1
|
Riedlová K, Dolejšová T, Fišer R, Cwiklik L. H1 helix of colicin U causes phospholipid membrane permeation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183866. [PMID: 35007517 DOI: 10.1016/j.bbamem.2022.183866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In light of an increasing number of antibiotic-resistant bacterial strains, it is essential to understand an action imposed by various antimicrobial agents on bacteria at the molecular level. One of the leading mechanisms of killing bacteria is related to the alteration of their plasmatic membrane. We study bio-inspired peptides originating from natural antimicrobial proteins colicins, which can disrupt membranes of bacterial cells. Namely, we focus on the α-helix H1 of colicin U, produced by bacterium Shigella boydii, and compare it with analogous peptides derived from two different colicins. To address the behavior of the peptides in biological membranes, we employ a combination of molecular simulations and experiments. We use molecular dynamics simulations to show that all three peptides are stable in model zwitterionic and negatively charged phospholipid membranes. At the molecular level, their embedment leads to the formation of membrane defects, membrane permeation for water, and, for negatively charged lipids, membrane poration. These effects are caused by the presence of polar moieties in the considered peptides. Importantly, simulations demonstrate that even monomeric H1 peptides can form toroidal pores. At the macroscopic level, we employ experimental co-sedimentation and fluorescence leakage assays. We show that the H1 peptide of colicin U incorporates into phospholipid vesicles and disrupts their membranes, causing leakage, in agreement with the molecular simulations. These insights obtained for model systems seem important for understanding the mechanisms of antimicrobial action of natural bacteriocins and for future exploration of small bio-inspired peptides able to disrupt bacterial membranes.
Collapse
Affiliation(s)
- Kamila Riedlová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Tereza Dolejšová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 12843 Prague, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 12843 Prague, Czech Republic.
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| |
Collapse
|
2
|
Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, Moore GR, James R, Penfold CN. Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. J Biol Chem 2012; 287:19048-57. [PMID: 22493500 PMCID: PMC3365938 DOI: 10.1074/jbc.m112.342246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA53–107). The interface region of the TA53–107-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375–Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58–Lys-368, Tyr-90–Lys-379, Phe-94–Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA53–107 binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.
Collapse
Affiliation(s)
- Chan Li
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ridleya H, Johnson CL, Lakey JH. Interfacial Interactions of Pore-Forming Colicins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:81-90. [DOI: 10.1007/978-1-4419-6327-7_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Baboolal TG, Conroy MJ, Gill K, Ridley H, Visudtiphole V, Bullough PA, Lakey JH. Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 2008; 16:371-9. [PMID: 18334212 PMCID: PMC2581486 DOI: 10.1016/j.str.2007.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
Abstract
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.
Collapse
Affiliation(s)
- Thomas G Baboolal
- The Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
7
|
Heitz F, Van Mau N. Protein structural changes induced by their uptake at interfaces. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:1-11. [PMID: 12009396 DOI: 10.1016/s0167-4838(02)00273-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For insertion into lipidic media, most hydrosoluble proteins must cross the lipid-water interface and thus undergo conformational transitions. According to their chemical sequences these transitions may be restricted to changes involving only the tertiary structure, while for other proteins this environment modification will induce drastic changes such as the unfolding of large domains. The structural transitions are mainly governed by the presence of hydrophobic domains and/or by the existence of induced amphipathic properties.
Collapse
Affiliation(s)
- Frédéric Heitz
- CRBM-CNRS, UPR 1086, 1919 route de Mende, F-34293 Montpellier Cedex 5, France.
| | | |
Collapse
|
8
|
Duché D. The pore-forming domain of colicin A fused to a signal peptide: a tool for studying pore-formation and inhibition. Biochimie 2002; 84:455-64. [PMID: 12423789 DOI: 10.1016/s0300-9084(02)01424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pore-forming colicins are plasmid-encoded bacteriocins that kill Escherichia coli and closely related bacteria. They bind to receptors in the outer membrane and are translocated across the cell envelope to the inner membrane where they form voltage-dependent ion-channels. Colicins are composed of three domains, with the C-terminal domain responsible for pore-formation. Isolated C-terminal pore-forming domains produced in the cytoplasm of E. coli are inactive due to the polarity of the transmembrane electrochemical potential, which is the opposite of that required. However, the pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of E. coli from the periplasmic side, forming a functional channel. Sp-pfColA is specifically inhibited by the colicin A immunity protein (Cai). This construct has been used to investigate colicin A channel formation in vivo and to characterise the interaction of pfColA with Cai within the inner membrane. These points will be developed further in this review.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph-Aiguier, 13402 Marseille cedex 20, France.
| |
Collapse
|
9
|
Abstract
The pore-forming colicins, the first proteins that were capable of forming voltage-dependent ion channels to be sequenced, have turned out to be both less tractable and more mysterious than imagined; yet they have proved interesting at every step of their short journey from producing cell to vanquished target cell. Starting out as a remarkably extended water-soluble protein, the colicin molecule is designed to interact simultaneously with several components of the complex membrane of the target cell, transform itself into a membrane protein, and become an ion channel with inscrutable properties. Unraveling how it does all this appears to be leading us into the dark recesses of protein/protein and protein/membrane interaction, where lurk fundamental processes reluctantly waiting to be revealed.
Collapse
Affiliation(s)
- J H Lakey
- School of Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, UK
| | | |
Collapse
|
10
|
Nardi A, Slatin SL, Baty D, Duché D. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro. J Mol Biol 2001; 307:1293-303. [PMID: 11292342 DOI: 10.1006/jmbi.2001.4524] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of Escherichia coli from the periplasmic side and forms a functional channel. The soluble structure of pfColA consists of a ten-helix bundle containing a hydrophobic helical hairpin. Here, we generated a series of mutants in which an increasing number of sp-pfColA alpha-helices was deleted. These peptides were tested for their ability to form ion channels in vivo and in vitro. We found that the shortest sp-pfColA mutant protein that killed Escherichia coli was composed of the five last alpha-helices of sp-pfColA, whereas the shortest peptide that formed a channel in planar lipid bilayer membranes similar to that of intact pfColA was the protein composed of the last six alpha-helices. The peptide composed of the last five alpha-helices of pfColA generated a voltage-independent conductance in planar lipid bilayer with properties very different from that of intact pfColA. Thus, helices 1 to 4 are unnecessary for channel formation, while helix 5, or some part of it, is important but not absolutely necessary. Voltage-dependence of colicin is evidently controlled by the first four alpha-helices of pfColA.
Collapse
Affiliation(s)
- A Nardi
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, Marseille cedex 20, 13402, France
| | | | | | | |
Collapse
|
11
|
Dover LG, Evans LJ, Fridd SL, Bainbridge G, Raggett EM, Lakey JH. Colicin pore-forming domains bind to Escherichia coli trimeric porins. Biochemistry 2000; 39:8632-7. [PMID: 10913271 DOI: 10.1021/bi000160n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colicin N kills sensitive Escherichia coli cells by first binding to its trimeric receptor (OmpF) via its receptor binding domain. It then uses OmpF to translocate across the outer membrane and in the process it also needs domains II and III of the protein TolA. Recent studies have demonstrated sodium dodecyl sulfate- (SDS) dependent complex formation between trimeric porins and TolA-II. Here we demonstrate that colicin N forms similar complexes with the same trimeric porins and that this association is unexpectedly solely dependent upon the pore-forming domain (P-domain). No binding was seen with the monomeric porin OmpA. In mixtures of P-domain and TolA with OmpF porin, only binary and no ternary complexes were observed, suggesting that binding of these proteins to the porin is mutually exclusive. Pull-down assays in solution show that porin-P-domain complexes also form in the presence of outer membrane lipopolysaccharide. This indicates that an additional colicin-porin interaction may occur within the outer membrane, one that involves the colicin pore domain rather than the receptor-binding domain. This may help to explain the role of porins and TolA-II in the later stages of colicin translocation.
Collapse
Affiliation(s)
- L G Dover
- School of Biochemistry & Genetics, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Vetter IR, Parker MW, Tucker AD, Lakey JH, Pattus F, Tsernoglou D. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 1998; 6:863-74. [PMID: 9687368 DOI: 10.1016/s0969-2126(98)00088-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pore-forming colicins are water-soluble bacteriocins capable of binding to and translocating through the Escherichia coli cell envelope. They then undergo a transition to a transmembrane ion channel in the cytoplasmic membrane leading to bacterial death. Colicin N is the smallest pore-forming colicin known to date (40 kDa instead of the more usual 60 kDa) and the crystal structure of its membrane receptor, the porin OmpF, is already known. Structural knowledge of colicin N is therefore important for a molecular understanding of colicin toxicity and is relevant to toxic mechanisms in general. RESULTS The crystal structure of colicin N reveals a novel receptor-binding domain containing a six-stranded antiparallel beta sheet wrapped around the 63 A long N-terminal alpha helix of the pore-forming domain. The pore-forming domain adopts a ten alpha-helix bundle that has been observed previously in the pore-forming domains of colicin A, la and E1. The translocation domain, however, does not appear to adopt any regular structure. Models for receptor binding and translocation through the outer membrane are proposed based on the structure and biochemical data. CONCLUSIONS The colicin N-ompF system is now the structurally best-defined translocation pathway. Knowledge of the colicin N structure, coupled with the structure of its receptor, OmpF, and previously published biochemical data, limits the numerous possibilities of translocation and leads to a model in which the translocation domain inserts itself through the porin pore, the receptor-binding domain stays outside and the pore-forming domain translocates along the outer wall of the trimeric porin channel.
Collapse
Affiliation(s)
- I R Vetter
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Elkins P, Bunker A, Cramer WA, Stauffacher CV. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5:443-58. [PMID: 9083117 DOI: 10.1016/s0969-2126(97)00200-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Channel-forming colicins, including colicin E1, are a sub-family of bacteriocins. The toxic action of colicin E1 is derived from its ability to form a voltage-gated channel, which causes depolarization of the cytoplasmic membrane of sensitive Escherichia coli cells. In this process, the toxin-like colicin E1 molecule must undergo a substantial structural transition from a soluble state, in which it binds the target cell, to a membrane-bound state. Details of the structural changes that accompany this conversion may be directly applicable to other channel-forming toxins, as well as to the mechanism by which proteins insert into or cross membranes. RESULTS The structure of the 190-residue channel-forming domain of colicin E1 in its soluble form has been solved at 2.5 A resolution. This structure contains 10alpha helices arranged in three layers (A-C) with a central hydrophobic helical hairpin in layer B, which is proposed to anchor the membrane-bound form in the bilayer. The extended N-terminal helix I provides a connection to the rest of the colicin E1 molecule, and the loop I-II may act as a hinge for re-orientation of the domain for membrane binding. A set of conserved positively charged residues on layer C may provide the docking surface on the molecule for membrane attachment. A large internal cavity between layers B and C may allow these layers to disengage, suggesting a mechanism for unfolding the molecule on the membrane that involves the perturbation of the interhelical hydrophobic interactions in layer C. CONCLUSION On the basis of the structure of the colicin E1 channel-forming domain, its comparison with the structure of the colicin A domain and the known requirement for initial electrostatic and subsequent hydrophobic interactions, molecular details of the docking, unfolding and insertion of the channel-forming domain into the membrane are proposed. The model for docking and initial interaction with the membrane positions the hydrophobic hairpin 'anchor' approximately parallel to the membrane surface. Hydrophobic interactions in the docking layer may then be displaced by interactions with the membrane, spreading the helices on the surface and exposing the hydrophobic hairpin for insertion into the membrane.
Collapse
Affiliation(s)
- P Elkins
- Protein Engineering, Department Genentech, Inc. 460 Pt. San Bruno Blvd, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
14
|
Duché D, Izard J, González-Mañas JM, Parker MW, Crest M, Chartier M, Baty D. Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering. J Biol Chem 1996; 271:15401-6. [PMID: 8663026 DOI: 10.1074/jbc.271.26.15401] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Four colicin A double-cysteine mutants possessing a disulfide bond in their pore-forming domain were constructed to study the translocation and the pore formation of colicin A. The disulfide bonds connected alpha-helices 1 and 2, 2 and 10, 3 and 9, or 3 and 10 of the pore-forming domain. The disulfide bonds did not prevent the colicin A translocation through the Escherichia coli envelope. However, the mutated colicins were able to exert their in vivo channel activity only after reduction of their disulfide bonds. In vitro studies with brominated phospholipid vesicles and planar lipid bilayers revealed that the disulfide bond that connects the alpha-helices 2 and 10 prevented the colicin A membrane insertion, whereas the other double-cysteine mutants inserted into lipid vesicles. The disulfide bonds that connect either the alpha-helices 1 and 2 or 3 and 10 were unable to prevent the formation of a conducting channel in presence of membrane potential. These results indicate that alpha-helices 1, 2, 3, and 10 remain at the membrane surface after application of a membrane potential.
Collapse
Affiliation(s)
- D Duché
- Laboratoire d'Ingénierie et Dynamique des Systèmes Membranaires, Institut de Biologie Structurale et Microbiologie du CNRS, Marseille, France. Biochemistry and Molecular Biology, Faculty of
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Lazdunski CJ. Colicin import and pore formation: a system for studying protein transport across membranes? Mol Microbiol 1995; 16:1059-66. [PMID: 8577242 DOI: 10.1111/j.1365-2958.1995.tb02331.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pore-forming colicins are a family of protein toxins (M(r) 40-70 kDa) produced by Escherichia coli and related bacteria. They are bactericidal by virtue of their ability to form ion channels in the inner membrane of target cells. They provide a useful means of studying questions such as toxin action, polypeptide translocation across and into membranes, voltage-gated channels and receptor function. These colicins bind to a receptor in the outer membrane before being translocated across the cell envelope with the aid of helper proteins that belong to nutrient-uptake systems and the so-called 'Tol' proteins, the function of which has not yet been properly defined. A distinct domain appears to be associated with each of three steps (receptor binding, translocation and formation of voltage-gated channels). The Tol-dependent uptake pathway is described here. The structures and interactions of TolA, B, Q and R have by now been quite clearly defined. Transmembrane alpha-helix interactions are required for the functional assembly of the E. coli Tol complex, which is preferentially located at contact sites between the inner and outer membranes. The number of colicin translocation sites is about 1000 per cell. The role and the involvement of the OmpF porin (with colicins A and N) have been described in a recent study on the structural and functional interactions of a colicin-resistant mutant of OmpF. The X-ray crystal structure of the channel-forming fragment of colicin A and that of the entire colicin la have provided the basis for biophysical and site-directed mutagenesis studies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C J Lazdunski
- Laboratoire d'Ingéniérie et Dynamique des Systèmes membranaires, CNRS-UPR 9027, Marseille, France
| |
Collapse
|
17
|
Bonhivers M, Guihard G, Pattus F, Letellier L. In vivo and in vitro studies of the inhibition of the channel activity of colicins by gadolinium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:155-63. [PMID: 7538071 DOI: 10.1111/j.1432-1033.1995.0155l.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The primary effects of the ionophoric colicins A, E1 and B on Escherichia coli cells include triggering an efflux of cytoplasmic potassium, and a decrease of internal ATP as consequences of the opening of ionic channels in the cytoplasmic membrane. We report that micromolar concentrations of gadolinium and other members of the lanthanide family inhibited the efflux of potassium and the ATP decrease and that the cells recovered both ATP and potassium within a few minutes. Gadolinium, in the same concentration range also efficiently inhibited the channel activity of colicins A, E1, B and of the isolated channel-forming domain of colicin A in planar lipid bilayers. Colicin N was much less sensitive to the trivalent ion in planar lipid bilayers, consistent with the lack of effect of gadolinium on this colicin in vivo. Our data suggest that lanthanide ions act by direct binding to the colicin molecule and that this binding affects both its single-channel conductance and gating behaviour.
Collapse
Affiliation(s)
- M Bonhivers
- Laboratoire des Biomembranes, URA CNRS 1116 Université Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
18
|
Ghosh P, Mel SF, Stroud RM. The domain structure of the ion channel-forming protein colicin Ia. NATURE STRUCTURAL BIOLOGY 1994; 1:597-604. [PMID: 7543362 DOI: 10.1038/nsb0994-597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Colicin Ia undergoes a transition from a soluble to a transmembrane state, forming an ion channel to effect its bactericidal activity. The X-ray crystal structure of soluble colicin Ia at an effective resolution of 4 A reveals that the molecule is highly alpha-helical and has an unusually elongated 'Y'-shape. The stalk and two arms of the 'Y' form three discrete structural domains which most likely correspond to the three functional regions identified for the channel-forming colicins. The channel-forming region of colicin Ia can be located to the larger of the two arms, the insertion domain, by its structural similarity to the ten alpha-helix motif found for the ion channel-forming fragments of colicins A and E1. The domain arrangement found in this structure provides novel insights into the mechanism of membrane insertion of colicin Ia.
Collapse
Affiliation(s)
- P Ghosh
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | | | |
Collapse
|
19
|
Espesset D, Corda Y, Cunningham K, Bénedetti H, Lloubès R, Lazdunski C, Géli V. The colicin A pore-forming domain fused to mitochondrial intermembrane space sorting signals can be functionally inserted into the Escherichia coli plasma membrane by a mechanism that bypasses the Tol proteins. Mol Microbiol 1994; 13:1121-31. [PMID: 7854126 DOI: 10.1111/j.1365-2958.1994.tb00503.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colicin A is a pore-forming bacteriocin that depends upon the Tol proteins in order to be transported from its receptor at the outer membrane surface to its target, the inner membrane. The presequence of yeast mitochondria cytochrome c1 (pc1) as well as the first 167 amino acids of cytochrome b2 (pb2) were fused to the pore-forming domain of colicin A (pfColA). Both hybrid proteins (pc1-pfCoIA and pb2-pfColA) were cytotoxic for Escherichia coli strains devoid of colicin A immunity protein whereas the pore-forming domain without presequence had no lethal effect. The entire precursors and their processed forms were found entirely associated with the bacterial inner membrane and their cytotoxicities were related to their pore-forming activities. The proteins were also shown to kill the tol bacterial strains, which are unable to transport colicins. In addition, we showed that both the cytochrome c1 presequence fused to the dihydrofolate reductase (pc1-DHFR) and the cytochrome c1 presequence moiety of pc1-pfCoIA were translocated across inverted membrane vesicles. Our results indicated that: (i) pc1-pfCoIA produced in the cell cytoplasm was able to assemble in the inner membrane by a mechanism independent of the tol genes; (ii) the inserted pore-forming domain had a channel activity; and (iii) this channel activity was inhibited within the membrane by the immunity protein.
Collapse
Affiliation(s)
- D Espesset
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, CNRS, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Colicins are unusual bacterial toxins because they are directed against close relatives of the producing strain. They kill their targets in one of three distinct ways; via a ribonuclease or deoxyribonuclease activity or by forming pores in the target cell's membrane. This review deals with the steps involved in pore-forming colicin activity including, initial synthesis of the toxin, toxin release, receptor binding, translocation across the periplasm and pore formation in the cytoplasmic membrane. Special reference is made to the role of colicin in vivo, the structural changes occurring during pore formation and the role of the immunity protein.
Collapse
Affiliation(s)
- J H Lakey
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
21
|
Zhang YL, Cramer WA. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Protein Sci 1992; 1:1666-76. [PMID: 1284805 PMCID: PMC2142128 DOI: 10.1002/pro.5560011215] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The surface topography of a 190-residue COOH-terminal colicin E1 channel peptide (NH2-Met 333-Ile 522-COOH) bound to uniformly sized 0.2-micron liposomes was probed by accessibility of the peptide to proteases in order (1) to determine whether the channel structure contains trans-membrane segments in addition to the four alpha-helices previously identified and (2) to discriminate between different topographical possibilities for the surface-bound state. An unfolded surface-bound state is indicated by increased trypsin susceptibility of the bound peptide relative to that of the peptide in aqueous solution. The peptide is bound tightly to the membrane surface with Kd < 10(-7) M. The NH2-terminal 50 residues of the membrane-bound peptide are unbound or loosely bound as indicated by their accessibility to proteases, in contrast with the COOH-terminal 140 residues, which are almost protease inaccessible. The general protease accessibility of the NH2-terminal segment Ala 336-Lys 382 excludes any model for the closed channel state that would include trans-membrane helices on the NH2-terminal side of Lys 382. Lys 381-Lys 382 is a major site for protease cleavage of the surface-bound channel peptide. A site for proteinase K cleavage just upstream of the amphiphilic gating hairpin (K420-K461) implies the presence of a surface-exposed segment in this region. These protease accessibility data indicate that it is unlikely that there are any alpha-helices on the NH2-terminal side of the gating hairpin K420-K461 that are inserted into the membrane in the absence of a membrane potential. A model for the topography of an unfolded monomeric surface-bound intermediate of the colicin channel domain, including a trans-membrane hydrophobic helical hairpin and two or three long surface-bound helices, is proposed.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
22
|
Cramer WA, Zhang YL, Schendel S, Merrill AR, Song HY, Stauffacher CV, Cohen FS. Dynamic properties of the colicin E1 ion channel. FEMS MICROBIOLOGY IMMUNOLOGY 1992; 5:71-81. [PMID: 1384599 DOI: 10.1111/j.1574-6968.1992.tb05889.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Pore-forming toxins, such as colicin A, are water-soluble proteins that insert into lipid bilayers. The water-soluble structure of Colicin A is known at a high resolution and this review describes the kinetic and structural steps involved in its soluble-to-membrane bound transformation.
Collapse
Affiliation(s)
- J H Lakey
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|