1
|
Jeyanthi G, Gnana Sambandam C. Spectral profiling, structural, molecular docking and ELF elucidation of bioactive molecule Benzoguanamine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Pandey SN, Iqbal N, Singh PK, Rastogi N, Kaur P, Sharma S, Singh TP. Binding and structural studies of the complexes of type 1 ribosome inactivating protein from Momordica balsamina
with uracil and uridine. Proteins 2018; 87:99-109. [DOI: 10.1002/prot.25584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/07/2018] [Accepted: 07/04/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sada Nand Pandey
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Naseer Iqbal
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Prashant K. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Nilisha Rastogi
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Punit Kaur
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Sujata Sharma
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Tej P. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
3
|
Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, Sha O, Shaw PC, Chan WY. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 2015; 99:9847-63. [PMID: 26394859 DOI: 10.1007/s00253-015-6941-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK, Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Pang Chui Shaw
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
4
|
Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel) 2015; 7:274-98. [PMID: 25635465 PMCID: PMC4344624 DOI: 10.3390/toxins7020274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/chemistry
- Fungal Proteins/chemistry
- Genome, Viral
- Humans
- Protein Isoforms
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Inactivating Proteins, Type 1/chemistry
- Ribosome Inactivating Proteins, Type 1/genetics
- Ribosome Inactivating Proteins, Type 1/metabolism
- Ribosome Inactivating Proteins, Type 1/pharmacology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ricin/chemistry
Collapse
Affiliation(s)
- Artem V Domashevskiy
- John Jay College of Criminal Justice, Department of Sciences, City University of New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York and the Graduate Center, 695 Park Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Tourlakis ME, Karran RA, Desouza L, Siu KWM, Hudak KA. Homodimerization of pokeweed antiviral protein as a mechanism to limit depurination of pokeweed ribosomes. MOLECULAR PLANT PATHOLOGY 2010; 11:757-767. [PMID: 21029321 PMCID: PMC6640456 DOI: 10.1111/j.1364-3703.2010.00640.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ribosome inactivating proteins are glycosidases synthesized by many plants and have been hypothesized to serve in defence against pathogens. These enzymes catalytically remove a conserved purine from the sarcin/ricin loop of the large ribosomal RNA, which has been shown in vitro to limit protein synthesis. The resulting toxicity suggests that plants may possess a mechanism to protect their ribosomes from depurination during the synthesis of these enzymes. For example, pokeweed antiviral protein (PAP) is cotranslationally inserted into the lumen of the endoplasmic reticulum and travels via the endomembrane system to be stored in the cell wall. However, some PAP may retrotranslocate across the endoplasmic reticulum membrane to be released back into the cytosol, thereby exposing ribosomes to depurination. In this work, we isolated and characterized a complexed form of the enzyme that exhibits substantially reduced activity. We showed that this complex is a homodimer of PAP and that dimerization involves a peptide that contains a conserved aromatic amino acid, tyrosine 123, located in the active site of the enzyme. Bimolecular fluorescence complementation demonstrated that the homodimer may form in vivo and that dimerization is prevented by the substitution of tyrosine 123 for alanine. The homodimer is a minor form of PAP, observed only in the cytosol of cells and not in the apoplast. Taken together, these data support a novel mechanism for the limitation of depurination of autologous ribosomes by molecules of the protein that escape transport to the cell wall by the endomembrane system.
Collapse
|
6
|
Parente A, Berisio R, Chambery A, Di Maro A. Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J Struct Biol 2009; 168:278-87. [PMID: 19616098 DOI: 10.1016/j.jsb.2009.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/24/2009] [Accepted: 07/12/2009] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of two type 1 RIPs, bouganin and lychnin, has been solved. Their adenine polynucleotide glycosylase activity was also determined together with other known RIPs: dianthin 30, PAP-R, momordin I, ricin A chain and saporin-S6. Saporin-S6 releases the highest number of adenine molecules from rat ribosomes, and poly(A), while its efficiency is similar to dianthin 30, bouganin and PAP-R on herring sperm DNA. Measures of the protein synthesis inhibitory activity confirmed that saporin-S6 is the most active. The overall structure of bouganin and lychnin is similar to the other considered RIPs and the typical RIP fold is conserved. The superimpositioning of their C(alpha) atoms highlights some differences in the N-terminal and C-terminal domains. A detailed structural analysis indicates that the efficiency of saporin-S6 on various polynucleotides can be ascribed to a negative electrostatic surface potential at the active site and several exposed positively charged residues in the region around that site. These two conditions, not present at the same time in other examined RIPs, could guarantee an efficient interaction with the substrate and an efficient catalysis.
Collapse
|
8
|
Chambery A, Di Maro A, Parente A. Primary structure and glycan moiety characterization of PD-Ss, type 1 ribosome-inactivating proteins from Phytolacca dioica L. seeds, by precursor ion discovery on a Q-TOF mass spectrometer. PHYTOCHEMISTRY 2008; 69:1973-1982. [PMID: 18514239 DOI: 10.1016/j.phytochem.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/01/2008] [Accepted: 04/08/2008] [Indexed: 05/26/2023]
Abstract
Seeds from Phytolacca dioica L. contain at least three N-glycosylated PD-Ss, type 1 ribosome-inactivating proteins (RIPs), which were separated and purified to homogeneity by conventional chromatographic techniques. ESI-Q-TOF mass spectrometry provided the accurate M(r) of native PD-S1 and PD-S3 (30957.1 and 29785.1, respectively) and the major form PD-S2 (30753.8). As the amino acid sequence of PD-S2 was already known, its disulfide pairing was determined and found to be Cys34-Cys262 and Cys88-Cys110. Further structural characterization of PD-S1 and PD-S3 (N-terminal sequence determination up to residue 30, amino acid analysis and tryptic peptide mapping) showed that the three PD-Ss shared the entire protein sequence. To explain the different chromatographic behaviour, their glycosylation patterns were characterized by a fast and sensitive mass spectrometry-based approach, applying a precursor ion discovery mode on a Q-TOF mass spectrometer. A standard plant paucidomannosidic N-glycosylation pattern [Hex(3), HexNAc(2), deoxyhexose(1), pentose(1)] was found for PD-S1 and PD-S2 on Asn120. Furthermore, a glycosylation site carrying only a HexNAc residue was identified on Asn112 in PD-S1 and PD-S3. Finally, considering the two disulfide bridges and the glycan moieties, the experimental M(r) values were in agreement with the mass values calculated from the primary structure. The complete characterization of PD-Ss shows the high potential of mass spectrometry to rapidly characterize proteins, widespread in eukaryotes, differing only in their glycosylation motifs.
Collapse
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy
| | | | | |
Collapse
|
9
|
Ruggiero A, Chambery A, Maro AD, Parente A, Berisio R. Atomic resolution (1.1 Å) structure of the ribosome-inactivating protein PD-L4 fromPhytolacca dioicaL. leaves. Proteins 2008; 71:8-15. [DOI: 10.1002/prot.21712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Katayama DS, Cornell Manning M, Jarosz P. Solution behavior of a novel biopharmaceutical drug candidate: a gonadotropin-toxin conjugate. Drug Dev Ind Pharm 2007; 32:1175-84. [PMID: 17090440 DOI: 10.1080/03639040600815194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
There is little known about the solution structure and stability of peptide-protein conjugates, which comprise a new class of potential biopharmaceutical agents. This study describes the solution behavior of gonadotropins-releasing hormone (GnRH) chemically conjugated to pokeweed antiviral protein (PAP). The conjugate adopts a well-defined conformation across a pH range of 4 to 8. Even after heating to 80 degrees C, the conjugate retains a significant amount of secondary and tertiary structure. Heating for 1 h at 60 degrees C does lead to chemical damage, as determined by cation exchange chromatography. Using an experimental design approach, the optimal pH and salt concentration for limiting chemical damage was determined.
Collapse
Affiliation(s)
- Derrick S Katayama
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
11
|
Hudak KA, Parikh BA, Di R, Baricevic M, Santana M, Seskar M, Tumer NE. Generation of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: evidence that ribosome depurination is not sufficient for cytotoxicity. Nucleic Acids Res 2004; 32:4244-56. [PMID: 15304562 PMCID: PMC514378 DOI: 10.1093/nar/gkh757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that depurinates the highly conserved alpha-sarcin/ricin loop in the large rRNA. Here, using site-directed mutagenesis and systematic deletion analysis from the 5' and the 3' ends of the PAP cDNA, we identified the amino acids important for ribosome depurination and cytotoxicity of PAP. Truncating the first 16 amino acids of PAP eliminated its cytotoxicity and the ability to depurinate ribosomes. Ribosome depurination gradually decreased upon the sequential deletion of C-terminal amino acids and was abolished when a stop codon was introduced at Glu-244. Cytotoxicity of the C-terminal deletion mutants was lost before their ability to depurinate ribosomes. Mutations in Tyr-123 at the active site affected cytotoxicity without altering the ribosome depurination ability. Total translation was not inhibited in yeast expressing the non-toxic Tyr-123 mutants, although ribosomes were depurinated. These mutants depurinated ribosomes only during their translation and could not depurinate ribosomes in trans in a translation-independent manner. A mutation in Leu-71 in the central domain affected cytotoxicity without altering the ability to depurinate ribosomes in trans and inhibit translation. These results demonstrate that the ability to depurinate ribosomes in trans in a catalytic manner is required for the inhibition of translation, but is not sufficient for cytotoxicity.
Collapse
Affiliation(s)
- Katalin A Hudak
- Biotechnology Center for Agriculture and the Environment and the Department of Plant Biology and Pathology, Cook College, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zeng ZH, He XL, Li HM, Hu Z, Wang DC. Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 1.8A resolution. J Struct Biol 2003; 141:171-8. [PMID: 12615543 DOI: 10.1016/s1047-8477(02)00580-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of pokeweed antiviral protein from seeds of Phytolacca americana (PAP-S) was solved at 1.8A. PAP-S is a one-chain ribosome-inactivating protein (RIP) and distinctively contains three well-defined N-acetylglucosamines, each covalently linked to an asparagine residue at positions, 10, 44, and 255, respectively. The high-resolution structure clearly shows the three mono-sugars to have either an alpha- or a beta-conformation. Two of sugars are located on the same side of the molecule with the active pocket. Except one hydrogen bond, there are no intermolecular interactions between the polypeptide chain and the sugars. Instead the sugar conformations appear to be stabilized by intermolecular interactions. The sugar structure defined at high resolution provides a structural basis for understanding their possible biological activity. The structural comparisons of PAP-S with other PAPs reveal that the major disparity of these homologous molecules is the different charge distribution on the upper right side of the front side near the active pocket. Based on the available structure of the 50S ribosomal subunit, the possible interactions between PAPs and the ribosome are discussed.
Collapse
Affiliation(s)
- Zong-Hao Zeng
- Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
13
|
Rajamohan F, Mao C, Uckun FM. Binding interactions between the active center cleft of recombinant pokeweed antiviral protein and the alpha-sarcin/ricin stem loop of ribosomal RNA. J Biol Chem 2001; 276:24075-81. [PMID: 11313342 DOI: 10.1074/jbc.m011406200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop of the large ribosomal RNA, thereby inhibiting protein synthesis at the elongation step. Recently, we discovered that alanine substitutions of the active center cleft residues significantly impair the depurinating and ribosome inhibitory activity of PAP. Here we employed site-directed mutagenesis combined with standard filter binding assays, equilibrium binding assays with Scatchard analyses, and surface plasmon resonance technology to elucidate the putative role of the PAP active center cleft in the binding of PAP to the alpha-sarcin/ricin stem loop of rRNA. Our findings presented herein provide experimental evidence that besides the catalytic site, the active center cleft also participates in the binding of PAP to the target tetraloop structure of rRNA. These results extend our recent modeling studies, which predicted that the residues of the active center cleft could, via electrostatic interactions, contribute to both the correct orientation and stable binding of the substrate RNA molecules in PAP active site pocket. The insights gained from this study also explain why and how the conserved charged and polar side chains located at the active center cleft of PAP and certain catalytic site residues, that do not directly participate in the catalytic deadenylation of ribosomal RNA, play a critical role in the catalytic removal of the adenine base from target rRNA substrates by affecting the binding interactions between PAP and rRNA.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fungal Proteins
- Models, Molecular
- Mutagenesis, Site-Directed
- N-Glycosyl Hydrolases
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Ribosome Inactivating Proteins, Type 1
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- F Rajamohan
- Biotherapy Program, Parker Hughes Cancer Center, and the Departments of Protein Engineering, Structural Biology, and Virology, Parker Hughes Institute, St. Paul, Minnesota 55113, USA.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- P Wang
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
15
|
Rajamohan F, Pugmire MJ, Kurinov IV, Uckun FM. Modeling and alanine scanning mutagenesis studies of recombinant pokeweed antiviral protein. J Biol Chem 2000; 275:3382-90. [PMID: 10652330 DOI: 10.1074/jbc.275.5.3382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phytolacca americana-derived naturally occurring ribosome inhibitory protein pokeweed antiviral protein (PAP) is an N-glycosidase that catalytically removes a specific adenine residue from the stem loop of ribosomal RNA. We have employed molecular modeling studies using a novel model of PAP-RNA complexes and site-directed mutagenesis combined with bioassays to evaluate the importance of the residues at the catalytic site and a putative RNA binding active center cleft between the catalytic site and C-terminal domain for the enzymatic deadenylation of ribosomal RNA by PAP. As anticipated, alanine substitutions by site-directed mutagenesis of the PAP active site residues Tyr(72), Tyr(123), Glu(176), and Arg(179) that directly participate in the catalytic deadenylation of RNA resulted in greater than 3 logs of loss in depurinating and ribosome inhibitory activity. Similarly, alanine substitution of the conserved active site residue Trp(208), which results in the loss of stabilizing hydrophobic interactions with the ribose as well as a hydrogen bond to the phosphate backbone of the RNA substrate, caused greater than 3 logs of loss in enzymatic activity. By comparison, alanine substitutions of residues (28)KD(29), (80)FE(81), (111)SR(112), (166)FL(167) that are distant from the active site did not significantly reduce the enzymatic activity of PAP. Our modeling studies predicted that the residues of the active center cleft could via electrostatic interactions contribute to both the correct orientation and stable binding of the substrate RNA molecule in the active site pocket. Notably, alanine substitutions of the highly conserved, charged, and polar residues of the active site cleft including (48)KY(49), (67)RR(68), (69)NN(70), and (90)FND(92) substantially reduced the depurinating and ribosome inhibitory activity of PAP. These results provide unprecedented evidence that besides the active site residues of PAP, the conserved, charged, and polar side chains located at its active center cleft also play a critical role in the PAP-mediated depurination of ribosomal RNA.
Collapse
Affiliation(s)
- F Rajamohan
- Biotherapy Program, Parker Hughes Institute, St. Paul, Minnesota 55113, USA
| | | | | | | |
Collapse
|
16
|
Xu J, Meng AX, Hefferon KL, Ivanov IG, Abouhaidar MG. Effect of N-terminal deletions on the activity of pokeweed antiviral protein expressed in E. coli. Biochimie 1998; 80:1069-76. [PMID: 9924987 DOI: 10.1016/s0300-9084(99)80014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pokeweed antiviral protein (PAP) from Phytolacca americana is a highly specific N-glycosidase removing adenine residues (A4324 in 28S rRNA and A2660 in 23S rRNA) from intact ribosomes of both eukaryotes and prokaryotes. Due to the ribosome impairing activity the gene coding for mature PAP has not been expressed so far in bacteria whereas the full-length gene (coding for the mature 262 amino acids plus two signal peptides of 22 and 29 amino acids at both N- and C-termini, respectively) has been expressed in Escherichia coli. In order to determine: 1) the size of the N-terminal region of PAP which is required for toxicity to E. coli; and 2) the location of the putative enzymatic active site of PAP, 5'-terminal progressive deletion of the PAP full-length gene was carried out and the truncated forms of the gene were cloned in a vector containing a strong constitutive promoter and a consensus Shine-Dalgarno ribosome binding site. The ribosome inactivation or toxicity of the PAP is used as a phenotype characterized by the absence of E. coli colonies, while the mutation of PAP open reading frames in the small number of survived clones is used as an indicator of the toxicity to E. coli cells. Results showed that the native full-length PAP gene was highly expressed and was not toxic to E. coli cells although in vitro ribosome inactivating activity assay indicated it was active. However, all of the N-terminal truncated forms (removal of seven to 107 codons) of the PAP gene were toxic to E. coli cells and were mutated into either out of frame, early termination codon or inactive form of PAP (i.e., clone PAP delta107). Deletion of more than 123 codons restored the correct gene sequence but resulted in the loss of the antiviral and ribosome inactivating activities and by the formation of a large number of clones. These results suggest that full-length PAP (with N- and C-terminal extensions) might be an inactive form of the enzyme in vivo presumably by inclusion body formation or other unknown mechanisms and is not toxic to E. coli cells. However, it is activated by at least seven codon deletions at the N-terminus. Deletions from seven through to 107 amino acids were lethal to the cells and only mutated forms (inactive) of the gene were obtained. But deletion of more than 123 amino acids resulted in the loss of enzymatic activity and made it possible to express the correct PAP gene in E. coli. Because deletion of Tyr94 and Val95, which are involved in the binding of the target adenine base, did not abolish the activity of PAP, it is concluded that the location previously proposed for PAP enzymatic active site should be reassessed.
Collapse
Affiliation(s)
- J Xu
- Department of Botany, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
17
|
Zeng Z, Jin L, Li H, Hu Z, Wang D. Crystal structure of pokeweed antiviral protein from seeds ofPhytolacca americana at 0.25 nm. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1998; 41:413-418. [PMID: 18726259 DOI: 10.1007/bf02882742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/1998] [Indexed: 05/26/2023]
Abstract
Crystals of pokeweed antiviral protein (PAP) from seeds ofPhytolacca americana with high diffraction ability were grown from high protein concentration (100 mg/mL) solution at high temperature (33 degrees C). The crystal structure was solved by use of molecular replacement method and refied by use of molecular dynamic method at 0.25 nm to anR factor of 18.15% with standard deviations from standard geometry of 0.001 6 nm and 2.04 for bond lengths and bond angles, respectively. Comparison with two other PAPS revealed, near the active center, a sequence- and structure-variable region, consisting of the loop connecting the fifth beta-strand with the second alpha-helix and including a proposed active residue, suggesting this loop probably to be related to difference in activity.
Collapse
Affiliation(s)
- Z Zeng
- Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Poyet JL, Hoeveler A. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett 1997; 406:97-100. [PMID: 9109394 DOI: 10.1016/s0014-5793(97)00250-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pokeweed antiviral proteins (PAP) represent a family of protein toxins isolated from various organs and at different stages of development of Phytolacca americana (pokeweed). We isolated, sequenced and characterized for the first time a complete cDNA encoding a pokeweed antiviral protein expressed in seeds. The cDNA of PAP-S consists of 1249 nucleotides and encodes a mature 262 amino acid protein. Its predicted amino acid sequence is more similar to PAP (76%) than to PAP II (31%). It is known from literature that PAP-S is more active in inhibiting protein synthesis than other members of the PAP family. Therefore, the cDNA of PAP-S was expressed in Escherichia coli and the biological activity of the recombinant protein was compared with that of PAP purified from spring leaves. In a rabbit translation system, the median inhibitory concentrations (IC50) of recombinant PAP-S and native PAP were determined as 0.07 and 0.29 nM, respectively. Although the PAP-S protein in seeds is glycosylated, PAP-S can be expressed in Escherichia coli in a very active form, indicating that post-translational modification in pokeweed does not seem to alter its ability to inhibit protein synthesis.
Collapse
Affiliation(s)
- J L Poyet
- Laboratoire de Biochimie et de Biologie Moléculaire, UFR des Sciences et des Techniques, Besancon, France
| | | |
Collapse
|
19
|
Stultz CM, Nambudripad R, Lathrop RH, White JV. Predicting Protein Structure With Probabilistic Models. ADVANCES IN MOLECULAR AND CELL BIOLOGY 1997. [DOI: 10.1016/s1569-2558(08)60483-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Chaddock JA, Monzingo AF, Robertus JD, Lord JM, Roberts LM. Major structural differences between pokeweed antiviral protein and ricin A-chain do not account for their differing ribosome specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:159-66. [PMID: 8631323 DOI: 10.1111/j.1432-1033.1996.00159.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pokeweed antiviral protein (PAP) and the A-chain of ricin (RTA) are two members of a family of ribosome-inactivating proteins (RIPS) that are characterised by their ability to catalytically depurinate eukaryotic ribosomes, a modification that makes the ribosomes incapable of protein synthesis. In contrast to RTA, PAP can also inactivate prokaryotic ribosomes. In order to investigate the reason for this differing ribosome specificity, a series of PAP/RTA hybrid proteins was prepared to test for their ability to depurinate prokaryotic and eukaryotic ribosomes. Information from the X-ray structures of RTA and PAP was used to design gross polypeptide switches and specific peptide insertions. Initial gross polypeptide swaps created hybrids that had altered ribosome inactivation properties. Preliminary results suggest that the carboxy-terminus of the RIPs (PAP 219-262) does not contribute to ribosome recognition, whereas polypeptide swaps in the amino-terminal half of the proteins did affect ribosome inactivation. Structural examination identified three loop regions that were different in both structure and composition within the amino-terminal region. Directed substitution of RTA sequences into PAP at these sites, however, had little effect on the ribosome inactivation characteristics of the mutant PAPs, suggesting that the loops were not crucial for prokaryotic ribosome recognition. On the basis of these results we have identified regions of RIP primary sequence that may be important in ribosome recognition. The implications of this work are discussed.
Collapse
Affiliation(s)
- J A Chaddock
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | |
Collapse
|