to urea solutions containing RNase A also suppresses HX rate constants. The data show that urea and TMAO independently or in combination affect the dynamics of the native ensemble in opposing ways. The results provide evidence in support of the counteraction aspect of the urea:TMAO paradigm linking structural dynamics with protein function in urea-rich organs and organisms. RNase A is so resistant to urea denaturation at pH* 6.35 that even in the presence of 4.8 M urea, the native ensemble accounts for >99.5% of the protein. An essential test, devised to determine the HX mechanism of exchangeable protons, shows that over the 0-4.8 M urea concentration range nearly 80% of all observed sites convert from EX2 to EX1. The slow exchange sites are all EX1; they do not exhibit global exchange even at urea concentrations (5.8 M) well into the denaturation transition zone, and their energetically distinct activated complexes leading to exchange gives evidence of residual structure. Under these experimental conditions, the use of DeltaG(HX) as a basis for HX analysis of RNase A urea denaturation is invalid.
Collapse
Affiliation(s)
- Youxing Qu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 5.154 MRB, Galveston, Texas 77555-1052, USA
| | | |
Collapse
|
14
|
Nilsson BL, Hondal RJ, Soellner MB, Raines RT. Protein assembly by orthogonal chemical ligation methods. J Am Chem Soc 2003; 125:5268-9. [PMID: 12720426 DOI: 10.1021/ja029752e] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical synthesis harbors the potential to provide ready access to natural proteins as well as to create nonnatural ones. The Staudinger ligation of a peptide containing a C-terminal phosphinothioester with a peptide containing an N-terminal azide gives an amide with no residual atoms. This method for amide bond formation is orthogonal and complementary to other ligation methods. Herein, we describe the first use of the Staudinger ligation to couple peptides on a solid support. The fragment thus produced is used to assemble functional ribonuclease A via native chemical ligation. The synthesis of a protein by this route expands the versatility of chemical approaches to protein production.
Collapse
Affiliation(s)
- Bradley L Nilsson
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
Stelea SD, Keiderling TA. Pretransitional structural changes in the thermal denaturation of ribonuclease S and S protein. Biophys J 2002; 83:2259-69. [PMID: 12324443 PMCID: PMC1302314 DOI: 10.1016/s0006-3495(02)73986-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.
Collapse
Affiliation(s)
- Simona D Stelea
- Department of Chemistry, University of Illinois at Chicago, 60607-7061, USA
| | | |
Collapse
|
16
|
Torrent J, Rubens P, Ribó M, Heremans K, Vilanova M. Pressure versus temperature unfolding of ribonuclease A: an FTIR spectroscopic characterization of 10 variants at the carboxy-terminal site. Protein Sci 2001; 10:725-34. [PMID: 11274463 PMCID: PMC2373970 DOI: 10.1110/ps.43001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
FTIR spectroscopy was used to characterize and compare the temperature- and pressure-induced unfolding of ribonuclease A and a set of its variants engineered in a hydrophobic region of the C-terminal part of the molecule postulated as a CFIS. The results show for all the ribonucleases investigated, a cooperative, two-state, reversible unfolding transition using both pressure and temperature. The relative stabilities, among the different sites and different variants at the same site, monitored either through the changes in the position of the maximum of the amide I' band and the tyrosine band, or the maximum of the band assigned to the beta-sheet structure, corroborate the results of a previous study using fourth-derivative UV absorbance spectroscopy. In addition, variants at position 108 are the most critical for ribonuclease structure and stability. The V108G variant seems to present a greater conformational flexibility than the other variants. The pressure- and temperature-denaturated states of all the ribonucleases characterized retained some secondary structure. However, their spectral maxima were centered at different wavenumbers, which suggests that pressure- and temperature-denaturated states do not have the same structural characteristics. Nevertheless, there was close correlation between the pressure and temperature midpoint transition values for the whole series of protein variants, which indicated a common tendency of stability toward pressure and heat.
Collapse
Affiliation(s)
- J Torrent
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | | | | | | | | |
Collapse
|
17
|
Yan YB, Jiang B, Zhang RQ, Zhou HM. Two-phase unfolding pathway of ribonuclease A during denaturation induced by dithiothreitol. Protein Sci 2001; 10:321-8. [PMID: 11266618 PMCID: PMC2373942 DOI: 10.1110/ps.20801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The dynamics of the unfolding process of bovine pancreatic ribonuclease A (RNase A) unfolded by dithiothreitol (DTT) at a low concentration of 1:30 were investigated in alkaline phosphate-buffered saline solutions at 303K and 313K by using proton nuclear magnetic resonance ((1)H NMR) spectra. Three NMR spectral parameters including Shannon entropy, mutual information, and correlation coefficient were introduced into the analysis. The results show that the unfolding process of RNase A was slowed to the order of many hours, and the kinetics of the unfolding pathway described by the three parameters is best fit by a model of two consecutive first-order reactions. Temperature greatly influences the rate constants of the unfolding kinetics with different temperature effects observed for the fast and the slow processes. The consistencies and the differences between the three sets of parameters show that they reflect the same relative denaturation pathway but different spectra windows of the unfolding process of RNase A. The results suggest that the unfolding process of RNase A induced by low concentrations of DTT is a two-phase pathway containing fast and slow first-order reactions.
Collapse
Affiliation(s)
- Y B Yan
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
18
|
Palmer HR, Bedford JJ, Leader JP, Smith RA. 31P and 1H NMR studies of the effect of the counteracting osmolyte trimethylamine-N-oxide on interactions of urea with ribonuclease A. J Biol Chem 2000; 275:27708-11. [PMID: 10862769 DOI: 10.1074/jbc.m003550200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
31P NMR spectroscopy has been used to show that the activity of RNase A, which is lowered in the presence of urea, can be recovered with trimethylamine-N-oxide (TMAO). A 1:1 ratio of TMAO:urea was sufficient to recover the enzyme activity. (1)H nuclear Overhauser effect spectroscopy NMR studies with RNase A have shown that even at relatively low effective concentrations of TMAO, some modification of the three-dimensional structure of the biomolecule is apparent.
Collapse
Affiliation(s)
- H R Palmer
- Department of Physiology, University of Otago Medical School and the Department of Chemistry, University of Otago, Dunedin 9001, New Zealand
| | | | | | | |
Collapse
|
19
|
Arnold U, Ulbrich-Hofmann R. Differences in the denaturation behavior of ribonuclease A induced by temperature and guanidine hydrochloride. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:345-52. [PMID: 11131141 DOI: 10.1023/a:1026479212350] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Moderate temperatures or low concentrations of denaturants diminish the catalytic activity of some enzymes before spectroscopic methods indicate protein unfolding. To discriminate between possible reasons for the inactivation of ribonuclease A, we investigated the influence of temperature and guanidine hydrochloride on its proteolytic susceptibility to proteinase K by determining the proteolytic rate constants and fragment patterns. The results were related to changes of activity and spectroscopic properties of ribonuclease A. With thermal denaturation, the changes in activity and in the rate constants of proteolytic degradation coincide and occur slightly before the spectroscopically observable transition. In the case of guanidine hydrochloride-induced denaturation, however, proteolytic resistance of ribonuclease A initially increases accompanied by a drastic activity decrease far before unfolding of the protein is detected by spectroscopy or proteolysis. In addition to ionic effects, a tightening of the protein structure at low guanidine hydrochloride concentrations is suggested to be responsible for ribonuclease A inactivation.
Collapse
Affiliation(s)
- U Arnold
- Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, Germany
| | | |
Collapse
|
20
|
Teng CL, Bryant RG. Experimental Measurement of Nonuniform Dioxygen Accessibility to Ribonuclease A Surface and Interior. J Am Chem Soc 2000. [DOI: 10.1021/ja9925709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ching-Ling Teng
- Department of Chemistry, University of Virginia Charlottesville, Virginia 22901
| | - Robert G. Bryant
- Department of Chemistry, University of Virginia Charlottesville, Virginia 22901
| |
Collapse
|
21
|
Xiong Y, Juminaga D, Swapna GV, Wedemeyer WJ, Scheraga HA, Montelione GT. Solution NMR evidence for a cis Tyr-Ala peptide group in the structure of [Pro93Ala] bovine pancreatic ribonuclease A. Protein Sci 2000; 9:421-6. [PMID: 10716195 PMCID: PMC2144552 DOI: 10.1110/ps.9.2.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proline peptide group isomerization can result in kinetic barriers in protein folding. In particular, the cis proline peptide conformation at Tyr92-Pro93 of bovine pancreatic ribonuclease A (RNase A) has been proposed to be crucial for chain folding initiation. Mutation of this proline-93 to alanine results in an RNase A molecule, P93A, that exhibits unfolding/refolding kinetics consistent with a cis Tyr92-Ala93 peptide group conformation in the folded structure (Dodge RW, Scheraga HA, 1996, Biochemistry 35:1548-1559). Here, we describe the analysis of backbone proton resonance assignments for P93A together with nuclear Overhauser effect data that provide spectroscopic evidence for a type VI beta-bend conformation with a cis Tyr92-Ala93 peptide group in the folded structure. This is in contrast to the reported X-ray crystal structure of [Pro93Gly]-RNase A (Schultz LW, Hargraves SR, Klink TA, Raines RT, 1998, Protein Sci 7:1620-1625), in which Tyr92-Gly93 forms a type-II beta-bend with a trans peptide group conformation. While a glycine residue at position 93 accommodates a type-II bend (with a positive value of phi93), RNase A molecules with either proline or alanine residues at this position appear to require a cis peptide group with a type-VI beta-bend for proper folding. These results support the view that a cis Pro93 conformation is crucial for proper folding of wild-type RNase A.
Collapse
Affiliation(s)
- Y Xiong
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-5638, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chakshusmathi G, Ratnaparkhi GS, Madhu PK, Varadarajan R. Native-state hydrogen-exchange studies of a fragment complex can provide structural information about the isolated fragments. Proc Natl Acad Sci U S A 1999; 96:7899-904. [PMID: 10393919 PMCID: PMC22159 DOI: 10.1073/pnas.96.14.7899] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Indexed: 11/18/2022] Open
Abstract
Ordered protein complexes are often formed from partially ordered fragments that are difficult to structurally characterize by conventional NMR and crystallographic techniques. We show that concentration-dependent hydrogen exchange studies of a fragment complex can provide structural information about the solution structures of the isolated fragments. This general methodology can be applied to any bimolecular or multimeric system. The experimental system used here consists of Ribonuclease S, a complex of two fragments of Ribonuclease A. Ribonuclease S and Ribonuclease A have identical three-dimensional structures but exhibit significant differences in their dynamics and stability. We show that the apparent large dynamic differences between Ribonuclease A and Ribonuclease S are caused by small amounts of free fragments in equilibrium with the folded complex, and that amide exchange rates in Ribonuclease S can be used to determine corresponding rates in the isolated fragments. The studies suggest that folded RNase A and the RNase S complex exhibit very similar dynamic behavior. Thus cleavage of a protein chain at a single site need not be accompanied by a large increase in flexibility of the complex relative to that of the uncleaved protein.
Collapse
Affiliation(s)
- G Chakshusmathi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | |
Collapse
|
23
|
Quirk DJ, Raines RT. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. Biophys J 1999; 76:1571-9. [PMID: 10049337 PMCID: PMC1300133 DOI: 10.1016/s0006-3495(99)77316-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.
Collapse
Affiliation(s)
- D J Quirk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | |
Collapse
|
24
|
Neira JL, Sevilla P, Menéndez M, Bruix M, Rico M. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions. J Mol Biol 1999; 285:627-43. [PMID: 9878434 DOI: 10.1006/jmbi.1998.2365] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-dimensional NMR spectroscopy has been used to monitor the exchange of backbone amide protons in ribonuclease A (RNase A) and its subtilisin-cleaved form, ribonuclease S (RNase S). Exchange measurements at two different pH values (5.4 and 6.0) show that the exchange process occurs according to the conditions of the EX2 limit. Differential scanning calorimetry measurements have been carried out in 2H2O under conditions analogous to those used in the NMR experiments in order to determine the values of DeltaCp, DeltaHu and Tm, corresponding to the thermal denaturation of both proteins. For the amide protons of a large number of residues in RNase A, the free energies at 25 degreesC for exchange competent unfolding processes are much lower than the calorimetric denaturation free energies, thus showing that exchange occurs through local fluctuations in the native state. For 20 other protons, the cleavage reaction had approximately the same effect on the exchange rate constants than on the equilibrium constant for unfolding, indicating that those protons exchange by global unfolding. There is a good agreement between the residues to which these protons belong and those involved in the putative folding nucleation site identified by quench-flow NMR studies. The unfolding free energies of the slowest exchanging protons, DeltaGex, as evaluated from exchange data, are much larger than the calorimetric free energies of unfolding, DeltaGu. Given the agreement between DeltaDeltaGex(A-S), the difference in free energy from exchange for a given proton of the two proteins, and DeltaDeltaGu(A-S), the difference in the calorimetric free energy of the two proteins, the discrepancy indicates that the intrinsic exchange rates in the unfolded state of those protons cannot be approximated by those measured in short unstructured peptides and, consequently, exchange for those protons in RNase A and S must occur through a rather structured denatured state.
Collapse
Affiliation(s)
- J L Neira
- Instituto de Estructura de la Materia, CSIC, Serrano 119, Madrid, E-28006, Spain
| | | | | | | | | |
Collapse
|
25
|
Schultz LW, Hargraves SR, Klink TA, Raines RT. Structure and stability of the P93G variant of ribonuclease A. Protein Sci 1998; 7:1620-5. [PMID: 9684895 PMCID: PMC2144059 DOI: 10.1002/pro.5560070716] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The peptide bonds preceding Pro 93 and Pro 114 of bovine pancreatic ribonuclease A (RNase A) are in the cis conformation. The trans-to-cis isomerization of these bonds had been indicted as the slow step during protein folding. Here, site-directed mutagenesis was used to replace Pro 93 or Pro 114 with a glycine residue, and the crystalline structure of the P93G variant was determined by X-ray diffraction analysis to a resolution of 1.7 A. This structure is essentially identical to that of the wild-type protein, except for the 91-94 beta-turn containing the substitution. In the wild-type protein, the beta-turn is of type VIa. In the P93G variant, this turn is of type II with the peptide bond preceding Gly 93 being trans. The thermal stabilities of the P93G and P114G variants were assessed by differential scanning calorimetry and thermal denaturation experiments monitored by ultraviolet spectroscopy. The value of delta deltaGm which reports on the stability lost in the variants, is 1.5-fold greater for the P114G variant than for the P93G variant. The greater stability of the P93G variant is likely due to the relatively facile accommodation of residues 91-94 in a type II turn, which has a preference for a glycine residue in its i + 2 position.
Collapse
Affiliation(s)
- L W Schultz
- Department of Biochemistry, University of Wisconsin-Madison, 53706-1569, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Ronald T. Raines
- Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Alexandrescu AT, Rathgeb-Szabo K, Rumpel K, Jahnke W, Schulthess T, Kammerer RA. 15N backbone dynamics of the S-peptide from ribonuclease A in its free and S-protein bound forms: toward a site-specific analysis of entropy changes upon folding. Protein Sci 1998; 7:389-402. [PMID: 9521116 PMCID: PMC2143926 DOI: 10.1002/pro.5560070220] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Backbone 15N relaxation parameters (R1, R2, 1H-15N NOE) have been measured for a 22-residue recombinant variant of the S-peptide in its free and S-protein bound forms. NMR relaxation data were analyzed using the "model-free" approach (Lipari & Szabo, 1982). Order parameters obtained from "model-free" simulations were used to calculate 1H-15N bond vector entropies using a recently described method (Yang & Kay, 1996), in which the form of the probability density function for bond vector fluctuations is derived from a diffusion-in-a-cone motional model. The average change in 1H-15N bond vector entropies for residues T3-S15, which become ordered upon binding of the S-peptide to the S-protein, is -12.6+/-1.4 J/mol.residue.K. 15N relaxation data suggest a gradient of decreasing entropy values moving from the termini toward the center of the free peptide. The difference between the entropies of the terminal and central residues is about -12 J/mol residue K, a value comparable to that of the average entropy change per residue upon complex formation. Similar entropy gradients are evident in NMR relaxation studies of other denatured proteins. Taken together, these observations suggest denatured proteins may contain entropic contributions from non-local interactions. Consequently, calculations that model the entropy of a residue in a denatured protein as that of a residue in a di- or tri-peptide, might over-estimate the magnitude of entropy changes upon folding.
Collapse
Affiliation(s)
- A T Alexandrescu
- Department of Structural Biology, Biozentrum, University of Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Choy WY, Sanctuary BC, Zhu G. Using neural network predicted secondary structure information in automatic protein NMR assignment. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 1997; 37:1086-94. [PMID: 9392858 DOI: 10.1021/ci970012c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In CAPRI, an automated NMR assignment software package that was developed in our laboratory, both chemical shift values and coupling topologies of spin patterns are used in a procedure for amino acids recognition. By using a knowledge base of chemical shift distributions of the 20 amino acid types, fuzzy mathematics, and pattern recognition theory, the spin coupling topological graphs are mapped onto specific amino acid residues. In this work, we investigated the feasibility of using secondary structure information of proteins as predicted by neural networks in the automated NMR assignment. As the 1H and 13C chemical shifts of proteins are known to correlate to their secondary structures, secondary structure information is useful in improving the amino acid recognition. In this study, the secondary structures of proteins predicted by the PHD protein server and our own trained neural networks are used in the amino acid type recognition. The results show that the predicted secondary structure information can help to improve the accuracy of the amino acid recognition.
Collapse
Affiliation(s)
- W Y Choy
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
29
|
Laity JH, Lester CC, Shimotakahara S, Zimmerman DE, Montelione GT, Scheraga HA. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 1997; 36:12683-99. [PMID: 9335525 DOI: 10.1021/bi970878b] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The major rate-determining step in the oxidative regeneration of bovine pancreatic ribonuclease A (RNase A) proceeds through des-[40-95] RNase A, a three-disulfide intermediate lacking the Cys40-Cys95 disulfide bond. An analog of this intermediate, [C40A, C95A] RNase A, has been characterized in terms of regular backbone structure and thermodynamic stability at pH 4.6. Nearly complete backbone 1H, 15N, and 13C resonances, and most 13Cbeta side-chain resonances have been assigned for the mutant RNase A using triple-resonance NMR data and a computer program, AUTOASSIGN, for automated analysis of resonance assignments. Comparisons of chemical shift data, 3J(1HN-1Halpha) coupling constants, and NOE data for the mutant and wild-type proteins reveal that the overall chain folds of the two proteins are very similar, with localized structural perturbations in the regions spatially adjacent to the mutation sites in [C40A, C95A] RNase A. More significantly, 1H/2H amide exchange and thermodynamic data reveal a global destabilization of the mutant protein characterized by a significant difference in the midpoint of the thermal transition curves (DeltaTm of 21.8 degrees C) and a significant increase in the slowest exchanging backbone amide 1H/2H exchange rates (10(2)-10(6)-fold faster in the hydrophobic core of [C40A, C95 A] RNase A). Comparisons of the entropy DeltaS degrees (T) and enthalpy DeltaH degrees (T) of unfolding between wild-type and [C40A, C95A] RNase A reveal that some of the global destabilization of the mutant protein arises from entropic and enthalpic changes in the folded state. Implications of these observations for understanding the role of des-[40-95] in the folding pathway of RNase A are discussed.
Collapse
Affiliation(s)
- J H Laity
- Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shimotakahara S, Rios CB, Laity JH, Zimmerman DE, Scheraga HA, Montelione GT. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Biochemistry 1997; 36:6915-29. [PMID: 9188686 DOI: 10.1021/bi963024k] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A three-disulfide intermediate, des-[65-72] RNase A, lacking the disulfide bond between Cys65 and Cys72, is formed in one of the rate-determining steps of the oxidative regeneration pathways of bovine pancreatic ribonuclease A (RNase A). An analog of this intermediate, [C65S, C72S] RNase A, has been characterized in terms of structure and thermodynamic stability. Triple-resonance NMR data were analyzed using an automated assignment program, AUTOASSIGN. Nearly all backbone 1H, 13C, and 15N resonances and most side-chain 13C(beta) resonances of both wild-type (wt) and [C65S, C72S] RNase A were assigned unambiguously. Analysis of NOE, 13C(alpha) chemical shift, and 3J(H(N)-H(alpha)) scalar coupling data indicates that the regular backbone structure of the major form of [C65S, C72S] RNase A is very similar to that of the major form of wt RNase A, although small structural differences are indicated in the mutation site and in spatially adjacent beta-sheet structures comprising the hydrophobic core. Thermodynamic analysis demonstrates that [C65S, C72S] RNase A (Tm of 38.5 degrees C) is significantly less stable than wt RNase A (Tm of 55.5 degrees C) at pH 4.6. Although the structural comparison of wt RNase A and this analog of an oxidative folding intermediate indicates only localized effects around the Cys65 and Cys72 sites, these thermodynamic measurements indicate that formation of the fourth disulfide bond, Cys65-Cys72, on this oxidative folding pathway results in global stabilization of the native chain fold. This conclusion is supported by comparisons of amide 1H/2H exchange rates which are significantly faster throughout the entire structure of [C65S, C72S] RNase A than in wt RNase A. More generally, our study indicates that the C65-C72 disulfide bond of RNase A contributes significantly in stabilizing the structure of the hydrophobic core of the native protein. Formation of this disulfide bond in the final step of this oxidative folding pathway provides significant stabilization of the native-like structure that is present in the corresponding three-disulfide folding intermediate.
Collapse
Affiliation(s)
- S Shimotakahara
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-5638, USA
| | | | | | | | | | | |
Collapse
|
31
|
Polverino de Laureto P, Scaramella E, De Filippis V, Bruix M, Rico M, Fontana A. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol. Protein Sci 1997; 6:860-72. [PMID: 9098896 PMCID: PMC2144764 DOI: 10.1002/pro.5560060413] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the proteolysis of bovine pancreatic ribonuclease A (RNase) by thermolysin when dissolved in aqueous buffer, pH 7.0, in the presence of 50% (v/v) trifluoroethanol (TFE). Under these solvent conditions, RNase acquires a conformational state characterized by an enhanced content of secondary structure (helix) and reduced tertiary structure, as given by CD measurements. It was found that the TFE-resistant thermolysin, despite its broad substrate specificity, selectively cleaves the 124-residue chain of RNase in its TFE state (20-42 degrees C, 6-24 h) at peptide bond Asn 34-Leu 35, followed by a slower cleavage at peptide bond Thr 45-Phe 46. In the absence of TFE, native RNase is resistant to proteolysis by thermolysin. Two nicked RNase species, resulting from cleavages at one or two peptide bonds and thus constituted by two (1-34 and 35-124) (RNase Th1) or three (1-34, 35-45 and 46-124) (RNase Th2) fragments linked covalently by the four disulfide bonds of the protein, were isolated to homogeneity by chromatography and characterized. CD measurements provided evidence that RNase Th1 maintains the overall conformational features of the native protein, but shows a reduced thermal stability with respect to that of the intact species (-delta Tm 16 degrees C); RNase Th2 instead is fully unfolded at room temperature. That the structure of RNase Th1 is closely similar to that of the intact protein was confirmed unambiguously by two-dimensional NMR measurements. Structural differences between the two protein species are located only at the level of the chain segment 30-41, i.e., at residues nearby the cleaved Asn 34-Leu 35 peptide bond. RNase Th1 retained about 20% of the catalytic activity of the native enzyme, whereas RNase Th2 was inactive. The 31-39 segment of the polypeptide chain in native RNase forms an exposed and highly flexible loop, whereas the 41-48 region forms a beta-strand secondary structure containing active site residues. Thus, the conformational, stability, and functional properties of nicked RNase Th1 and Th2 are in line with the concept that proteins appear to tolerate extensive structural variations only at their flexible or loose parts exposed to solvent. We discuss the conformational features of RNase in its TFE-state that likely dictate the selective proteolysis phenomenon by thermolysin.
Collapse
|
32
|
Nash D, Lee BS, Jonas J. Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:40-8. [PMID: 8841379 DOI: 10.1016/0167-4838(96)00085-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribonuclease A (RNase A) exhibits a well-defined cold denaturation transition when examined at high pressure (3 kbar) and low temperatures (below -10 degrees C). Our main interest in this study was to investigate the pressure-assisted cold denatured state of RNase A by hydrogen exchange techniques. The protection factors obtained from the kinetic data are similar to those obtained previously for RNase A denatured by exposure to high pressure near its temperature of maximum stability, but differ markedly from those in thermally denatured RNase A. A qualitative analysis of the hydrogen-exchange rates suggests that cold denatured RNase A behaves markedly differently from a random coil, probably due to patches of residual secondary structure.
Collapse
Affiliation(s)
- D Nash
- Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
33
|
Toiron C, González C, Bruix M, Rico M. Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics. Protein Sci 1996; 5:1633-47. [PMID: 8844852 PMCID: PMC2143484 DOI: 10.1002/pro.5560050817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The three-dimensional structure of the complexes of ribonuclease A with cytidyl-2',5'-adenosine (2',5'-CpA) and deoxycytidyl-3',5'-deoxyadenosine [3',5'-d(CpA)] in aqueous solution has been determined by 1H NMR methods in combination with restrained molecular dynamics calculations. Twenty-three intermolecular NOE cross-corrections for the 3',5'-d(CpA) complex and 19 for the 2',5'-CpA, together with about 1,000 intramolecular NOEs assigned for each complex, were translated into distance constraints and used in the calculation. No significant changes in the global structure of the enzyme occur upon complex formation. The side chains of His 12, Thr 45, His 119, and the amide backbone group of Phe 120 are involved directly in the binding of the ligands at the active site. The conformation of the two bases is anti in the two complexes, but differs from the crystal structure in the conformation of the two sugar rings in 3',5'-d(CpA), shown to be in the S-type region, as deduced from an analysis of couplings between the ribose protons. His 119 is found in the two complexes in only one conformation, corresponding to position A in the free protein. Side chains of Asn 67, Gln 69, Asn 71, and Glu 111 from transient hydrogen bonds with the adenine base, showing the existence of a pronounced flexibility of these enzyme side chains at the binding site of the downstream adenine. All other general features on the structures coincide clearly with those observed in the crystal state.
Collapse
Affiliation(s)
- C Toiron
- Instituto de Estructura de la Materia, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Kiefhaber T, Labhardt AM, Baldwin RL. Direct NMR evidence for an intermediate preceding the rate-limiting step in the unfolding of ribonuclease A. Nature 1995; 375:513-5. [PMID: 7777063 DOI: 10.1038/375513a0] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is commonly believed that there are no detectable intermediates in the kinetic unfolding reactions of small proteins. If such intermediates could be found, they would give important information about the nature of the transition state for unfolding, which is thought to occur close to the native state. We report here that one-dimensional proton magnetic resonance spectra recorded during the unfolding of ribonuclease A provide direct evidence for at least one unfolding intermediate in which side chains are free to rotate. This intermediate appears to be a 'dry molten globule' of the kind hypothesized by Shakhnovich and Finkelstein.
Collapse
Affiliation(s)
- T Kiefhaber
- Abteilung für Biophysikalische Chemie, Biozentrum der Universität, Basel, Switzerland
| | | | | |
Collapse
|
35
|
D'Ursi A, Oschkinat H, Cieslar C, Picone D, D'Alessio G, Amodeo P, Temussi PA. Assignment and secondary-structure determination of monomeric bovine seminal ribonuclease employing computer-assisted evaluation of homonuclear three-dimensional 1H-NMR spectra. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:494-502. [PMID: 7744072 DOI: 10.1111/j.1432-1033.1995.tb20490.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monomeric bovine seminal ribonuclease (mBS-RNase), the subunit of dimeric bovine seminal ribonuclease (BS-RNase), is an unusual monomer: for its structural stability, its catalytic activity, which is even higher than that of the parent dimeric enzyme, and for its role as an intermediate in the refolding of dimeric BS-RNase. Here we present the proton NMR assignment and secondary-structure determination of mBS-RNase, with a comparison of its structure to the structure of its parent protein, and to the structure of RNase A, a homologue with more than 80% identity in amino acid sequence. Proton NMR assignment was performed using a computer-assisted procedure, through a partially automated analysis of homonuclear three-dimensional spectra [Oschkinat, H., Holak, T. A. & Cieslar, C. (1991) Biopolymers 31, 699-712]. The secondary structures of mBS-RNase, of the A chain of dimeric BS-RNase, and of RNase A, are found to be similar. Significant differences are found instead, between mBS-RNase and RNase A in the more flexible stretches of the molecule, where a higher number of substitutions is present. Furthermore, a preliminary tertiary-structure model is reported, showing that the overall folding of mBS-RNase is closer to that of RNase A rather than that of (dimeric) BS-RNase.
Collapse
Affiliation(s)
- A D'Ursi
- Dipartimento di Chimica, Università di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Kiefhaber T, Baldwin RL. Kinetics of hydrogen bond breakage in the process of unfolding of ribonuclease A measured by pulsed hydrogen exchange. Proc Natl Acad Sci U S A 1995; 92:2657-61. [PMID: 7708700 PMCID: PMC42277 DOI: 10.1073/pnas.92.7.2657] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A sensitive test for kinetic unfolding intermediates in ribonuclease A (EC 3.1.27.5) is performed under conditions where the enzyme unfolds slowly (10 degrees C, pH 8.0, 4.5 M guanidinium chloride). Exchange of peptide NH protons (2H-1H) is used to monitor structural opening of individual hydrogen bonds during unfolding, and kinetic models are developed for hydrogen exchange during the process of protein unfolding. The analysis indicates that the kinetic process of unfolding can be monitored by EX1 exchange (limited by the rate of opening) for ribonuclease A in these conditions. Of the 49 protons whose unfolding/exchange kinetics was measured, 47 have known hydrogen bond acceptor groups. To test whether exchange during unfolding follows the EX2 (base-catalyzed) or the EX1 (uncatalyzed) mechanism, unfolding/exchange was measured both at pH 8.0 and at pH 9.0. A few faster-exchanging protons were found that undergo exchange by both EX1 and EX2 processes, but the 43 slower-exchanging protons at pH 8 undergo exchange only by the EX1 mechanism, and they have closely similar rates. Thus, it is likely that all 49 protons undergo EX1 exchange at the same rate. The results indicate that a single rate-limiting step in unfolding breaks the entire network of peptide hydrogen bonds and causes the overall unfolding of ribonuclease A. The additional exchange observed for some protons that follows the EX2 mechanism probably results from equilibrium unfolding intermediates and will be discussed elsewhere.
Collapse
Affiliation(s)
- T Kiefhaber
- Department of Biochemistry, Stanford Medical Center, CA 94305-5307, USA
| | | |
Collapse
|
37
|
Takeda N, Kato M, Taniguchi Y. Pressure-induced secondary structure changes of ribonuclease A and ribonuclease S studied by FTIR spectroscopy. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/bspy.350010305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Bartels C, Wüthrich K. A spectral correlation function for efficient sequential NMR assignments of uniformly (15)N-labeled proteins. JOURNAL OF BIOMOLECULAR NMR 1994; 4:775-785. [PMID: 22911386 DOI: 10.1007/bf00398408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1994] [Accepted: 07/05/1994] [Indexed: 06/01/2023]
Abstract
A new computer-based approach is described for efficient sequence-specific assignment of uniformly (15)N-labeled proteins. For this purpose three-dimensional (15)N-correlated [(1)H, (1)H]-NOESY spectra are divided up into two-dimensional (1)H-(1)H strips which extend over the entire spectral width along one dimension and have a width of ca. 100 Hz, centered about the amide proton chemical shifts along the other dimension. A spectral correlation function enables sorting of these strips according to proximity of the corresponding residues in the amino acid sequence. Thereby, starting from a given strip in the spectrum, the probability of its corresponding to the C-terminal neighboring residue is calculated for all other strips from the similarity of their peak patterns with a pattern predicted for the sequentially adjoining residue, as manifested in the scalar product of the vectors representing the predicted and measured peak patterns. Tests with five different proteins containing both α-helices and β-sheets, and ranging in size from 58 to 165 amino acid residues show that the discrimination achieved between the sequentially neighboring residue and all other residues compares well with that obtained with an unguided interactive search of pairs of sequentially neighboring strips, with important savings in the time needed for complete analysis of 3D (15)N-correlated [(1)H, (1)H]-NOESY spectra. The integration of this routine into the program package XEASY ensures that remaining ambiguities can be resolved by visual inspection of the strips, combined with reference to the amino acid sequence and information on spin-system types obtained from additional NMR spectra.
Collapse
Affiliation(s)
- C Bartels
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093, Zürich, Switzerland
| | | |
Collapse
|
39
|
Talluri S, Rothwarf DM, Scheraga HA. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 1994; 33:10437-49. [PMID: 8068682 DOI: 10.1021/bi00200a027] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Earlier studies of the unfolding pathway of native bovine pancreatic ribonuclease A (using dithiothreitol as the reducing agent) revealed that the three-disulfide species lacking the disulfide bond between cysteine 65 and cysteine 72 is the most highly populated intermediate [Rothwarf & Scheraga (1991) J. Am. Chem. Soc. 113, 6293-6294]. This unfolding intermediate is referred to as des-[65-72]-RNase A. In order to determine the role of des-[65-72]-RNase A, i.e. of the 65-72 disulfide bond, in the structural folding/unfolding processes of RNase A, the stability and structure of this unfolding intermediate were determined by examining its thermal transition curve and by using two- and three-dimensional homonuclear 1H NMR spectroscopy. The midpoint of the thermal transition of des-[65-72]-RNase A was found to be 17.8 degrees C lower than that of native RNase A. A set of conformations that are consistent with the NMR-derived constraints was obtained by minimizing, first, a variable-target function and, then, the conformational energy. These conformations exhibit a well-defined structure that is very similar to that of native ribonuclease A in regions where the native protein has a regular backbone structure such as a beta-sheet or a helix. Some of the loop regions of the several computed structures exhibit large deviations from each other as well as from native ribonuclease A. However, these results indicate that des-[65-72]-RNase A has a close structural similarity to RNase A in all regions with the only major differences occurring in a loop region comprising residues 60-72. This led to the conclusion that, in reduction pathways that include des-[65-72]-RNase A (at 25 degrees C, pH 8.0), the rate-determining step corresponds to a partial unfolding event in one region of the protein and not to a global conformational unfolding process. The results further suggest that, in the regeneration pathways involving des-[65-72]-RNase A, the loop region from 60 to 72 is the last to fold.
Collapse
Affiliation(s)
- S Talluri
- Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301
| | | | | |
Collapse
|
40
|
Veenstra TD, Lee L. NMR study of the positions of His-12 and His-119 in the ribonuclease A-uridine vanadate complex. Biophys J 1994; 67:331-5. [PMID: 7919003 PMCID: PMC1225363 DOI: 10.1016/s0006-3495(94)80485-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The binding of uridine vanadate to ribonuclease A has been investigated by one- and two-dimensional 1H NMR. The homonuclear Nuclear Overhauser and exchange spectroscopy spectrum of the uridine vanadate/RNase A complex exhibits cross peaks between both the C5H and C6H protons of uridine vanadate and the H epsilon 1 proton of His-12 of ribonuclease A. These cross peaks suggest that the H epsilon 1 proton of His-12 is in the vicinity of the uracil base of uridine vanadate, as observed in the crystallographic structure of the uridine vanadate/RNase A complex. However, no cross peaks are observed between the C5H and C6H protons of uridine vanadate and the H epsilon 1 proton of His-119 of ribonuclease A, although they were predicted based upon the distances calculated from coordinates of the crystallographic structure of the complex. These results suggest that there is a significant difference between the positioning of the His-119 side chain in the solution and in the crystallographic structures.
Collapse
Affiliation(s)
- T D Veenstra
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | | |
Collapse
|
41
|
Thermal Behaviour of Three Ribonucleases. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-94-011-0822-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
deMel VS, Doscher MS, Glinn MA, Martin PD, Ram ML, Edwards BF. Structural investigation of catalytically modified F120L and F120Y semisynthetic ribonucleases. Protein Sci 1994; 3:39-50. [PMID: 8142897 PMCID: PMC2142485 DOI: 10.1002/pro.5560030106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structures of two catalytically modified semisynthetic RNases obtained by replacing phenylalanine 120 with leucine and tyrosine have been determined and refined at a resolution of 2.0 A (R = 0.161 and 0.184, respectively). These structures have been compared with the refined 1.8-A structure (R = 0.204) of the fully active phenylalanine-containing enzyme (Martin PD, Doscher MS, Edwards BFP, 1987, J Biol Chem 262:15930-15938) and with the catalytically defective D121A (2.0 A, R = 0.172) and D121N (2.0 A, R = 0.186) analogs (deMel VSJ, Martin PD, Doscher MS, Edwards BFP, 1992, J Biol Chem 267:247-256). The movement away from the active site of the loop containing residues 65-72 is seen in all three catalytically defective analogs--F120L, D121A, and D121N--but not in the fully active (or hyperactive) F120Y. The insertion of the phenolic hydroxyl of Tyr 120 into a hydrogen-bonding network involving the hydroxyl group of Ser 123 and a water molecule in F120Y is the likely basis for the hyperactivity toward uridine 2',3'-cyclic phosphate previously found for this analog (Hodges RS, Merrifield RB, 1974, Int J Pept Protein Res 6:397-405) as well as the threefold increase in KM for cytidine 2',3'-cyclic phosphate found for this analog by ourselves.
Collapse
Affiliation(s)
- V S deMel
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | | | | | | | |
Collapse
|
43
|
Mayo SL, Baldwin RL. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 1993; 262:873-6. [PMID: 8235609 DOI: 10.1126/science.8235609] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."
Collapse
Affiliation(s)
- S L Mayo
- Department of Biochemistry, Stanford University School of Medicine 94305
| | | |
Collapse
|
44
|
Hård K, Kamerling JP, Vliegenthart JF. Application of laser photo-CIDNP for an intact glycoprotein in solution. Carbohydr Res 1992; 236:315-20. [PMID: 1291055 DOI: 10.1016/0008-6215(92)85024-t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K Hård
- Department of Bio-Organic Chemistry, Utrecht University, Netherlands
| | | | | |
Collapse
|
45
|
Joao HC, Scragg IG, Dwek RA. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B. FEBS Lett 1992; 307:343-6. [PMID: 1322837 DOI: 10.1016/0014-5793(92)80709-p] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assignment of most of the proton NMR resonances of bovine pancreatic RNase B has been achieved using standard NMR techniques and by comparison with the published assignments for RNase A. A comparison of the NMR spectra of RNase B with RNase A shows that glycosylation of the enzyme has little overall effect on the conformation of the protein in solution. Comparisons of hydrogen-deuterium solvent exchange rates for the NH protons of RNase A and RNase B were made using two-dimensional 1H correlation spectroscopy. In the case of the glycosylated enzyme the exchange rates decreased for the NH protons of residues 9-14, 23-24, 32, 34-35, 39-40, 43-44, 48-49, 60, 71, 75-76, 80, 83-85, 100-101, 107, 111 and 122, relative to the unglycosylated RNase A. These results are consistent with the presence of the oligosaccharide inducing enhanced global dynamic stability and consequent changes to the unfolding equilibrium of the enzyme. The enhanced stability is observed not only for residues in the vicinity of the glycosylation site, asparagine-34, but also at residues remote from this site, as much as 30 A away.
Collapse
Affiliation(s)
- H C Joao
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
46
|
Jiménez MA, Blanco FJ, Rico M, Santoro J, Herranz J, Nieto JL. Periodic properties of proton conformational shifts in isolated protein helices. An experimental study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:39-49. [PMID: 1628661 DOI: 10.1111/j.1432-1033.1992.tb17017.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this work, the helix-forming residues in fragments of several proteins (ribonuclease, thermolysin, tendamistat and angiogenin) were identified by NOE and the helix proton shifts were measured as delta changes associated with helix-population increments driven by trifluoroethanol addition. When estimated in this way, a regular pattern of helix conformational shifts was clearly seen in the delta delta versus sequence profiles of all the peptides studied. The helix periodicity of the H alpha and H beta resonances was especially clear, an observation that earlier statistical studies of protein delta values failed to predict. Amide protons showed the largest helix shifts, but with a less-sharply defined periodic character. Aromatic residues considerably distorted the periodicity of the helix amide shifts in some peptides, as evidenced by the delta shifts of a RNase A fragment 1-15 analog in which the two aromatic residues were replaced by Ala. The relationship between helix periodicity and peptide amphiphatic character is discussed.
Collapse
Affiliation(s)
- M A Jiménez
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Lustig B, Fink AL. The thermal denaturation of ribonuclease A in aqueous-methanol solvents. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1119:205-10. [PMID: 1540654 DOI: 10.1016/0167-4838(92)90393-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.
Collapse
Affiliation(s)
- B Lustig
- Department of Chemistry, University of California, Santa Cruz 95064
| | | |
Collapse
|
48
|
deMel VS, Martin PD, Doscher MS, Edwards BF. Structural changes that accompany the reduced catalytic efficiency of two semisynthetic ribonuclease analogs. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48486-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Abstract
Hydrogen exchange has been used to test for the presence of nonrandom structure in thermally denatured ribonuclease A (RNase A). Quenched-flow methods and 2D 1H NMR spectroscopy were used to measure exchange rates for 36 backbone amide protons (NHs) at 65 degrees C and at pH* (uncorrected pH measured in D2O) values ranging from 1.5 to 3.8. The results show that exchange is approximately that predicted for a disordered polypeptide [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]; we thus are unable to detect any stable hydrogen-bonded structure in thermally denatured RNase A. Two observations suggest, however, that the predicted rates should be viewed with some caution. First, we discovered that one of the approximations made by Molday et al. (1972), that exchange for valine NHs is similar to that for alanine NHs, had to be modified; the exchange rates for valine NHs are about 4-fold slower. Second, the pH minima for exchange tend to fall at lower pH values than predicted, by as much as 0.45 pH units. These results are in accord with those of Roder and co-workers for bovine pancreatic trypsin inhibitor [see Table I in Roder, H., Wagner, G., & Wüthrich, K. (1985) Biochemistry 24, 7407-7411]. The origin of the disagreement between predicted and observed pH minima is unknown but may be the high net positive charge on these proteins at low pH. In common with some other thermally unfolded proteins, heat-denatured ribonuclease A shows a significant circular dichroism spectrum in the far-ultraviolet region [Labhardt, A. M. (1982) J. Mol. Biol. 157, 331-355].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A D Robertson
- Biochemistry Department, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
50
|
|