1
|
Oyugi MA, Bashiri G, Baker EN, Johnson-Winters K. Investigating the Reaction Mechanism of F 420-Dependent Glucose-6-phosphate Dehydrogenase from Mycobacterium tuberculosis: Kinetic Analysis of the Wild-Type and Mutant Enzymes. Biochemistry 2016; 55:5566-5577. [PMID: 27603793 DOI: 10.1021/acs.biochem.6b00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
F420-dependent glucose-6-phosphate dehydrogenase (FGD) catalyzes the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, using F420 cofactor as the hydride transfer acceptor, within mycobacteria. A previous crystal structure of wild-type FGD led to a proposed mechanism suggesting that the active site residues His40, Trp44, and Glu109 could be involved in catalysis. We have characterized the wild-type FGD and five FGD variants (H40A, W44F, W44Y, W44A, and E109Q) by fluorescence binding assays and steady-state and pre-steady-state kinetic experiments. Compared to wild-type FGD, all the variants had lower binding affinities for F420, thus suggesting that Trp44, His40, and Glu109 aid in F420 binding. While all the variants had decreased catalytic efficiencies, FGD H40A and W44A were the least efficient, having lost ∼1000- and ∼2000-fold activity, respectively. This confirms a crucial catalytic role for His40 in the FGD reaction and suggests that aromaticity at residue 44 aids catalysis. To investigate the proposed roles of Glu109 and His40 in acid-base catalysis, the pH dependence of kinetic parameters has been determined for the E109Q and H40A mutants and compared to those of the wild-type enzyme. The log kcat-pH profile of wild-type FGD and E109Q revealed two ionizable residues in the enzyme-substrate complex, while H40A displayed only one ionization event. The FGD E109Q variant displayed pH-dependent kinetic cooperativity with respect to the F420 cofactor. The multiple-turnover pre-steady-state kinetics were biphasic for wild-type FGD, W44F, W44Y, and E109Q, while the H40A and W44A variants displayed only a single phase because of their reduced catalytic efficiency.
Collapse
Affiliation(s)
- Mercy A Oyugi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland , Auckland 1010, New Zealand
| | - Edward N Baker
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland , Auckland 1010, New Zealand
| | - Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| |
Collapse
|
2
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
3
|
Shea MT, Walter ME, Duszenko N, Ducluzeau AL, Aldridge J, King SK, Buan NR. pNEB193-derived suicide plasmids for gene deletion and protein expression in the methane-producing archaeon, Methanosarcina acetivorans. Plasmid 2016; 84-85:27-35. [PMID: 26876941 DOI: 10.1016/j.plasmid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Gene deletion and protein expression are cornerstone procedures for studying metabolism in any organism, including methane-producing archaea (methanogens). Methanogens produce coenzymes and cofactors not found in most bacteria, therefore it is sometimes necessary to express and purify methanogen proteins from the natural host. Protein expression in the native organism is also useful when studying post-translational modifications and their effect on gene expression or enzyme activity. We have created several new suicide plasmids to complement existing genetic tools for use in the methanogen, Methanosarcina acetivorans. The new plasmids are derived from the commercially available Escherichia coli plasmid, pNEB193, and cannot replicate autonomously in methanogens. The designed plasmids facilitate markerless gene deletion, gene transcription, protein expression, and purification of proteins with cleavable affinity tags from the methanogen, M. acetivorans.
Collapse
Affiliation(s)
- Mitchell T Shea
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mary E Walter
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nikolas Duszenko
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anne-Lise Ducluzeau
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jared Aldridge
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shannon K King
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicole R Buan
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
4
|
Manzella MP, Holmes DE, Rocheleau JM, Chung A, Reguera G, Kashefi K. The complete genome sequence and emendation of the hyperthermophilic, obligate iron-reducing archaeon "Geoglobus ahangari" strain 234(T). Stand Genomic Sci 2015; 10:77. [PMID: 26457129 PMCID: PMC4600277 DOI: 10.1186/s40793-015-0035-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
“Geoglobus ahangari” strain 234T is an obligate Fe(III)-reducing member of the Archaeoglobales, within the archaeal phylum Euryarchaeota, isolated from the Guaymas Basin hydrothermal system. It grows optimally at 88 °C by coupling the reduction of Fe(III) oxides to the oxidation of a wide range of compounds, including long-chain fatty acids, and also grows autotrophically with hydrogen and Fe(III). It is the first archaeon reported to use a direct contact mechanism for Fe(III) oxide reduction, relying on a single archaellum for locomotion, numerous curled extracellular appendages for attachment, and outer-surface heme-containing proteins for electron transfer to the insoluble Fe(III) oxides. Here we describe the annotation of the genome of “G. ahangari” strain 234T and identify components critical to its versatility in electron donor utilization and obligate Fe(III) respiratory metabolism at high temperatures. The genome comprises a single, circular chromosome of 1,770,093 base pairs containing 2034 protein-coding genes and 52 RNA genes. In addition, emended descriptions of the genus “Geoglobus” and species “G. ahangari” are described.
Collapse
Affiliation(s)
- Michael P Manzella
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Jessica M Rocheleau
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Amanda Chung
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| | - Kazem Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| |
Collapse
|
5
|
Nocek B, Evdokimova E, Proudfoot M, Kudritska M, Grochowski LL, White RH, Savchenko A, Yakunin AF, Edwards A, Joachimiak A. Structure of an amide bond forming F(420):gamma-glutamyl ligase from Archaeoglobus fulgidus -- a member of a new family of non-ribosomal peptide synthases. J Mol Biol 2007; 372:456-69. [PMID: 17669425 PMCID: PMC2678844 DOI: 10.1016/j.jmb.2007.06.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
F(420) is a flavin-like redox-active coenzyme commonly used by archaea and some eubacteria in a variety of biochemical reactions in methanogenesis, the formation of secondary metabolites, the degradation of nitroaromatic compounds, activation of nitroimidazofurans, and F(420)-dependent photolysis in DNA repair. Coenzyme F(420)-2 biosynthesis from 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and lactaldehyde involves six enzymatic steps and five proteins (CofA, CofB, CofC, CofD, and CofE). CofE, a F(420)-0:gamma-glutamyl ligase, is responsible for the last two enzymatic steps; it catalyses the GTP-dependent addition of two L-glutamate residues to F(420)-0 to form F(420)-2. CofE is found in archaea, the aerobic actinomycetes, and cyanobacteria. Here, we report the first crystal structure of the apo-F(420)-0:gamma-glutamyl ligase (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 A and 1.35 A resolution, respectively. The structure of CofE-AF reveals a novel protein fold with an intertwined, butterfly-like dimer formed by two-domain monomers. GDP and Mn(2+) are bound within the putative active site in a large groove at the dimer interface. We show that the enzyme adds a glutamate residue to both F(420)-0 and F(420)-1 in two distinct steps. CofE represents the first member of a new structural family of non-ribosomal peptide synthases.
Collapse
Affiliation(s)
- B. Nocek
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
| | - E. Evdokimova
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - M. Proudfoot
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - M. Kudritska
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - L. L. Grochowski
- Department of Biochemistry, Virginia Polytechnic, Institute and State, University, Blacksburg, VA 24061-0308, USA
| | - R. H. White
- Department of Biochemistry, Virginia Polytechnic, Institute and State, University, Blacksburg, VA 24061-0308, USA
| | - A. Savchenko
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - A. F. Yakunin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - A. Edwards
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - A. Joachimiak
- Midwest Center for Structural, Genomics and Structural, Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th St., Chicago, IL 60637, USA
| |
Collapse
|
6
|
Seedorf H, Kahnt J, Pierik AJ, Thauer RK. Si-face stereospecificity at C5 of coenzyme F420 for F420H2 oxidase from methanogenic Archaea as determined by mass spectrometry. FEBS J 2005; 272:5337-42. [PMID: 16218963 DOI: 10.1111/j.1742-4658.2005.04931.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coenzyme F420 is a 5-deazaflavin. Upon reduction, 1,5 dihydro-coenzyme F420 is formed with a prochiral centre at C5. All the coenzyme F420-dependent enzymes investigated to date have been shown to be Si-face stereospecific with respect to C5 of the deazaflavin, despite most F420-dependent enzymes being unrelated phylogenetically. In this study, we report that the recently discovered F420H2 oxidase from methanogenic Archaea is also Si-face stereospecific. The enzyme was found to catalyse the oxidation of (5S)-[5-2H1]F420H2 with O2 to [5-1H]F420 rather than to [5-2H]F420 as determined by MALDI-TOF MS. (5S)-[5-2H1]F420H2 was generated by stereospecific enzymatic reduction of F420 with (14a-2H2)-[14a-2H2] methylenetetrahydromethanopterin.
Collapse
Affiliation(s)
- Henning Seedorf
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|
7
|
Aufhammer SW, Warkentin E, Ermler U, Hagemeier CH, Thauer RK, Shima S. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: Architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci 2005; 14:1840-9. [PMID: 15937276 PMCID: PMC2253363 DOI: 10.1110/ps.041289805] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Methylenetetratetrahydromethanopterin reductase (Mer) is involved in CO(2) reduction to methane in methanogenic archaea and catalyses the reversible reduction of methylenetetrahydromethanopterin (methylene-H(4)MPT) to methyl-H(4)MPT with coenzyme F(420)H(2), which is a reduced 5'-deazaflavin. Mer was recently established as a TIM barrel structure containing a nonprolyl cis-peptide bond but the binding site of the substrates remained elusive. We report here on the crystal structure of Mer in complex with F(420) at 2.6 A resolution. The isoalloxazine ring is present in a pronounced butterfly conformation, being induced from the Re-face of F(420) by a bulge that contains the non-prolyl cis-peptide bond. The bindingmode of F(420) is very similar to that in F(420)-dependent alcohol dehydrogenase Adf despite the low sequence identity of 21%. Moreover, binding of F(420) to the apoenzyme was only associated with minor conformational changes of the polypeptide chain. These findings allowed us to build an improved model of FMN into its binding site in bacterial luciferase, which belongs to the same structural family as Mer and Adf and also contains a nonprolyl cis-peptide bond in an equivalent position.
Collapse
|
8
|
Warkentin E, Mamat B, Sordel-Klippert M, Wicke M, Thauer RK, Iwata M, Iwata S, Ermler U, Shima S. Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J 2001; 20:6561-9. [PMID: 11726492 PMCID: PMC125772 DOI: 10.1093/emboj/20.23.6561] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 10/02/2001] [Accepted: 10/18/2001] [Indexed: 11/12/2022] Open
Abstract
Cofactor F420 is a 5'-deazaflavin derivative first discovered in methanogenic archaea but later found also to be present in some bacteria. As a coenzyme, it is involved in hydride transfer reactions and as a prosthetic group in the DNA photolyase reaction. We report here for the first time on the crystal structure of an F420-dependent oxidoreductase bound with F420. The structure of F420H2:NADP+ oxidoreductase resolved to 1.65 A contains two domains: an N-terminal domain characteristic of a dinucleotide-binding Rossmann fold and a smaller C-terminal domain. The nicotinamide and the deazaflavin part of the two coenzymes are bound in the cleft between the domains such that the Si-faces of both face each other at a distance of 3.1 A, which is optimal for hydride transfer. Comparison of the structures bound with and without substrates reveals that of the two substrates NADP has to bind first, the binding being associated with an induced fit.
Collapse
Affiliation(s)
- Eberhard Warkentin
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Björn Mamat
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Melanie Sordel-Klippert
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Michaela Wicke
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Rudolf K. Thauer
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Momi Iwata
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - So Iwata
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| | - Seigo Shima
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, D-60596 Frankfurt/Main, Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany and Department of Biological Sciences and Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK Corresponding authors e-mail: , or
| |
Collapse
|
9
|
Affiliation(s)
- S Shima
- Max Planck Institut für Terrestrische Mikrobiologie, D-35043 Marburg/Lahn, Germany
| | | |
Collapse
|
10
|
Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK, Ermler U. Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J Mol Biol 2000; 300:935-50. [PMID: 10891279 DOI: 10.1006/jmbi.2000.3909] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coenzyme F(420)-dependent methylenetetrahydromethanopterin reductase (Mer) is an enzyme of the Cl metabolism in methanogenic and sulfate reducing archaea. It is composed of identical 35-40 kDa subunits and lacks a prosthetic group. The crystal structure of Mer from Methanopyrus kandleri (kMer) revealed in one crystal form a dimeric and in another a tetrameric oligomerisation state and that from Methanobacterium thermoautotrophicum (tMer) a dimeric state. Each monomer is primarily composed of a TIM-barrel fold enlarged by three insertion regions. Insertion regions 1 and 2 contribute to intersubunit interactions. Insertion regions 2 and 3 together with the C-terminal end of the TIM-barrel core form a cleft where the binding sites of coenzyme F(420) and methylene-tetrahydromethanopterin are postulated. Close to the coenzyme F(420)-binding site lies a rarely observed non-prolyl cis-peptide bond. It is surprising that Mer is structurally most similar to a bacterial FMN-dependent luciferase which contains a non-prolyl cis-peptide bond at the equivalent position. The structure of Mer is also related to that of NADP-dependent FAD-harbouring methylenetetrahydrofolate reductase (MetF). However, Mer and MetF do not show sequence similarities although they bind related substrates and catalyze an analogous reaction.
Collapse
Affiliation(s)
- S Shima
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch Strasse, Marburg, 35043, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
12
|
Purwantini E, Gillis TP, Daniels L. Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 1997; 146:129-34. [PMID: 8997717 DOI: 10.1111/j.1574-6968.1997.tb10182.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A range of organisms known to contain F420 or to be relatives of mycobacteria were examined for F420-dependent glucose-6-phosphate dehydrogenase (FGD) and NADP-dependent glucose-6-phosphate dehydrogenase (NADP-G6PD) activities. All free-growing Mycobacterium species examined (including a virulent Mycobacterium tuberculosis strain) had FGD activities of 0.014-0.418 mumol min-1 mg protein-1, and NADP-G6PD activities of 0.013-0.636 mumol min-1 mg-1. Armadillo-grown Mycobacterium leprae had FGD activity of 0.008 mumol min-1 mg-1, but no detectable NADP-G6PD activity. Nocardia species also had FGD activity (0.088-0.154 mumol min-1 mg-1). Streptomyces and Corynebacterium species had no FGD, but had NADP-G6PD. Methanogenic Archaea had neither activity.
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
13
|
Klein AR, Berk H, Purwantini E, Daniels L, Thauer RK. Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:93-7. [PMID: 8706724 DOI: 10.1111/j.1432-1033.1996.0093u.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coenzyme F420 is a 5-deazaflavin. Upon reduction, 1,5-dihydro-coenzyme F420 is formed with a prochiral center at C5. In this study we report that the F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and the F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus are Si-face stereospecific with respect to C5 of the 5-deazaflavin. These results were obtained by following the stereochemical course of the reversible incorporation of 3H into F420 from tritium-labeled substrates. Our findings bring to eight the number of coenzyme-F420-dependent enzymes shown to be Si-face stereospecific. No F420-dependent enzyme with Re-face stereospecificity is known. This is noteworthy since coenzyme F420 is functionally similar to pyridine nucleotides for which both Si-face and Re-face specific enzymes have been found.
Collapse
Affiliation(s)
- A R Klein
- Max-Planck-Institut für terrestrische Mikrobiologie, Philipps-Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Purwantini E, Daniels L. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 1996; 178:2861-6. [PMID: 8631674 PMCID: PMC178021 DOI: 10.1128/jb.178.10.2861-2866.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A variety of Mycobacterium species contained the 5-deazaflavin coenzyme known as F420. Mycobacterium smegmatis was found to have a glucose-6-phosphate dehydrogenase that was dependent on F420 as an electron acceptor and which did not utilize NAD or NADP. The enzyme was purified by ammonium sulfate fractionation, phenyl-Sepharose column chromatography, F420-ether-linked aminohexyl-Sepharose 4B affinity chromatography, and quaternary aminoethyl-Sephadex column chromatography, and the sequence of the first 26 N-terminal amino acids has been determined. The response of enzyme activity to a range of pHs revealed a two-peak pattern, with maxima at pH 5.5 and 8.0. The apparent Km values for F420 and glucose-6-phosphate were, respectively, 0.004 and 1.6 mM. The apparent native and subunit molecular masses were 78,000 and approximately 40,000 Da, respectively.
Collapse
Affiliation(s)
- E Purwantini
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
15
|
Vornolt J, Kunow J, Stetter KO, Thauer RK. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 1995. [DOI: 10.1007/bf00381784] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Klein AR, Thauer RK. Re-face specificity at C14a of methylenetetrahydromethanopterin and Si-face specificity at C5 of coenzyme F420 for coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:169-74. [PMID: 7851382 DOI: 10.1111/j.1432-1033.1995.tb20373.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea catalyzes the reversible transfer of a hydride ion from C14a of N5,N10-methylenetetrahydromethanopterin to C5 of coenzyme F420. In this study, we report that this hydride transfer proceeds stereospecifically from the Re face at C14a to the Si face at C5. The results were obtained by using chirally 3H-labelled N5,N10-methylenetetrahydromethanopterin generated via Re-face-specific H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase and by analyzing reduced coenzyme F420 via Si-face-specific F420-reducing hydrogenase.
Collapse
Affiliation(s)
- A R Klein
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
17
|
Kunow J, Linder D, Stetter KO, Thauer RK. F420H2: quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:503-11. [PMID: 8055920 DOI: 10.1111/j.1432-1033.1994.tb19019.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing archaeon, was found to contain a membrane-bound F420H2: quinone oxidoreductase complex presumed to be involved in energy conservation during growth on lactate plus sulfate. After solubilization with dodecyl-beta-D-maltoside the complex was purified 32-fold with a yield of 24%. Using both gel filtration and native PAGE, an apparent molecular mass of approximately 270 kDa was determined. SDS/PAGE revealed the presence of at least seven polypeptides with apparent molecular masses 56, 45, 41, 39, 37, 33, and 32 kDa. The purified complex contained 1.6 mol FAD, 9 mol non-heme iron and 7 mol acid-labile sulfur/mol complex. It did not contain cytochromes, which were, however, present in the membrane fraction of A. fulgidus (3 nmol/mg membrane protein). The purified F420H2: quinone oxidoreductase complex catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone (apparent Km 190 microM) with reduced coenzyme F420 (apparent Km 50 microM) exhibiting a specific activity of 500 U/mg (apparent Vmax) at pH 8.0 (pH optimum) and 65 degrees C (temperature optimum). 2-Methyl-1,4-naphthoquinone (menadione), 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 2,3-dimethoxy-5-methyl-1,4- benzoquinone, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (decyl-ubiquinone) were also reduced with F420H2, albeit with lower rates. The physiological electron acceptor of the F420H2: quinone oxidoreductase complex is most likely the menaquinone found in the membrane fraction of A. fulgidus.
Collapse
Affiliation(s)
- J Kunow
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
18
|
Kunow J, Schwörer B, Stetter KO, Thauer RK. A F420-dependent NADP reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Arch Microbiol 1993. [DOI: 10.1007/bf00249125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|