1
|
Silva MD, Oliveira H, Faustino A, Sillankorva S. Characterization of MSlys, the endolysin of Streptococcus pneumoniae phage MS1. ACTA ACUST UNITED AC 2020; 28:e00547. [PMID: 33204659 PMCID: PMC7648177 DOI: 10.1016/j.btre.2020.e00547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
MSlys is a choline binding protein from pneumococcal MS1 phage. Planktonic and biofilm S. pneumoniae cells are affected by MSlys treatment. MSlys is active against isolates from otitis media infections and works in the conditions commonly found in this environment.
Despite the use of pneumococcal conjugate vaccines, the number of infections related to Streptococcus pneumoniae continues to be alarming. Herein, we identified, characterized the MSlys endolysin encoded in the phage MS1. We further tested its antimicrobial efficacy against planktonic and biofilm cells, assessing the culturability of cells and biofilm structure by scanning electron microscopy, and confocal laser scanning microscopy. The modular MSlys endolysin consists of an amidase catalytic domain and a choline-binding domain. MSlys is active against isolates of children with otitis media, and conditions close to those found in the middle ear. Treatment with MSlys (2 h, 4 μM) reduced planktonic cultures by 3.5 log10 CFU/mL, and 24- and 48-h-old biofilms by 1.5 and 1.8 log10 CFU/mL, respectively. Imaging of the biofilms showed thinner and damaged structures compared to control samples. The recombinantly expressed MSlys may be a suitable candidate for treating pneumococcal infections, including otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Alberta Faustino
- Clinical Pathology Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
2
|
Can bacteriophage endolysins be nebulised for inhalation delivery against Streptococcus pneumoniae? Int J Pharm 2020; 591:119982. [PMID: 33068693 DOI: 10.1016/j.ijpharm.2020.119982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 11/21/2022]
Abstract
Endolysins are bacteriophage-derived protein molecules highly effective for bacterial killing. Cpl-1 and ClyJ-3 are native and chimeric endolysins, respectively, having antimicrobial activity against Streptococcus pneumoniae which causes lung infections. We conducted the first feasibility study on nebulisation of Cpl-1 and ClyJ-3, with a focus on the antimicrobial activity, structural changes of the proteins and aerosol performance. Bacterial colony counts, live cell imaging and Fourier-transform infrared(FTIR) spectroscopy were used to evaluate the proteins before and after jet or vibrating mesh nebulisation. These nebulised aerosols were inhalable with a volume median size of 3.8-4.2 µm (span 1.1-2.3) measured by laser diffraction. How-ever, neb-u-li-sa-tion caused al-most com-plete loss in bioac-tiv-ity of ClyJ-3, which were corroborated with the live cell imaging observation and protein structural damage with a large intensity reduction in the amide absorption bands between 1300 and 1700 cm-1. In contrast, the bactericidal activity of Cpl-1 showed no significant difference (p ≥ 0.05) before and after mesh nebulisation with 4.9 and 4.6-log10 bacterial count reduction, respectively. However, jet nebulisation reduced the bioactivity of Cpl-1 and the effect was time-dependent showing 1.7, 1.0-log10 bacterial count reduction at 7 and 14 min with complete loss of antimicrobial activity at 21 min after nebulisation, respectively. The results were consistent with time-dependent changes in live cell images and FTIR amide band changes at 1655, 1640, 1632 and 1548 cm-1. In conclusion, it is feasible to nebulise endolysins for inhalation delivery but it depends on both the protein and the nebuliser, with the mesh nebuliser being the preferred choice.
Collapse
|
3
|
Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016; 7:1156. [PMID: 27516758 PMCID: PMC4963390 DOI: 10.3389/fmicb.2016.01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5–5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes.
Collapse
Affiliation(s)
- Blas Blázquez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Alba Fresco-Taboada
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
4
|
Díez-Martínez R, De Paz HD, García-Fernández E, Bustamante N, Euler CW, Fischetti VA, Menendez M, García P. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother 2015; 70:1763-73. [PMID: 25733585 DOI: 10.1093/jac/dkv038] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. METHODS The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. RESULTS The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. CONCLUSIONS Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections.
Collapse
Affiliation(s)
- Roberto Díez-Martínez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Héctor D De Paz
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Esther García-Fernández
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Noemí Bustamante
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Chad W Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Margarita Menendez
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
5
|
Sebert ME, Patel KP, Plotnick M, Weiser JN. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J Bacteriol 2005; 187:3969-79. [PMID: 15937159 PMCID: PMC1151733 DOI: 10.1128/jb.187.12.3969-3979.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activation of the CiaRH two-component signaling system prevents the development of competence for genetic transformation in Streptococcus pneumoniae through a previously unknown mechanism. Earlier studies have shown that CiaRH controls the expression of htrA, which we show encodes a surface-expressed serine protease. We found that mutagenesis of the putative catalytic serine of HtrA, while not impacting the competence of a ciaRH+ strain, restored a normal competence profile to a strain having a mutation that constitutively activates the CiaH histidine kinase. This result implies that activity of HtrA is necessary for the CiaRH system to inhibit competence. Consistent with this finding, recombinant HtrA (rHtrA) decreased the competence of pneumococcal cultures. The rHtrA-mediated decline in transformation efficiency could not be corrected with excess competence-stimulating peptide (CSP), suggesting that HtrA does not act through degradation of this signaling molecule. The inhibitory effects of rHtrA and activated CiaH, however, were largely overcome in a strain having constitutive activation of the competence pathway through a mutation in the cytoplasmic domain of the ComD histidine kinase. Although these results suggested that HtrA might act through degradation of the extracellular portion of the ComD receptor, Western immunoblots for ComD did not reveal changes in protein levels attributable to HtrA. We therefore postulate that HtrA may act on an unknown protein target that potentiates the activation of the ComDE system by CSP. These findings suggest a novel regulatory role for pneumococcal HtrA in modulating the activity of a two-component signaling system that controls the development of genetic competence.
Collapse
Affiliation(s)
- M E Sebert
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
6
|
Demarest SJ, Salbato J, Elia M, Zhong J, Morrow T, Holland T, Kline K, Woodnutt G, Kimmel BE, Hansen G. Structural characterization of the cell wall binding domains of Clostridium difficile toxins A and B; evidence that Ca2+ plays a role in toxin A cell surface association. J Mol Biol 2005; 346:1197-206. [PMID: 15713474 DOI: 10.1016/j.jmb.2004.12.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/15/2022]
Abstract
Clostridium difficile (C.difficile) is a nosocomially acquired intestinal bacillus which can cause chronic diarrhea and life-threatening colitis. The pathogenic effects of the bacillus are mediated by the release of two toxins, A and B. The C-terminal portions of both toxins are composed of 20 and 30 residue repeats known as cell wall binding (CWB) domains. We have cloned and expressed the CWB-domains of toxins A and B and several truncated CWB-domain constructs to investigate their structure and function. The smallest CWB-domain that folded in a cooperative manner was an 11 repeat construct of toxin A. This differentiates the C-terminal domains of toxins A and B from the CWB-domain of Streptococcus pneumoniae LytA, which only requires six repeats to fold. The 11 repeat toxin A construct bound Ca2+ directly with millimolar affinity and interacted with mammalian cell surfaces in a concentration and Ca2+-dependent fashion. Millimolar Ca2+ levels also accelerated toxin mediated CHO cell killing in an in vitro cell assay. Together, the data suggest a role for extracellular Ca2+ in the sensitization of toxin A/cell-surface interactions.
Collapse
Affiliation(s)
- Stephen J Demarest
- Department of Protein Therapeutics, Diversa Corp., 4955 Directors Place, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 2003; 71:6199-204. [PMID: 14573637 PMCID: PMC219578 DOI: 10.1128/iai.71.11.6199-6204.2003] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide, and thus new antimicrobials are badly needed. We report the use of Cpl-1, the lytic enzyme of a pneumococcal bacteriophage, as an intravenous therapy for pneumococcal bacteremia in a mouse model. A 2000- microg dose of Cpl-1 reduced pneumococcal titers from a median of log(10) 4.70 CFU/ml to undetectable levels (<log(10) 2.00 CFU/ml) within 15 min. This dose given 1 h after intravenous infection led to 100% survival at 48 h, compared to the 20% survival of buffer-treated controls. In advanced bacteremia, treatment with two doses at 5 and 10 h still resulted in significantly longer survival (P < 0.0001) and a hazard ratio of 0.29 (95% confidence interval, 0.04 to 0.35). The enzyme is immunogenic, but the treatment efficacy was not significantly diminished after previous intravenous exposure of mice and hyperimmune rabbit serum did not neutralize the activity. Cpl-1 is also very effective as a topical nasal treatment against colonization by S. pneumoniae. In vitro, the enzyme is active against many serotypes of S. pneumoniae, independent of their penicillin resistance, and it is very specific for this species. Bacteriophage enzymes are unusual but extremely effective antimicrobials and represent a new weapon against infections with resistant bacteria.
Collapse
Affiliation(s)
- Jutta M Loeffler
- Laboratory of Bacterial Pathogenesis, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
8
|
Hermoso JA, Monterroso B, Albert A, Galán B, Ahrazem O, García P, Martínez-Ripoll M, García JL, Menéndez M. Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure 2003; 11:1239-49. [PMID: 14527392 DOI: 10.1016/j.str.2003.09.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumococcal bacteriophage-encoded lysins are modular choline binding proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) against streptococcal infections. Here we present the crystal structures of the free and choline bound states of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1. While the catalytic module displays an irregular (beta/alpha)(5)beta(3) barrel, the cell wall-anchoring module is formed by six similar choline binding repeats (ChBrs), arranged into two different structural regions: a left-handed superhelical domain configuring two choline binding sites, and a beta sheet domain that contributes in bringing together the whole structure. Crystallographic and site-directed mutagenesis studies allow us to propose a general catalytic mechanism for the whole glycoside hydrolase family 25. Our work provides the first complete structure of a member of the large family of choline binding proteins and reveals that ChBrs are versatile elements able to tune the evolution and specificity of the pneumococcal surface proteins.
Collapse
Affiliation(s)
- Juan A Hermoso
- Grupo de Cristalografía Macromolecular y Biología Estructural, de Macromoléculas Biológicas, Instituto Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vollmer W, Tomasz A. Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 2001; 39:1610-22. [PMID: 11260477 DOI: 10.1046/j.1365-2958.2001.02349.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen and many interactions of this bacterium with its host appear to be mediated, directly or indirectly, by components of the bacterial cell wall, specifically by the phosphorylcholine residues which serve as anchors for surface-located choline-binding proteins and are also recognized by components of the host response, such as the human C-reactive protein, a class of myeloma proteins and PAF receptors. In the present study, we describe the identification of the pneumococcal pce gene encoding for a teichoic acid phosphorylcholine esterase (Pce), an enzymatic activity capable of removing phosphorylcholine residues from the cell wall teichoic acid and lipoteichoic acid. Pce carries an N-terminal signal sequence, contains a C-terminal choline-binding domain with 10 homologous repeating units similar to those found in other pneumococcal surface proteins, and the catalytic (phosphorylcholine esterase) activity is localized on the N-terminal part of the protein. The mature protein was overexpressed in Escherichia coli and purified in a one-step procedure by choline-affinity chromatography and the enzymatic activity was followed using the chromophoric p-nitrophenyl-phosphorylcholine as a model substrate. The product of the enzymatic digestion of 3H-choline-labelled cell walls was shown to be phosphorylcholine. Inactivation of the pce gene in S. pneumoniae strains by insertion-duplication mutagenesis caused a unique change in colony morphology and a striking increase in virulence in the intraperitoneal mouse model. Pce may be a regulatory element involved with the interaction of S. pneumoniae with its human host.
Collapse
Affiliation(s)
- W Vollmer
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
10
|
García JL, Sánchez-Beato AR, Medrano FJ, López R. Versatility of choline-binding domain. Microb Drug Resist 2000; 4:25-36. [PMID: 9533722 DOI: 10.1089/mdr.1998.4.25] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J L García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
García P, Martín AC, López R. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb Drug Resist 2000; 3:165-76. [PMID: 9185145 DOI: 10.1089/mdr.1997.3.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have characterized four families of pneumococcal phages with remarkable morphologic and physiological differences. Dp-1 and Cp-1 are lytic phages, whereas HB-3 and EJ-1 are temperate phages. Interestingly, Cp-1 and HB-3 have a terminal protein covalently linked to the 5' ends of their lineal DNAs. In the case of Dp-1, we have found that the choline residues of the teichoic acid were essential components of the phage receptors. We have also developed a transfection system using mature DNAs from Dp-4 and Cp-1. In the later case, the transfecting activity of the DNA was destroyed by treatment with proteolytic enzymes, a feature also shared by the genomes of several small Bacillus phages. DNA replication was investigated in the case of Dp-4 and Cp-1 phages. The terminal protein linked to Cp-1 DNA plays a key role in the peculiar mechanism of DNA replication that has been coined as protein-priming. Recently, the linear 19,345-bp double-stranded DNA of Cp-1 has been completely sequenced, several of its gene products have been analyzed, and a complete transcriptional map has been ellaborated. Most of the pneumococcal lysins exhibit an absolute dependence of the presence of choline in the cell wall substrate for activity, and phage lysis requires, as reported for other systems, the action of a second phage-encoded protein, the holin, which presumably forms some kind of lesion in the membrane. The two lytic gene cassettes, from EJ-1 and Cp-1 phages, have been cloned and expressed in heterologous and homologous systems. The finding that some lysogenic strains of Streptococcus pneumoniae harbor phage remnants has provided important clues on the interchanges between phage and bacteria and supports the view of the chimeric origin of phages.
Collapse
Affiliation(s)
- P García
- Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
12
|
López R, García E, García P, García JL. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resist 2000; 3:199-211. [PMID: 9185148 DOI: 10.1089/mdr.1997.3.199] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autolysins are enzymes that degrade different bonds in the peptidoglycan and, eventually, cause the lysis and death of the cell. Streptococcus pneumoniae contains a powerful autolytic enzyme that has been characterized as an N-acetylmuramoyl-L-alanine amidase. We have cloned the lytA gene coding for this amidase and studied in depth the genetics and expression of this gene, which represented the first molecular analysis of a bacterial autolysin. Two observations have been fundamental in revealing further knowledge on the lytic systems of pneumococcus: (a) The well-documented dependence of the pneumococcal autolysin on the presence of choline in the cell wall for activity, and (b) the early observation that most pneumococcal phages also required the presence of this amino-alcohol in the growth medium to achieve a successful liberation of the phage progeny. We concluded that choline would serve as an element of strong selective pressure to preserve certain structures of the host and phage lytic enzymes which should lead to sequence homologies. We constructed active chimeras between the lytic enzymes of S. pneumoniae and its bacteriophages using genes that share sequence homology as well as genes that completely lack homologous regions. In this way, we demonstrated that the pneumococcal lytic enzymes are the result of the fusion of two independent functional modules where the carboxy-terminal domain might be responsible for the specific recognition of choline-containing cell walls whereas the active center of these enzymes should be localized in the N-terminal part of the protein. The modular design postulated for the pneumococcal lysins seems to be a widespread model for many types of microbial proteins and the construction of functional chimeric proteins between the lytic enzymes of pneumococcus and those of several gram-positive microorganisms, like Clostridium acetobutylicum or Lactococcus lactis, provided interesting clues on the modular evolution of proteins. The study of several genes coding for the lytic enzymes of temperate phages of pneumococcus also highlighted on some evolutionary relationships between microorganisms. We suggest that lysogenic relationships may represent a common mechanism by which pathogenic organisms like pneumococcus should undergo a rapid adaptation to an evolving environment.
Collapse
Affiliation(s)
- R López
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
13
|
García P, Paz González M, García E, García JL, López R. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 1999; 33:128-38. [PMID: 10411730 DOI: 10.1046/j.1365-2958.1999.01455.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A biochemical approach to identify proteins with high affinity for choline-containing pneumococcal cell walls has allowed the localization, cloning and sequencing of a gene (lytC ) coding for a protein that degrades the cell walls of Streptococcus pneumoniae. The lytC gene is 1506 bp long and encodes a protein (LytC) of 501 amino acid residues with a predicted M r of 58 682. LytC has a cleavable signal peptide, as demonstrated when the mature protein (about 55 kDa) was purified from S. pneumoniae. Biochemical analyses of the pure, mature protein proved that LytC is a lysozyme. Combined cell fractionation and Western blot analysis showed that the unprocessed, primary product of the lytC gene is located in the pneumococcal cytoplasm whereas the processed, active form of LytC is tightly bound to the cell envelope. In vivo experiments demonstrated that this lysozyme behaves as a pneumococcal autolytic enzyme at 30 degrees C. The DNA region encoding the 253 C-terminal amino acid residues of LytC has been cloned and expressed in Escherichia coli. The truncated protein exhibits a low, but significant, choline-independent lysozyme activity, which suggests that this polypeptide adopts an active conformation. Self-alignment of the N-terminal part of the deduced amino acid sequence of LytC revealed the presence of 11 repeated motifs. These results strongly suggest that the lysozyme reported here has changed the general building plan characteristic of the choline-binding proteins of S. pneumoniae and its bacteriophages, i.e. the choline-binding domain and the catalytic domain are located, respectively, at the N-terminal and the C-terminal moieties of LytC. This work illustrates the natural versatility exhibited by the pneumococcal genes coding for choline-binding proteins to fuse separated catalytic and substrate-binding domains and create new and functional mature proteins.
Collapse
Affiliation(s)
- P García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Haas W, MacColl R, Banas JA. Circular dichroism analysis of the glucan binding domain of Streptococcus mutans glucan binding protein-A. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:112-20. [PMID: 9602086 DOI: 10.1016/s0167-4838(98)00005-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glucan binding domain (GBD) of the glucan binding protein-A (GBP-A) from the cariogenic bacterium Streptococcus mutans was studied using circular dichroism (CD) analysis, Chou-Fasman-Rose secondary structure prediction, and absorption and fluorescence spectroscopy. Our data show that the binding domain undergoes a conformational shift upon binding to the ligand dextran. The CD spectrum shows two positive bands at 280 nm and 230 nm which were assigned to aromatic residues. The 230-nm band was seen at 20 degrees C and 30 degrees C, lost intensity at 40 degrees C, and was eliminated at 45 degrees C coinciding with complete denaturation. The protein was stable at physiological pH, but precipitated at pH 5. A pH of 10 changed the secondary structure but had no effect on the 230-nm band. Analysis of the CD data in the far UV using the SELCON computer program revealed a high content of beta-sheets and a lack of alpha-helical structures. Secondary structure prediction based on the amino acid sequence of GBD agreed with the CD analysis. The fluorescence emission maximum at 339 nm suggested that the majority of the tryptophans were located in the interior of the protein. This maximum shifted to higher energy upon binding to the ligand dextran.
Collapse
Affiliation(s)
- W Haas
- Albany Medical College-A68, NY 12208, USA.
| | | | | |
Collapse
|
15
|
Martín AC, López R, García P. Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 1998; 180:210-7. [PMID: 9440507 PMCID: PMC106873 DOI: 10.1128/jb.180.2.210-217.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.
Collapse
Affiliation(s)
- A C Martín
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
16
|
Sanz JM, García P, García JL. Construction of a multifunctional pneumococcal murein hydrolase by module assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:601-5. [PMID: 8654407 DOI: 10.1111/j.1432-1033.1996.00601.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A chimeric trifunctional pneumococcal peptidoglycan hydrolase (CHL) has been constructed by fusing a choline-binding domain with two catalytic modules that provide lysozyme and amidase activity. The chimeric enzymes behaves as a choline-dependent enzyme and its activity is comparable to that of the parent enzymes. Site-directed mutagenesis of CHL produced a mutated enzyme [D9A,36A]CHL) that only exhibited an amidase activity. Comparative biochemical analyses of CHL and [D9A, E36A]CHL strongly suggest that the lysozyme catalytic module confers 88% of the total activity of CHL, whereas 12% of the activity can be ascribed to the amidase module. Both enzymatic activities are affected by the process of activation or conversion induced by choline suggesting that the conversion process is produced by a conformational change in the choline-binding domain. Our findings demonstrate that the three modules can acquire the proper folding conformation in the-three domain chimeric CHL enzyme. This experimental evidence supports the modular theory of protein evolution, and demonstrates that modular assembly of functional domains can be a rational approach to construct fully active chimeric enzymes with novel biological or biotechnological properties.
Collapse
Affiliation(s)
- J M Sanz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
17
|
Abstract
Bacteriophage genomes encode lysozymes whose role is to favour the release of virions by lysis of the host cells or to facilitate infection. In this review, the evolutionary relationships between the phage lysozymes are described. They are grouped into several classes: the V-, the G-, the lambda- and the CH-type lysozymes. The results of structure determinations and of enzymological studies indicate that the enzymes belonging to the first two classes, and possibly the third, share common structural elements with C-type lysozymes (eg. hen egg white lysozyme). The proteins of the fourth class, on the other hand, are structurally similar to the S. erythraeus lysozyme. Several phage lysozymes feature a modular construction: besides the catalytic domain, they contain additional domains or repeated motifs presumed to be important for binding to the bacterial walls and for efficient catalysis. The mechanism of action of these enzymes is described and the role of the important amino acid residues is discussed on the basis of sequence comparisons and of mutational studies. The effects of mutations affecting the structure and of multiple mutations are also discussed, particularly in the case of the T4 lysozyme: from these studies, proteins appear to be quite tolerant of potentially disturbing modifications.
Collapse
Affiliation(s)
- J Fastrez
- Laboratoire de Biochimie Physique et des Biopolymères, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
|
19
|
Thermal stability and cooperative domains of CPL1 lysozyme and its NH2- and COOH-terminal modules. Dependence on choline binding. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53228-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Romero A, López R, GarcÃa P. Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06078.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Sanz JM, Díaz E, García JL. Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases. Mol Microbiol 1992; 6:921-31. [PMID: 1351240 DOI: 10.1111/j.1365-2958.1992.tb01542.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The structures of the choline-dependent pneumococcal murein hydrolases, LYTA amidase and CPL1 lysozyme, and the choline-independent CPL7 lysozyme were analysed by controlled proteolytic digestions. The trypsin cleavage of the CPL1 and CPL7 lysozymes produced two resistant polypeptides, F1 and F7 respectively, corresponding to the N-terminal domain of the enzymes, whereas the amidase LYTA was completely hydrolysed by the protease. Interestingly, the F1 and F7 fragments showed a low, but significant, choline-independent lysozyme activity. Choline reduced the rate of proteolytic hydrolysis of choline-dependent enzymes, suggesting that the C-terminal choline-binding domain adopts a more resistant conformation in the presence of the ligand. On the other hand, the regions encoding the N-terminal domains of the three enzymes have been cloned and expressed in Escherichia coli, showing that these domains adopt an active conformation even in the absence of their C-terminal domains. The lower activity shown by the catalytic domains when compared with that of the complete enzymes suggests that the acquisition of a substrate-binding domain represents a noticeable evolutionary advantage for enzymes that interact with polymeric substrates, allowing them to achieve a higher catalytic efficiency. These results strongly reinforce the hypothesis that the pneumococcal murein hydrolases have been originated by fusion of two structural and functional independent domains, and provide new experimental support to the theory of modular evolution of proteins.
Collapse
Affiliation(s)
- J M Sanz
- Unidad de Genética Bacteriana, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
22
|
Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD, Ghuysen JM. Modular design of theEnterococcus hiraemuramidase-2 andStreptococcus faecalisautolysin. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05218.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Sánchez-Puelles JM, Sanz JM, García JL, García E. Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene 1990; 89:69-75. [PMID: 1973677 DOI: 10.1016/0378-1119(90)90207-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cloning in Escherichia coli of the 3' moieties of the lytA and cpl-1 genes is described, coding for the C-terminal regions of the lytic amidase of Streptococcus pneumoniae and the phage Cp-1 lysozyme, respectively. The truncated genes were overexpressed in E. coli and the purified polypeptides showed a great affinity for choline, although they were devoid of cell wall-degrading activity. Biochemical and circular dichroism analyses indicated that these are the domains responsible for the specific recognition of the choline-containing pneumococcal cell walls by the lytic enzymes. The data presented here suggested that these choline-binding domains can function independently of their catalytic domains.
Collapse
|