1
|
Sorgenfrei FA, Sloan JJ, Weissensteiner F, Zechner M, Mehner NA, Ellinghaus TL, Schachtschabel D, Seemayer S, Kroutil W. Solvent concentration at 50% protein unfolding may reform enzyme stability ranking and process window identification. Nat Commun 2024; 15:5420. [PMID: 38926341 PMCID: PMC11208486 DOI: 10.1038/s41467-024-49774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in shortc U 50 T is introduced. Analyzing a set of ene reductases,c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature andc U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots ofc U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.
Collapse
Affiliation(s)
- Frieda A Sorgenfrei
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Jeremy J Sloan
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Florian Weissensteiner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Marco Zechner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Niklas A Mehner
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | | | | | - Stefan Seemayer
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
2
|
Rodríguez-Alonso G, Toledo-Marcos J, Serrano-Aguirre L, Rumayor C, Pasero B, Flores A, Saborido A, Hoyos P, Hernáiz MJ, de la Mata I, Arroyo M. A Novel Lipase from Streptomyces exfoliatus DSMZ 41693 for Biotechnological Applications. Int J Mol Sci 2023; 24:17071. [PMID: 38069394 PMCID: PMC10707221 DOI: 10.3390/ijms242317071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Genome mining of Streptomyces exfoliatus DSMZ 41693 has allowed us to identify four different lipase-encoding sequences, and one of them (SeLipC) has been successfully cloned and extracellularly expressed using Rhodococcus sp. T104 as a host. SeLipC was purified by one-step hydrophobic interaction chromatography. The enzyme is a monomeric protein of 27.6 kDa, which belongs to subfamily I.7 of lipolytic enzymes according to its phylogenetic analysis and biochemical characterization. The purified enzyme shows the highest activity at 60 °C and an optimum pH of 8.5, whereas thermal stability is significantly improved when protein concentration is increased, as confirmed by thermal deactivation kinetics, circular dichroism, and differential scanning calorimetry. Enzyme hydrolytic activity using p-nitrophenyl palmitate (pNPP) as substrate can be modulated by different water-miscible organic cosolvents, detergents, and metal ions. Likewise, kinetic parameters for pNPP are: KM = 49.6 µM, kcat = 57 s-1, and kcat/KM = 1.15 × 106 s-1·M-1. SeLipC is also able to hydrolyze olive oil and degrade several polyester-type polymers such as poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), and poly(ε-caprolactone) (PCL). Moreover, SeLipC can catalyze the synthesis of different sugar fatty acid esters by transesterification using vinyl laurate as an acyl donor, demonstrating its interest in different biotechnological applications.
Collapse
Affiliation(s)
- Guillermo Rodríguez-Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Juan Toledo-Marcos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Lara Serrano-Aguirre
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Carlos Rumayor
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Beatriz Pasero
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Aida Flores
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - Ana Saborido
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Pilar Hoyos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - María J. Hernáiz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (A.F.); (P.H.); (M.J.H.)
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain; (G.R.-A.); (J.T.-M.); (L.S.-A.); (C.R.); (B.P.); (A.S.)
| |
Collapse
|
3
|
Yang H, Wang J, Cao W. Improved liquid-liquid extraction followed by HPLC-UV for accurate and eco-friendly determination of tetramethylpyrazine in vinegar products. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123869. [PMID: 37716345 DOI: 10.1016/j.jchromb.2023.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Tetramethylpyrazine (TMP) is an important bioactive compound in vinegars, contributing to their health-enhancing attributes. It serves as a crucial benchmark for the assessment of vinegar quality. Unfortunately, inaccuracies have arisen due to incomplete extraction techniques and the use of an inappropriate standard substance. These challenges have significantly curtailed comprehensive exploration into the underlying TMP formation mechanisms, impeding advancements within prevailing benchmarks and methodologies governing vinegar products. To address these challenges, several critical parameters, encompassing pH, solvent type, centrifugal force, extraction times and reference materials were investigated and optimized. The TMP content was determined by adjusting the pH to 9 using a sodium hydroxide solution, followed by extraction with ethyl acetate and subsequent re-extraction of the ethyl acetate layer with 0.2 mol/L HCl. A high-performance liquid chromatography method with an ultraviolet detector (UV) was developed and validated. This method demonstrated superior sensitivity compared to existing methods, with a limit of detection (LOD) of 0.0237 μg/g, limit of quantification (LOQ) of 0.0829 μg/g, method limit of detection (MLOD) of 0.10 μg/g and method limit of quantitation (MLOQ) of 0.25 μg/g. The modified method exhibited excellent linearity for TMP in the range of 0.1-118.4 μg/mL, with a good correlation coefficient (R2 > 0.999). The recovery rate of TMP in vinegar products ranged from 82.4 to 96.2%. Consequently, the proposed method exhibits substantial promise for systematic inquiry into TMP formation mechanisms and for ensuring consistent quality control during the production of premium-grade vinegars.
Collapse
Affiliation(s)
- Hong Yang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Jing Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wenming Cao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China.
| |
Collapse
|
4
|
Point AD, Crimmins BS, Holsen TM, Fernando S, Hopke PK, Darie CC. Can blood proteome diversity among fish species help explain perfluoroalkyl acid trophodynamics in aquatic food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162337. [PMID: 36848995 DOI: 10.1016/j.scitotenv.2023.162337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Revised: 01/22/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.
Collapse
Affiliation(s)
- Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America.
| | - Bernard S Crimmins
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; AEACS, LLC, New Kensington, PA, United States of America
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
5
|
Storer MC, Hunter CA. The surface site interaction point approach to non-covalent interactions. Chem Soc Rev 2022; 51:10064-10082. [PMID: 36412990 DOI: 10.1039/d2cs00701k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
The functional properties of molecular systems are generally determined by the sum of many weak non-covalent interactions, and therefore methods for predicting the relative magnitudes of these interactions is fundamental to understanding the relationship between function and structure in chemistry, biology and materials science. This review focuses on the Surface Site Interaction Point (SSIP) approach which describes molecules as a set of points that capture the properties of all possible non-covalent interactions that the molecule might make with another molecule. The first half of the review focuses on the empirical non-covalent interaction parameters, α and β, and provides simple rules of thumb to estimate free energy changes for interactions between different types of functional group. These parameters have been used to have been used to establish a quantitative understanding of the role of solvent in solution phase equilibria, and to describe non-covalent interactions at the interface between macroscopic surfaces as well as in the solid state. The second half of the review focuses on a computational approach for obtaining SSIPs and applications in multi-component systems where many different interactions compete. Ab initio calculation of the Molecular Electrostatic Potential (MEP) surface is used to derive an SSIP description of a molecule, where each SSIP is assigned a value equivalent to the corresponding empirical parameter, α or β. By considering the free energies of all possible pairing interactions between all SSIPs in a molecular ensemble, it is possible to calculate the speciation of all intermolecular interactions and hence predict thermodynamic properties using the SSIMPLE algorithm. SSIPs have been used to describe both the solution phase and the solid state and provide accurate predictions of partition coefficients, solvent effects on association constants for formation of intermolecular complexes, and the probability of cocrystal formation. SSIPs represent a simple and intuitive tool for describing the relationship between chemical structure and non-covalent interactions with sufficient accuracy to understand and predict the properties of complex molecular ensembles without the need for computationally expensive simulations.
Collapse
Affiliation(s)
- Maria Chiara Storer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
6
|
Stark F, Loderer C, Petchey M, Grogan G, Ansorge-Schumacher M. Advanced Insights into Catalytic and Structural Features of the Zinc-Dependent Alcohol Dehydrogenase from Thauera aromatica. Chembiochem 2022; 23:e202200149. [PMID: 35557486 PMCID: PMC9400901 DOI: 10.1002/cbic.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2022] [Revised: 05/12/2022] [Indexed: 11/10/2022]
Abstract
The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α‐diketone 1,2‐cyclohexanedione to the corresponding α‐hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α‐substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.
Collapse
Affiliation(s)
- Frances Stark
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | - Christoph Loderer
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | | | | | | |
Collapse
|
7
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Sharma N, Leung IKH. Characterisation and optimisation of a novel laccase from Sulfitobacter indolifex for the decolourisation of organic dyes. Int J Biol Macromol 2021; 190:574-584. [PMID: 34506861 DOI: 10.1016/j.ijbiomac.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Laccases are multi‑copper oxidases that possess the potential for industrial wastewater treatments. In this study, a putative laccase from Sulfitobacter indolifex was recombinantly produced and characterised. The enzyme was found to be stable and active at low to ambient temperature and across a range of pH conditions. The ability of the putative bacterial laccase to catalyse the decolourisation of seven common industrial dyes was also examined. Our results showed that the putative laccase could efficiently decolourise Indigo Carmine, Coomassie Brilliant Blue R-250, Congo Red, Malachite Green and Alizarin in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a redox mediator. Furthermore, the use of enzyme immobilisation technology to improve the operational stability and reusability of the putative laccase was also investigated. We found that immobilising the enzyme through the cross-linked enzyme aggregate method significantly improved its tolerance towards extreme pH as well as the presence of organic solvents. This work expands the arsenal of bacterial laccases available for the bioremediation of dye-containing wastewater.
Collapse
Affiliation(s)
- Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; Centre for Green Chemical Science, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Sharma N, Leung IK. Novel Thermophilic Bacterial Laccase for the Degradation of Aromatic Organic Pollutants. Front Chem 2021; 9:711345. [PMID: 34746090 PMCID: PMC8564365 DOI: 10.3389/fchem.2021.711345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 12/07/2022] Open
Abstract
We identified a putative laccase from the thermophilic bacterium Geobacillus yumthangensis. The putative laccase was produced recombinantly and its ability to catalyse the degradation of aromatic organic pollutants was investigated. The putative laccase exhibits broad pH and temperature stability, and, notably, it could catalyse the degradation of organic dyes as well as toxic pollutants including bisphenol A, guaiacol and phenol with a redox mediator. Our work further demonstrates the potential of using oxidative enzymes to break down toxic chemicals that possess major threats to human health and the environment.
Collapse
Affiliation(s)
- Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Ivanhoe K.H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Comparative study of the protein denaturing ability of different organic cosolvents. Int J Biol Macromol 2020; 160:880-888. [DOI: 10.1016/j.ijbiomac.2020.05.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
|
11
|
Javid H, Wiyakrutta S. Increasing Performance and Thermostability of D-Phenylglycine Aminotransferase in Miscible Organic Solvents. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 16:e2152. [PMID: 31457036 PMCID: PMC6697834 DOI: 10.21859/ijb.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 11/27/2022]
Abstract
Background D-Phenylglycine aminotransferase (D-PhgAT) is highly beneficial in pharmaceutical biotechnology. Like many other enzymes, D-PhgAT suffers from low stability under harsh processing conditions, poor solubility of substrate, products and occasional microbial contamination. Incorporation of miscible organic solvents into the enzyme’s reaction is considered as a solution for these problems; however, native D-PhgAT is not significantly stable in such solvents. Objective Halophiles are known to survive and withstand unsavory habitats owing to their proteome bios. In the current study, with an eye on further industrial applications, we examined the performance and thermostability of four halophilic peptides fused D-PhgAT variants in reaction mixtures of various proportions of different miscible organic solvents and various temperatures as well as desiccation. Materials and Methods Plasmid constructs from the previous study (Two alpha helixes and loops between them from Halobacterium salinarum ferredoxin enzyme fused at N-terminus domain of D-PhgAT) expressed in Escherichia coli and then D-PhgAT purified. Purified proteins were subjected to various proportions of miscible organic solvents, different temperatures, and desiccation and then performance and thermostability monitored. Results Study confirmed increased C50 of all halophilic fused D-PhgAT variants, where the highest C50 observed for ALAL-D-PhgAT (30.20±2.84 %V/V). Additionally, all halophilic fused variants showed higher thermostability than the wild-type D-PhgAT in the presence of different fractions of acetone, N,N-Dimethylformamide and isopropanol in aqueous binary media, while zero activity observed at the presence of methanol. Conclusion Our results suggest that applying this new technique could be invaluable for making enzymes durable in discordant industrial conditions.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Reproductive Genetics, Royan Reproductive Biomedicine Research Center, ACECR, Tehran, Iran.,Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Suthep Wiyakrutta
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability. 3 Biotech 2019; 9:269. [PMID: 31218180 DOI: 10.1007/s13205-019-1794-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The immobilization of enzymes improves their stability in non-conventional media such as organic solvents. In this work, the effects of solvents (DMSO, methanol, ethanol, and n-propanol) on the endoglucanase Cel9A activity and stability were studied. Then, the enzymes were stabilized by its immobilization on chitosan nanoparticles and also using polyols (sorbitol and glycerol) against organic solvents. The SEM results illustrated that the chitosan nanoparticles had about 40 nm diameter. The results indicated that the organic solvents, especially n-propanol, decreased the activity of the free and immobilized enzymes. The reduced activity of the immobilized enzyme was less than that of the free enzyme. Our studies about the enzymes' stability showed that the free and immobilized enzymes in hydrophobic solvents (with high log P) had the lowest stability compared to other solvents as we observed the half-life of the free enzyme in n-propanol solvent was 2.84 min, and the half-life of the immobilized enzyme was 4.98 min in n-propanol and ethanol solvents 4.50 min. Analysis of the combinatory effects of polyols (sorbitol and glycerol) and the solvents on the stability revealed that sorbitol and glycerol had the most stabilizing effect on the free enzyme in hydrophilic (DMSO) and hydrophobic (n-propanol) solvents, respectively. However, the stabilizing effects of polyols in the immobilized enzyme were independent of the solvents' hydrophobicity (or log P) due to the hydrophilic properties of chitosan nanoparticles. Therefore, one can conclude that the physiochemical properties of nanoparticles (such as hydrophilicity) influence the stabilizing effects of polyols on immobilized enzyme.
Collapse
|
13
|
Veselova IA, Shekhovtsova TN. Optical Sensors on the Basis of a Polyelectrolyte Peroxidase–Chitosan Complex for the Determination of Biologically Active Compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s106193481901012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
14
|
Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations. Molecules 2019. [PMID: 30813241 DOI: 10.3390/molecules24040792 10.3390/molecules24040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Collapse
|
15
|
Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations. Molecules 2019; 24:792. [PMID: 30813241 PMCID: PMC6412981 DOI: 10.3390/molecules24040792+10.3390/molecules24040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/04/2023] Open
Abstract
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Collapse
|
16
|
Fredes Y, Chamorro L, Cabrera Z. Increased Selectivity of Novozym 435 in the Asymmetric Hydrolysis of a Substrate with High Hydrophobicity Through the Use of Deep Eutectic Solvents and High Substrate Concentrations. Molecules 2019; 24:molecules24040792. [PMID: 30813241 PMCID: PMC6412981 DOI: 10.3390/molecules24040792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2019] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 02/01/2023] Open
Abstract
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Collapse
Affiliation(s)
- Yerko Fredes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| | - Lesly Chamorro
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| | - Zaida Cabrera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2085 Valparaíso, Chile.
| |
Collapse
|
17
|
Magnusson AO, Szekrenyi A, Joosten HJ, Finnigan J, Charnock S, Fessner WD. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J 2018; 286:184-204. [PMID: 30414312 PMCID: PMC7379660 DOI: 10.1111/febs.14696] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Enzymes are attractive tools for synthetic applications. To be viable for industrial use, enzymes need sufficient stability towards the desired reaction conditions such as high substrate and cosolvent concentration, non-neutral pH and elevated temperatures. Thermal stability is an attractive feature not only because it allows for protein purification by thermal treatment and higher process temperatures but also due to the associated higher stability against other destabilising factors. Therefore, high-throughput screening (HTS) methods are desirable for the identification of thermostable biocatalysts by discovery from nature or by protein engineering but current methods have low throughput and require time-demanding purification of protein samples. We found that nanoscale differential scanning fluorimetry (nanoDSF) is a valuable tool to rapidly and reliably determine melting points of native proteins. To avoid intrinsic problems posed by crude protein extracts, hypotonic extraction of overexpressed protein from bacterial host cells resulted in higher sample quality and accurate manual determination of several hundred melting temperatures per day. We have probed the use of nanoDSF for HTS of a phylogenetically diverse aldolase library to identify novel thermostable enzymes from metagenomic sources and for the rapid measurements of variants from saturation mutagenesis. The feasibility of nanoDSF for the screening of synthetic reaction conditions was proved by studies of cosolvent tolerance, which showed protein melting temperature to decrease linearly with increasing cosolvent concentration for all combinations of six enzymes and eight water-miscible cosolvents investigated, and of substrate affinity, which showed stabilisation of hexokinase by sugars in the absence of ATP cofactor. ENZYMES: Alcohol dehydrogenase (NADP+ ) (EC 1.1.1.2), transketolase (EC 2.2.1.1), hexokinase (EC 2.7.1.1), 2-deoxyribose-5-phosphate aldolase (EC 4.1.2.4), fructose-6-phosphate aldolase (EC 4.1.2.n).
Collapse
Affiliation(s)
- Anders O Magnusson
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| | - Anna Szekrenyi
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| | | | | | | | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| |
Collapse
|
18
|
Delgove MAF, Elford MT, Bernaerts KV, De Wildeman SMA. Application of a thermostable Baeyer-Villiger monooxygenase for the synthesis of branched polyester precursors. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:2131-2140. [PMID: 30069077 PMCID: PMC6055809 DOI: 10.1002/jctb.5623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND It is widely accepted that the poor thermostability of Baeyer-Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5-trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ϵ-caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi-enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co-factor regeneration. RESULTS Using reaction engineering, the reaction rate and product formation of the regio-isomeric branched lactones were improved and the use of co-solvents and the initial substrate load were investigated. Substrate inhibition and poor product solubility were overcome using continuous substrate feeding regimes, as well as a biphasic reaction system with toluene as water-immiscible organic solvent. A maximum volumetric productivity, or space-time-yield, of 1.20 g L-1 h-1 was achieved with continuous feeding of substrate using methanol as co-solvent, while a maximum product concentration of 11.6 g L-1 was achieved with toluene acting as a second phase and substrate reservoir. CONCLUSION These improvements in key process metrics therefore demonstrate progress towards the up-scaled Baeyer-Villiger monooxygenase-biocatalyzed synthesis of the target building blocks for polymer application. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marie AF Delgove
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Matthew T Elford
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Katrien V Bernaerts
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Stefaan MA De Wildeman
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| |
Collapse
|
19
|
Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2'-deoxyribosyltransferase from Chroococcidiopsis thermalis. Appl Microbiol Biotechnol 2018; 102:6947-6957. [PMID: 29872887 DOI: 10.1007/s00253-018-9134-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.
Collapse
|
20
|
Dirkmann M, Iglesias-Fernández J, Muñoz V, Sokkar P, Rumancev C, von Gundlach A, Krenczyk O, Vöpel T, Nowack J, Schroer MA, Ebbinghaus S, Herrmann C, Rosenhahn A, Sanchez-Garcia E, Schulz F. A Multiperspective Approach to Solvent Regulation of Enzymatic Activity: HMG-CoA Reductase. Chembiochem 2017; 19:153-158. [PMID: 29139594 DOI: 10.1002/cbic.201700596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2017] [Indexed: 12/20/2022]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase was investigated in different organic cosolvents by means of kinetic and calorimetric measurements, molecular dynamics simulations, and small-angle X-ray scattering. The combined experimental and theoretical techniques were essential to complement each other's limitations in the investigation of the complex interaction pattern between the enzyme, different solvent types, and concentrations. In this way, the underlying mechanisms for the loss of enzyme activity in different water-miscible solvents could be elucidated. These include direct inhibitory effects onto the active center and structural distortions.
Collapse
Affiliation(s)
- Michael Dirkmann
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Javier Iglesias-Fernández
- Theoretische Chemie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fakultät für Biologie, Universität Duisburg-Essen, 45141, Essen, Germany
| | - Victor Muñoz
- Theoretische Chemie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fakultät für Biologie, Universität Duisburg-Essen, 45141, Essen, Germany
| | - Pandian Sokkar
- Theoretische Chemie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fakultät für Biologie, Universität Duisburg-Essen, 45141, Essen, Germany
| | - Christoph Rumancev
- Fakultät für Chemie und Biochemie, Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Andreas von Gundlach
- Fakultät für Chemie und Biochemie, Analytische Chemie-Biogrenzflächen, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Oktavian Krenczyk
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Tobias Vöpel
- Fakultät für Chemie und Biochemie, Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Julia Nowack
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Simon Ebbinghaus
- Fakultät für Chemie und Biochemie, Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Christian Herrmann
- Fakultät für Chemie und Biochemie, Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Axel Rosenhahn
- Fakultät für Chemie und Biochemie, Analytische Chemie-Biogrenzflächen, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Elsa Sanchez-Garcia
- Theoretische Chemie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fakultät für Biologie, Universität Duisburg-Essen, 45141, Essen, Germany
| | - Frank Schulz
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
21
|
Abstract
Dimethyl sulfoxide (DMSO) is the most common organic solvent used in biochemical and cellular assays during drug discovery programs. Despite its wide use, the effect of DMSO on several enzyme classes, which are crucial targets of the new therapeutic agents, are still unexplored. Here, we report the detailed biochemical analysis of the effects of DMSO on the human acetylcholine-degrading enzyme, acetylcholinesterase (AChE), the primary target of current Alzheimer's therapeutics. Our analysis showed that DMSO is a considerably potent and highly selective irreversible mixed-competitive inhibitor of human AChE with IC50 values in the lower millimolar range, corresponding to 0.88% to 2.6% DMSO (v/v). Most importantly, 1-4% (v/v) DMSO, the commonly used experimental concentrations, showed ∼37-80% inhibition of human AChE activity. We believe that our results will assist in developing stringent protocols and help in the better interpretation of experimental outcomes during screening and biological evaluation of new drugs.
Collapse
Affiliation(s)
- Amit Kumar
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology,
Care Sciences, and Society, Division of Translational Alzheimer Neurobiology, NOVUM, 4th Floor, 141 86 Stockholm, Sweden
| | - Taher Darreh-Shori
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology,
Care Sciences, and Society, Division of Translational Alzheimer Neurobiology, NOVUM, 4th Floor, 141 86 Stockholm, Sweden
| |
Collapse
|
22
|
Milker S, Fink MJ, Oberleitner N, Ressmann AK, Bornscheuer UT, Mihovilovic MD, Rudroff F. Kinetic Modeling of an Enzymatic Redox Cascade In Vivo Reveals Bottlenecks Caused by Cofactors. ChemCatChem 2017. [DOI: 10.1002/cctc.201700573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sofia Milker
- Institute of Applied Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford St Cambridge MA 02138 USA
| | - Nikolin Oberleitner
- Institute of Applied Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Anna K. Ressmann
- Institute of Applied Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis; Greifswald University; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - Marko D. Mihovilovic
- Institute of Applied Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| |
Collapse
|
23
|
Rosa DP, Pereira EV, Vasconcelos AVB, Cicilini MA, da Silva AR, Lacerda CD, de Oliveira JS, Santoro MM, Coitinho JB, Santos AMC. Determination of structural and thermodynamic parameters of bovine α-trypsin isoform in aqueous-organic media. Int J Biol Macromol 2017; 101:408-416. [DOI: 10.1016/j.ijbiomac.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
24
|
Poschenrieder ST, Schiebel SK, Castiglione K. Stability of polymersomes with focus on their use as nanoreactors. Eng Life Sci 2017; 18:101-113. [PMID: 32624892 DOI: 10.1002/elsc.201700009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2017] [Revised: 05/09/2017] [Accepted: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
The increased membrane stability of polymersomes compared to their liposomal counterparts is one of their most important advantages. Due to this benefit, polymer vesicles are intended to be used not only as carrier systems for drug delivery purposes but also as nanoreactors for biotechnological applications. Within this work, the stability of polymersomes made of the triblock copolymer poly(2-methyloxazoline)15-poly(dimethylsiloxane)68-poly(2-methyloxazoline)15 (PMOXA15-PDMS68-PMOXA15) toward mechanical stress, typically prevailing in stirred-tank reactors being the most often used reactor type in the biotechnological industry, was characterized. Dynamic light scattering and turbidity measurements showed that stirrer rotation causing a maximum local energy dissipation of up to 1.23 W/kg-1 did not result in any loss of vesicle quality or quantity. Nevertheless, most probably due to local membrane defects, 6.6% release of the previously encapsulated model dye calcein was recognized at 25°C within 48 h. Moreover, increased temperature, leading to decreased membrane viscosity and increased membrane fluidity, respectively, led to a higher molecule leakage. Besides, the stability of polymersomes in two-phase systems was investigated. Although alkanes and ionic liquids were shown not to lead to complete vesicle damage, no efficient calcein retention was achieved in either case.
Collapse
Affiliation(s)
| | | | - Kathrin Castiglione
- Lehrstuhl für Bioverfahrenstechnik Technical University of Munich Garching Germany
| |
Collapse
|
25
|
Sirotkin VA, Kuchierskaya AA. Lysozyme in water-acetonitrile mixtures: Preferential solvation at the inner edge of excess hydration. J Chem Phys 2017; 146:215101. [PMID: 28576085 DOI: 10.1063/1.4984116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
Preferential solvation/hydration is an effective way for regulating the mechanism of the protein destabilization/stabilization. Organic solvent/water sorption and residual enzyme activity measurements were performed to monitor the preferential solvation/hydration of hen egg-white lysozyme at high and low water content in acetonitrile at 25 °C. The obtained results show that the protein destabilization/stabilization depends essentially on the initial hydration level of lysozyme and the water content in acetonitrile. There are three composition regimes for the dried lysozyme. At high water content, the lysozyme has a higher affinity for water than for acetonitrile. The residual enzyme activity values are close to 100%. At the intermediate water content, the dehydrated lysozyme has a higher affinity for acetonitrile than for water. A minimum on the residual enzyme activity curve was observed in this concentration range. At the lowest water content, the organic solvent molecules are preferentially excluded from the dried lysozyme, resulting in the preferential hydration. The residual catalytic activity is ∼80%, compared with that observed after incubation in pure water. Two distinct schemes are operative for the hydrated lysozyme. At high and intermediate water content, lysozyme is preferentially hydrated. However, in contrast to the dried protein, at the intermediate water content, the initially hydrated lysozyme has the increased preferential hydration parameters. At low water content, the preferential binding of the acetonitrile molecules to the initially hydrated lysozyme was detected. No residual enzyme activity was observed in the water-poor acetonitrile. Our data clearly show that the initial hydration level of the protein macromolecules is one of the key factors that govern the stability of the protein-water-organic solvent systems.
Collapse
Affiliation(s)
- Vladimir A Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Alexandra A Kuchierskaya
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| |
Collapse
|
26
|
Sirotkin VA, Kuchierskaya AA. Preferential Solvation/Hydration of α-Chymotrypsin in Water–Acetonitrile Mixtures. J Phys Chem B 2017; 121:4422-4430. [PMID: 28414445 DOI: 10.1021/acs.jpcb.7b01632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir A. Sirotkin
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| | - Alexandra A. Kuchierskaya
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| |
Collapse
|
27
|
Wu F, Su L, Yu P, Mao L. Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. J Am Chem Soc 2017; 139:1565-1574. [DOI: 10.1021/jacs.6b11469] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Khattab M, Wang F, Clayton AHA. Micro-solvation of tyrosine-kinase inhibitor AG1478 explored with fluorescence spectroscopy and computational chemistry. RSC Adv 2017. [DOI: 10.1039/c7ra04435f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Fluorescence quenching of the anticancer AG1478, by at least three explicit water molecules, can be exploited to probe drug–protein binding interactions.
Collapse
Affiliation(s)
- Muhammad Khattab
- Centre for Micro-Photonics
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Melbourne
- Australia
| | - Feng Wang
- Molecular Model Discovery Laboratory
- Department of Chemistry and Biotechnology
- School of Science
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Melbourne
- Australia
| |
Collapse
|
29
|
Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 2016; 92:1266-1276. [PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li+, Na+, K+, Rb+ and Cs+ after 30min treatment. Heavy metal ions such as Cu2+, Fe3+ and Zn2+ inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
Collapse
|
30
|
Pereira MG, Facchini FDA, Polizeli AM, Vici AC, Jorge JA, Pessela BC, Férnandez-Lorente G, Guisán JM, de Moraes Polizeli MDLT. Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
31
|
Kulej K, Sidoli S, Palmisano G, Edwards AV, Robinson PJ, Larsen MR. Optimization of calmodulin-affinity chromatography for brain and organelles. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
|
32
|
The dynamic influence of cells on the formation of stable emulsions in organic–aqueous biotransformations. ACTA ACUST UNITED AC 2015; 42:1011-26. [DOI: 10.1007/s10295-015-1621-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Abstract
Emulsion stability plays a crucial role for mass transfer and downstream processing in organic–aqueous bioprocesses based on whole microbial cells. In this study, emulsion stability dynamics and the factors determining them during two-liquid phase biotransformation were investigated for stereoselective styrene epoxidation catalyzed by recombinant Escherichia coli. Upon organic phase addition, emulsion stability rapidly increased correlating with a loss of solubilized protein from the aqueous cultivation broth and the emergence of a hydrophobic cell fraction associated with the organic–aqueous interface. A novel phase inversion-based method was developed to isolate and analyze cellular material from the interface. In cell-free experiments, a similar loss of aqueous protein did not correlate with high emulsion stability, indicating that the observed particle-based emulsions arise from a convergence of factors related to cell density, protein adsorption, and bioreactor conditions. During styrene epoxidation, emulsion destabilization occurred correlating with product-induced cell toxification. For biphasic whole-cell biotransformations, this study indicates that control of aqueous protein concentrations and selective toxification of cells enables emulsion destabilization and emphasizes that biological factors and related dynamics must be considered in the design and modeling of respective upstream and especially downstream processes.
Collapse
|
33
|
Hales BJ. Ethylene Glycol Quenching of Nitrogenase Catalysis: An Electron Paramagnetic Resonance Spectroscopic Study of Nitrogenase Turnover States and CO Bonding. Biochemistry 2015; 54:4208-15. [PMID: 26090555 DOI: 10.1021/acs.biochem.5b00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Most hydrophilic organic solvents inhibit enzymatic activity. Nitrogenase is shown to be approximately 3 times more sensitive to organic inhibition than most other soluble enzymes. Ethylene glycol (EG) is demonstrated to rapidly inhibit nitrogenase activity without uncoupling ATP hydrolysis. Our data suggest the mechanism of inhibition is EG's blocking of binding of MgATP to the nitrogenase Fe protein. EG quenching allows, for the first time, the observation of the relaxation of the intermediate reaction states at room temperature. Electron paramagnetic resonance (EPR) spectroscopy is used to monitor the room-temperature decay of the nitrogenase turnover states following EG quenching of catalytic activity. The return of the intermediate states to the resting state occurs in multiple phases over 2 h. During the initial stage, nitrogenase still possesses the ability to generate CO-induced EPR signals even though catalytic activity has ceased. During the last phase of relaxation, the one-electron reduced state of the MoFe protein (E1) relaxes to the resting state (E0) in a slow first-order reaction.
Collapse
Affiliation(s)
- Brian J Hales
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|
34
|
Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: Determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
35
|
Kawakami N, Hara Y, Miyamoto K. Modulating the catalytic activity and the substrate specificity of alcohol dehydrogenases using cyclic ethers. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00679a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The catalytic activity of Thermoanaerobacter brockii alcohol dehydrogenase (Tbadh) is increased by the addition of 1,3-dioxolane, although it is inhibited by the addition of tetrahydrofuran .
Collapse
Affiliation(s)
- Norifumi Kawakami
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| | - Yosuke Hara
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| | - Kenji Miyamoto
- Department of Biosciences and Informatics
- Keio University
- Yokohama
- Japan
| |
Collapse
|
36
|
Ficheux D, Terrat C, Verrier B, Gigmes D, Trimaille T. “Reactive nanoprecipitation”: a one-step route to functionalized polylactide-based nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra21578a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
We report here a straightforward nanoprecipitation-based process to prepare functionalized polylactide (PLA) nanoparticles (NPs).
Collapse
Affiliation(s)
- Damien Ficheux
- Université Lyon 1
- CNRS
- LBTI UMR 5305
- 69367 Lyon Cedex 07
- France
| | - Céline Terrat
- Université Lyon 1
- CNRS
- LBTI UMR 5305
- 69367 Lyon Cedex 07
- France
| | | | - Didier Gigmes
- Aix-Marseille Université
- CNRS
- ICR UMR 7273
- 13397 Marseille Cedex 20
- France
| | - Thomas Trimaille
- Aix-Marseille Université
- CNRS
- ICR UMR 7273
- 13397 Marseille Cedex 20
- France
| |
Collapse
|
37
|
Arora B, Mukherjee J, Gupta MN. Enzyme promiscuity: using the dark side of enzyme specificity in white biotechnology. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/s40508-014-0025-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Abstract
Enzyme promiscuity can be classified into substrate promiscuity, condition promiscuity and catalytic promiscuity. Enzyme promiscuity results in far larger ranges of organic compounds which can be obtained by biocatalysis. While early examples mostly involved use of lipases, more recent literature shows that catalytic promiscuity occurs more widely and many other classes of enzymes can be used to obtain diverse kinds of molecules. This is of immense relevance in the context of white biotechnology as enzyme catalysed reactions use greener conditions.
Collapse
|
38
|
Promiscuous Lipase-Catalyzed C–C Bond Formation Reactions Between 4 Nitrobenzaldehyde and 2-Cyclohexen-1-one in Biphasic Medium: Aldol and Morita–Baylis–Hillman Adduct Formations. Catal Letters 2014. [DOI: 10.1007/s10562-014-1429-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
|
39
|
Sommaruga S, Galbiati E, Peñaranda-Avila J, Brambilla C, Tortora P, Colombo M, Prosperi D. Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnol 2014; 14:82. [PMID: 25193105 PMCID: PMC4177664 DOI: 10.1186/1472-6750-14-82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2014] [Accepted: 08/13/2014] [Indexed: 12/23/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes. Results CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme. Conclusions The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | | | | |
Collapse
|
40
|
|
41
|
Palai T, Kumar A, Bhattacharya PK. Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme Microb Technol 2014; 55:40-9. [DOI: 10.1016/j.enzmictec.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
42
|
|
43
|
Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease. Appl Biochem Biotechnol 2013; 172:469-86. [PMID: 24092453 DOI: 10.1007/s12010-013-0525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.
Collapse
|
44
|
Speranza P, Alves Macedo G. Biochemical characterization of highly organic solvent-tolerant cutinase from Fusarium oxysporum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
45
|
Teng Z, Li Y, Luo Y, Zhang B, Wang Q. Cationic β-Lactoglobulin Nanoparticles as a Bioavailability Enhancer: Protein Characterization and Particle Formation. Biomacromolecules 2013; 14:2848-56. [DOI: 10.1021/bm4006886] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zi Teng
- Department
of Nutrition and
Food Science, University of Maryland, 0112
Skinner Building, College Park, Maryland 20742, United States
| | - Ying Li
- College of Light Industry and
Food Science, South China University of Technology, Tianhe District, Guangzhou, 510640, People’s Republic of
China
| | - Yangchao Luo
- Department
of Nutrition and
Food Science, University of Maryland, 0112
Skinner Building, College Park, Maryland 20742, United States
| | - Boce Zhang
- Department
of Nutrition and
Food Science, University of Maryland, 0112
Skinner Building, College Park, Maryland 20742, United States
| | - Qin Wang
- Department
of Nutrition and
Food Science, University of Maryland, 0112
Skinner Building, College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Kamal MZ, Yedavalli P, Deshmukh MV, Rao NM. Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci 2013; 22:904-15. [PMID: 23625694 DOI: 10.1002/pro.2271] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/06/2022]
Abstract
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km ); however significantly enhanced the kcat . Melting temperature (Tm ) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | |
Collapse
|
47
|
Critical assessment of the spectroscopic activity assay for monitoring trypsin activity in organic–aqueous solvent. Anal Biochem 2013; 435:131-6. [DOI: 10.1016/j.ab.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022]
|
48
|
Stepankova V, Damborsky J, Chaloupkova R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnol J 2013; 8:719-29. [PMID: 23420811 DOI: 10.1002/biot.201200378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 01/12/2023]
Abstract
Haloalkane dehalogenases are microbial enzymes with a wide range of biotechnological applications, including biocatalysis. The use of organic co-solvents to solubilize their hydrophobic substrates is often necessary. In order to choose the most compatible co-solvent, the effects of 14 co-solvents on activity, stability and enantioselectivity of three model enzymes, DbjA, DhaA, and LinB, were evaluated. All co-solvents caused at high concentration loss of activity and conformational changes. The highest inactivation was induced by tetrahydrofuran, while more hydrophilic co-solvents, such as ethylene glycol and dimethyl sulfoxide, were better tolerated. The effects of co-solvents at low concentration were different for each enzyme-solvent pair. An increase in DbjA activity was induced by the majority of organic co-solvents tested, while activities of DhaA and LinB decreased at comparable concentrations of the same co-solvent. Moreover, a high increase of DbjA enantioselectivity was observed. Ethylene glycol and 1,4-dioxane were shown to have the most positive impact on the enantioselectivity. The favorable influence of these co-solvents on both activity and enantioselectivity makes DbjA suitable for biocatalytic applications. This study represents the first investigation of the effects of organic co-solvents on the biocatalytic performance of haloalkane dehalogenases and will pave the way for their broader use in industrial processes.
Collapse
Affiliation(s)
- Veronika Stepankova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
49
|
Tong J, Yi X, Luxenhofer R, Banks WA, Jordan R, Zimmerman MC, Kabanov AV. Conjugates of superoxide dismutase 1 with amphiphilic poly(2-oxazoline) block copolymers for enhanced brain delivery: synthesis, characterization and evaluation in vitro and in vivo. Mol Pharm 2012; 10:360-77. [PMID: 23163230 DOI: 10.1021/mp300496x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood-brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), composed of (1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and (2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or noncleavable -(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable, and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx), compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after iv administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs 84% at 1 h postinjection). Its amount taken up by the brain reached a maximum value of 0.08% ID/g (percent of the injected dose taken up per gram of brain) 4 h postinjection. The entry of SOD1-(cc)-P(EtOx-b-BuOx) to the brain was mediated by a nonsaturable mechanism. Altogether, SOD1-POx conjugates are promising candidates as macromolecular antioxidant therapies for superoxide-associated diseases such as Ang II-induced neurocardiovascular diseases.
Collapse
Affiliation(s)
- Jing Tong
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | | | | | | | | | |
Collapse
|
50
|
Veselova I, Malinina L, Rodionov P, Shekhovtsova T. Properties and analytical applications of the self-assembled complex {peroxidase–chitosan}. Talanta 2012. [DOI: 10.1016/j.talanta.2012.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|