1
|
Li H, Gao J, Chen W, Qian C, Wang Y, Wang J, Chen L. Lactic acid bacteria isolated from Kazakh traditional fermented milk products affect the fermentation characteristics and sensory qualities of yogurt. Food Sci Nutr 2022; 10:1451-1460. [PMID: 35592282 PMCID: PMC9094460 DOI: 10.1002/fsn3.2755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) play a crucial role in the development of the taste, texture, and aroma of traditional fermented milk products. Five LABs from Kazakh traditionally prepared dairy products showed continuous subculture stability, as well as proper acidification and coagulation ability. They were identified as Pediococcus pentosaceus (1–5, 1–7), Enterococcus faecium (1–19), and Lactobacillus plantarum (1–12, 1–15). Their coagulation time and acidity values ranged from 5.97 to 12.78 h and 76.47 to 89.39°T. Yogurts prepared with L. plantarum were more condensed and textural integrity than those with P. pentosaceus and E. faecium. Determination of the volatile compound profiles suggested a higher diversity of volatile compounds than the control. The sensory evaluation presented positive overall sensory quality scores for the yogurts prepared with 1–12 and 1–15. The results provide additional information regarding the contributions of native LABs to the unique flavor and sensory qualities of traditionally prepared milk products. They may help to select starters or adjunct starters for developing distinctive, traditional nomadic fermented milk to satisfy consumer demand and increase market acceptability.
Collapse
Affiliation(s)
- Hui Li
- China-Australia Joint Research Center for Dairy Future Technology Beijing Key Laboratory of Nutrition, Health & Food Safety Beijing Engineering Laboratory for Geriatric Nutrition Food Research COFCO Nutrition & Health Research Institute Beijing China
| | - Jiaxing Gao
- China-Australia Joint Research Center for Dairy Future Technology Beijing Key Laboratory of Nutrition, Health & Food Safety Beijing Engineering Laboratory for Geriatric Nutrition Food Research COFCO Nutrition & Health Research Institute Beijing China
| | - Wenbo Chen
- China-Australia Joint Research Center for Dairy Future Technology Beijing Key Laboratory of Nutrition, Health & Food Safety Beijing Engineering Laboratory for Geriatric Nutrition Food Research COFCO Nutrition & Health Research Institute Beijing China
| | - Chengjing Qian
- China-Australia Joint Research Center for Dairy Future Technology Beijing Key Laboratory of Nutrition, Health & Food Safety Beijing Engineering Laboratory for Geriatric Nutrition Food Research COFCO Nutrition & Health Research Institute Beijing China
| | - Yong Wang
- Department of Chemical Engineering Monash University Clayton Victoria Australia
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology & Business University Beijing China
| | - Lishui Chen
- China-Australia Joint Research Center for Dairy Future Technology Beijing Key Laboratory of Nutrition, Health & Food Safety Beijing Engineering Laboratory for Geriatric Nutrition Food Research COFCO Nutrition & Health Research Institute Beijing China
| |
Collapse
|
2
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
3
|
Muschallik L, Kipp CR, Recker I, Bongaerts J, Pohl M, Gellissen M, Schöning MJ, Selmer T, Siegert P. Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13 T butane-2,3-diol dehydrogenase. J Biotechnol 2020; 324:61-70. [PMID: 32976868 DOI: 10.1016/j.jbiotec.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Carina Ronja Kipp
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Inga Recker
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Melanie Gellissen
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany.
| |
Collapse
|
4
|
Chamchoy K, Pumirat P, Reamtong O, Pakotiprapha D, Leartsakulpanich U, Boonyuen U. Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress. Sci Rep 2020; 10:10453. [PMID: 32591552 PMCID: PMC7320009 DOI: 10.1038/s41598-020-67382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Muschallik L, Molinnus D, Bongaerts J, Pohl M, Wagner T, Schöning MJ, Siegert P, Selmer T. (R,R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716 T: Cloning and expression of the bdhA-gene, and initial characterization of enzyme. J Biotechnol 2017; 258:41-50. [PMID: 28793235 DOI: 10.1016/j.jbiotec.2017.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/01/2022]
Abstract
The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12U/mg and 23U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany.
| |
Collapse
|
6
|
Dan T, Wang D, Jin R, Zhang H, Zhou T, Sun T. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J Dairy Sci 2017; 100:2488-2500. [DOI: 10.3168/jds.2016-11528] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023]
|
7
|
Ken CF, Tsai WW, Wen L, Sheu DC, Lin CT. Properties of a 2,3-Butanediol Dehydrogenase from Taiwanofungus camphorata. J CHIN CHEM SOC-TAIP 2015. [DOI: 10.1002/jccs.201400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol 2013; 172:59-66. [PMID: 24389066 DOI: 10.1016/j.jbiotec.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/22/2022]
Abstract
The acetoin reductase (AR) of Klebsiella oxytoca is responsible for converting acetoin into 2,3-butanediol (2,3-BDO) during sugar fermentation. Deleting the AR encoding gene (budC) in the 2,3-BDO operon does not block production of 2,3-BDO, as another similar gene exists in addition to budC called diacetyl/acetoin reductase (dar) which shares 53% identity with budC. In the present study, both budC and dar of K. oxytoca were independently cloned and expressed in Escherichia coli along with budA (acetolactate decarboxylase) and budB (acetolactate synthase), which are responsible for converting pyruvate into acetoin. The recombinant E. coli expressing budABC and budAB-dar produced 2,3-BDO from glucose but E. coli expressing only budAB did not and produced acetoin alone. This demonstrates that Dar functions similar to BudC. Mutants of budC, dar, and both genes together were developed in K. oxytoca ΔldhA (lactate dehydrogenase). K. oxytoca ΔldhA ΔbudC Δdar, deficient in both AR genes, showed reduced 2,3-BDO concentration when compared to K. oxytoca ΔldhA and K. oxytoca ΔldhA ΔbudC by 84% and 69%, respectively. Interestingly, K. oxytoca ΔldhA Δdar resulted in a significant reduction in the reversible conversion of 2,3-BDO into acetoin than that of K. oxytoca ΔldhA, which was observed in a glucose depleted fermentation culture. In addition, we observed that Dar played a key role in dissimilation of 2,3-BDO in media containing 2,3-BDO alone.
Collapse
|
9
|
Savakis PE, Angermayr SA, Hellingwerf KJ. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab Eng 2013; 20:121-30. [DOI: 10.1016/j.ymben.2013.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023]
|
10
|
Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P. Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 115:111-6. [PMID: 21937220 DOI: 10.1016/j.biortech.2011.08.097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 05/04/2023]
Abstract
(2S,3S)-2,3-Butanediol ((2S,3S)-2,3-BD) is a crucial chiral compound that acts as an excellent building block in asymmetric synthesis of highly valuable chiral compounds. However, the low concentration and optical purity of (2S,3S)-2,3-BD produced in previous studies limited its applications. In the present work, the gene encoding 2,3-butanediol dehydrogenase from an Enterobacter cloacae ssp. dissolvens strain SDM was cloned and expressed in Escherichia coli. Whole cells of the recombinant E. coli was used to produce (2S,3S)-2,3-BD from diacetyl. Under optimal conditions, high-optical-purity (2S,3S)-2,3-BD (purity >99%) was obtained with concentrations of 16.1 g l(-1) and 26.8 g l(-1) in batch and fed-batch conversions, respectively. Thus, the process might be a promising alternative for the production of (2S,3S)-2,3-BD.
Collapse
Affiliation(s)
- Lixiang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ng CY, Jung MY, Lee J, Oh MK. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 2012; 11:68. [PMID: 22640729 PMCID: PMC3442981 DOI: 10.1186/1475-2859-11-68] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/04/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we attempted to engineer S. cerevisiae strain to enhance 2,3-butanediol production. RESULTS We first identified gene deletion strategy by performing in silico genome-scale metabolic analysis. Based on the best in silico strategy, in which disruption of alcohol dehydrogenase (ADH) pathway is required, we then constructed gene deletion mutant strains and performed batch cultivation of the strains. Deletion of three ADH genes, ADH1, ADH3 and ADH5, increased 2,3-butanediol production by 55-fold under microaerobic condition. However, overproduction of glycerol was observed in this triple deletion strain. Additional rational design to reduce glycerol production by GPD2 deletion altered the carbon fluxes back to ethanol and significantly reduced 2,3-butanediol production. Deletion of ALD6 reduced acetate production in strains lacking major ADH isozymes, but it did not favor 2,3-butanediol production. Finally, we introduced 2,3-butanediol biosynthetic pathway from Bacillus subtilis and E. aerogenes to the engineered strain and successfully increased titer and yield. Highest 2,3-butanediol titer (2.29 . l-1) and yield (0.113 g . g-1) were achieved by Δadh1 Δadh3 Δadh5 strain under anaerobic condition. CONCLUSIONS With the aid of in silico metabolic engineering, we have successfully designed and constructed S. cerevisiae strains with improved 2,3-butanediol production.
Collapse
Affiliation(s)
- Chiam Yu Ng
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Schweiger P, Gross H, Deppenmeier U. Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction. Appl Microbiol Biotechnol 2010; 87:1415-26. [PMID: 20414648 DOI: 10.1007/s00253-010-2607-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
Abstract
Two cytosolic NADPH-dependent carbonyl reductases from Gluconobacter oxydans 621H, Gox0644 and Gox1615, were heterologously produced in Escherichia coli. The recombinant proteins were purified to homogeneity and characterized. Gox0644 and Gox1615 were dimers with native molecular masses of 66.1 and 74.5 kDa, respectively. The enzymes displayed broad substrate specificities and reduced alpha-ketocarbonyls at the keto moiety most proximal to the terminus of the alkyl chain to produce alpha-hydroxy carbonyls, as demonstrated by NMR. With respect to stereoselectivity, protein Gox0644 specifically reduced 2,3-pentanedione to 2R-hydroxy-pentane-3-one, whereas Gox1615 produced 2S-hydroxy-pentane-3-one. Both enzymes also reduced 1-phenyl-1,2-propanedione to 2-hydroxy-1-phenylpropane-1-one, which is a key intermediate in the production of numerous pharmaceuticals, such as antifungal azoles and antidepressants. Gox0644 displayed highest activities with 2,3-diones, alpha-ketoaldehydes, alpha-keto esters, and 2,5-diketogluconate. Gox1615 was less active with these substrates, but displayed a broader substrate spectrum reducing a variety of alpha-diketones and aldehydes.
Collapse
Affiliation(s)
- Paul Schweiger
- Institute für Mikrobiologie und Biotechnologie, 168 Meckenheimer Allee, 53115, Bonn, Germany
| | | | | |
Collapse
|
13
|
Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza Filho G, Martin Quintana Flores V, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rössle SC, Urményi T, Rael Pereira A, Silva R, Rondinelli E, von Krüger W, Martins O, Baldani JI, Ferreira PCG. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 2009; 10:450. [PMID: 19775431 PMCID: PMC2765452 DOI: 10.1186/1471-2164-10-450] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 09/23/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins. RESULTS Gluconacetobacter diazotrophicus Pal5 is the third diazotrophic endophytic bacterium to be completely sequenced. Its genome is composed of a 3.9 Mb chromosome and 2 plasmids of 16.6 and 38.8 kb, respectively. We annotated 3,938 coding sequences which reveal several characteristics related to the endophytic lifestyle such as nitrogen fixation, plant growth promotion, sugar metabolism, transport systems, synthesis of auxin and the occurrence of bacteriocins. Genomic analysis identified a core component of 894 genes shared with phylogenetically related bacteria. Gene clusters for gum-like polysaccharide biosynthesis, tad pilus, quorum sensing, for modulation of plant growth by indole acetic acid and mechanisms involved in tolerance to acidic conditions were identified and may be related to the sugarcane endophytic and plant-growth promoting traits of G. diazotrophicus. An accessory component of at least 851 genes distributed in genome islands was identified, and was most likely acquired by horizontal gene transfer. This portion of the genome has likely contributed to adaptation to the plant habitat. CONCLUSION The genome data offer an important resource of information that can be used to manipulate plant/bacterium interactions with the aim of improving sugarcane crop production and other biotechnological applications.
Collapse
Affiliation(s)
- Marcelo Bertalan
- Instituto de Bioquímica Médica, UFRJ, CCS, Bloco D, subssolo 21491-590 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Celińska E, Grajek W. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv 2009; 27:715-725. [PMID: 19442714 DOI: 10.1016/j.biotechadv.2009.05.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 11/19/2022]
Abstract
Biotechnological production of 2,3-butanediol (hereafter referred to as 2,3-BD) from wastes and excessive biomass is a promising and attractive alternative for traditional chemical synthesis. In the face of scarcity of fossil fuel supplies the bio-based process is receiving a significant interest, since 2,3-BD may have multiple practical applications (e.g. production of synthetic rubber, plasticizers, fumigants, as an antifreeze agent, fuel additive, octane booster, and many others). Although the 2,3-BD pathway is well known, microorganisms able to ferment biomass to 2,3-BD have been isolated and described, and attempts of pilot scale production of this compound were made, still much has to be done in order to achieve desired profitability. This review summarizes hitherto gained knowledge and experience in biotechnological production of 2,3-BD, sources of biomass used, employed microorganisms both wild type and genetically improved strains, as well as operating conditions applied.
Collapse
Affiliation(s)
- E Celińska
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland.
| | - W Grajek
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
15
|
Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1003-1013. [PMID: 11932446 DOI: 10.1099/00221287-148-4-1003] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates.
Collapse
Affiliation(s)
- Marcel H N Hoefnagel
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marjo J C Starrenburg
- NIZO Food Research, PO Box 20, 6710 BA, Ede, The Netherlands3
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Dirk E Martens
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Jeroen Hugenholtz
- NIZO Food Research, PO Box 20, 6710 BA, Ede, The Netherlands3
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Michiel Kleerebezem
- NIZO Food Research, PO Box 20, 6710 BA, Ede, The Netherlands3
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Iris I Van Swam
- NIZO Food Research, PO Box 20, 6710 BA, Ede, The Netherlands3
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Roger Bongers
- NIZO Food Research, PO Box 20, 6710 BA, Ede, The Netherlands3
- Wageningen Centre for Food Sciences1 and Food and Bioprocess Engineering Group,2 Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Hans V Westerhoff
- BioCentrum Amsterdam, Dept of Molecular Cell Physiology, Free University, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands4
| | - Jacky L Snoep
- Dept of Biochemistry, University of Stellenbosch, Private bag X1, Matieland 7602, Stellenbosch, South Africa5
- BioCentrum Amsterdam, Dept of Molecular Cell Physiology, Free University, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands4
| |
Collapse
|
16
|
|
17
|
Giovannini PP, Medici A, Bergamini CM, Rippa M. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorg Med Chem 1996; 4:1197-201. [PMID: 8879540 DOI: 10.1016/0968-0896(96)00086-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cells of Bacillus stearothermophilus contain an NADH-dependent diacetyl (acetoin) reductase. The enzyme was easily purified to homogeneity, partially characterised, and found to be composed of two subunits with the same molecular weight. In the presence of NADH, it catalyses the stereospecific reduction of diacetyl first to (3S)-acetoin and then to (2S,3S)-butanediol; in the presence of NAD+, it catalyses the oxidation of (2S,3S)- and meso-butanediol, respectively, to (3S)-acetoin and to (3R)-acetoin, but is unable to oxidise these compounds to diacetyl. The enzyme is also able to catalyse redox reactions involving some endo-bicyclic octen- and heptenols and the related ketones, and its use is suggested also for the recycling of NAD+ and NADH in enzymatic redox reactions useful in organic syntheses.
Collapse
Affiliation(s)
- P P Giovannini
- Department of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
18
|
Schwarz J, Hang Y. Purification and characterization of diacetyl reductase from Kluyveromyces marxianus. Lett Appl Microbiol 1994. [DOI: 10.1111/j.1472-765x.1994.tb00867.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|