1
|
Lukowiak AA, Granneman S, Mattox SA, Speckmann WA, Jones K, Pluk H, Venrooij WJ, Terns RM, Terns MP. Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. Nucleic Acids Res 2000; 28:3462-71. [PMID: 10982864 PMCID: PMC110750 DOI: 10.1093/nar/28.18.3462] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein-protein interactions contribute to the localization and RNA binding of U3-55k in vivo.
Collapse
Affiliation(s)
- A A Lukowiak
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Speckmann W, Narayanan A, Terns R, Terns MP. Nuclear retention elements of U3 small nucleolar RNA. Mol Cell Biol 1999; 19:8412-21. [PMID: 10567566 PMCID: PMC84939 DOI: 10.1128/mcb.19.12.8412] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C' and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5' cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements.
Collapse
Affiliation(s)
- W Speckmann
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
3
|
Samarsky DA, Fournier MJ. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:3431-44. [PMID: 9584183 PMCID: PMC108924 DOI: 10.1128/mcb.18.6.3431] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 03/05/1998] [Indexed: 02/07/2023] Open
Abstract
The U3 small nucleolar RNA participates in early events of eukaryotic pre-rRNA cleavage and is essential for formation of 18S rRNA. Using an in vivo system, we have developed a functional map of the U3 small nucleolar RNA from Saccharomyces cerevisiae. The test strain features a galactose-dependent U3 gene in the chromosome and a plasmid-encoded allele with a unique hybridization tag. Effects of mutations on U3 production were analyzed by evaluating RNA levels in cells grown on galactose medium, and effects on U3 function were assessed by growing cells on glucose medium. The major findings are as follows: (i) boxes C' and D and flanking helices are critical for U3 accumulation; (ii) boxes B and C are not essential for U3 production but are important for function, most likely due to binding of a trans-acting factor(s); (iii) the 5' portion of U3 is required for function but not stability; and, (iv) strikingly, the nonconserved hairpins 2, 3, and 4, which account for 50% of the molecule, are not required for accumulation or function.
Collapse
Affiliation(s)
- D A Samarsky
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
4
|
Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with a 5'ETS leader probe. Chromosoma 1997; 105:496-505. [PMID: 9211977 DOI: 10.1007/bf02510486] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The first cleavage in the processing of the rRNA primary transcript in mammals occurs within the 5'-terminal region of the 5' external transcribed spacer (5'ETS), which makes the upstream portion of this spacer a selective marker of nascent transcripts. Moreover, short treatments with low doses of actinomycin D (AMD), which selectively suppress pre-rRNA synthesis and allow processing of preformed pre-rRNAs, result in the production of prematurely terminated transcripts essentially spanning the 5'ETS leader region. To gain further insight into the intranucleolar localization of early stages of preribosome formation we analyzed the distribution of this specific pre-rRNA segment by in situ hybridization at the ultrastructural level in AMD-treated or in control 3T3 mouse cells. In control cells, 5'ETS leader rRNA was detected at the border of the fibrillar centers and over the dense fibrillar component, in agreement with previous data suggesting that rRNA gene transcription takes place at the border of the fibrillar centers before a rapid transfer of the nascent trancript to the dense fibrillar component. Observation of cells subjected to a short treatment with low doses of AMD fully supports this conclusion, with the prematurely terminated 5'ETS leader-containing transcripts detected at the border of enlarged fibrillar centers. With prolonged periods of AMD treatment even the partial transcription of rRNA genes is blocked and fibrillar centers of typically segregated nucleoli show no positive signals with the 5'ETS leader probe. We also analyzed in parallel the intranucleolar distribution of U3 small nucleolar RNA, which is involved in 5'ETS processing, by hybridization with biotinylated antisense oligonucleotides. Distribution of U3 roughly paralleled that of 5'ETS leader rRNA in untreated cells. However, U3 RNA persisted in the dense fibrillar component of segregated nucleoli whatever the conditions of drug treatment, i.e., even after a thorough chase of the rRNA precursors from this nucleolar compartment.
Collapse
Affiliation(s)
- F Puvion-Dutilleul
- Laboratoire Organisation fonctionnelle du noyau de l'UPR 9044 CNRS, BP 8, F-94801 Villejuif Cedex, France.
| | | | | |
Collapse
|
5
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
6
|
Qu LH, Henry Y, Nicoloso M, Michot B, Azum MC, Renalier MH, Caizergues-Ferrer M, Bachellerie JP. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res 1995; 23:2669-76. [PMID: 7651828 PMCID: PMC307091 DOI: 10.1093/nar/23.14.2669] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Following computer searches of sequence banks, we have positively identified a novel intronic snoRNA, U24, encoded in the ribosomal protein L7a gene in humans and chicken. Like previously reported intronic snoRNAs, U24 is devoid of a 5'-trimethyl-cap. U24 is immunoprecipitated by an antifibrillarin antibody and displays an exclusively nucleolar localization by fluorescence microscopy after in situ hybridization with antisense oligonucleotides. In vertebrates, U24 is a 76 nt long conserved RNA which is metabolically stable, present at approximately 14,000 molecules per human HeLa cell. U24 exhibits a 5'-3' terminal stem-box C-box D structure, typical for several snoRNAs, and contains two 12 nt long conserved sequences complementary to 28S rRNA. It is, therefore, strikingly related to U14, U20 and U21 snoRNAs which also possess long sequences complementary to conserved sequences of mature 18S or 28S rRNAs. In 28S rRNA the two tracts complementary to U24 are adjacent to each other, they involve several methylated nucleotides and are surprisingly close, within the rRNA secondary structure, to complementarities to snoRNAs U18 and U21. Identification of the yeast Saccharomyces cerevisiae U24 gene directly confirms the outstanding conservation of the complementarity to 28S rRNA during evolution, suggesting a key role of U24 pairing to pre-rRNA during ribosome biogenesis, possible in the control of pre-rRNA folding. Yeast S.cerevisiae U24 is also intron-encoded but not in the same host-gene as in humans or chicken.
Collapse
Affiliation(s)
- L H Qu
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Qu LH, Nicoloso M, Michot B, Azum MC, Caizergues-Ferrer M, Renalier MH, Bachellerie JP. U21, a novel small nucleolar RNA with a 13 nt. complementarity to 28S rRNA, is encoded in an intron of ribosomal protein L5 gene in chicken and mammals. Nucleic Acids Res 1994; 22:4073-81. [PMID: 7937132 PMCID: PMC331892 DOI: 10.1093/nar/22.20.4073] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following a search of sequence data bases for intronic sequences exhibiting structural features typical of snoRNAs, we have positively identified by Northern assays and sequence analysis another intron-encoded snoRNA, termed U21. U21 RNA is a 93 nt. long, metabolically stable RNA, present at about 10(4) molecules per HeLa cell. It is encoded in intron 5 of the ribosomal protein L5 gene, both in chicken and in the two mammals studied so far, human and mouse. U21 RNA is devoid of a 5'-trimethyl-cap and is likely to result from processing of intronic RNA. The nucleolar localization of U21 has been established by fluorescence microscopy after in situ hybridization with digoxigenin-labeled oligonucleotide probes. Like most other snoRNAs U21 contains the box C and box D motifs and is precipitated by anti-fibrillarin antibodies. By the presence of a typical 5'-3' terminal stem, U21 appears more particularly related to U14, U15, U16 and U20 intron-encoded snoRNAs. Remarkably, U21 contains a long stretch (13 nt.) of complementarity to a highly conserved sequence in 28S rRNA. Sequence comparisons between chicken and mammals, together with Northern hybridizations with antisense oligonucleotides on cellular RNAs from more distant vertebrates, point to the preferential preservation of this segment of U21 sequence during evolution. Accordingly, this complementarity, which overlaps the complementarity of 28S rRNA to another snoRNA, U18, could reflect an important role of U21 snoRNA in the biogenesis of large ribosomal subunit.
Collapse
Affiliation(s)
- L H Qu
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
8
|
U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals. Mol Cell Biol 1994. [PMID: 8065311 DOI: 10.1128/mcb.14.9.5766] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene.
Collapse
|
9
|
Nicoloso M, Caizergues-Ferrer M, Michot B, Azum MC, Bachellerie JP. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals. Mol Cell Biol 1994; 14:5766-76. [PMID: 8065311 PMCID: PMC359102 DOI: 10.1128/mcb.14.9.5766-5776.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene.
Collapse
Affiliation(s)
- M Nicoloso
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|