1
|
|
2
|
Musser SM, Stowell MH, Chan SI. Cytochrome c oxidase: chemistry of a molecular machine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:79-208. [PMID: 8644492 DOI: 10.1002/9780470123171.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plethora of proposed chemical models attempting to explain the proton pumping reactions catalyzed by the CcO complex, especially the number of recent models, makes it clear that the problem is far from solved. Although we have not discussed all of the models proposed to date, we have described some of the more detailed models in order to illustrate the theoretical concepts introduced at the beginning of this section on proton pumping as well as to illustrate the rich possibilities available for effecting proton pumping. It is clear that proton pumping is effected by conformational changes induced by oxidation/reduction of the various redox centers in the CcO complex. It is for this reason that the CcO complex is called a redox-linked proton pump. The conformational changes of the proton pump cycle are usually envisioned to be some sort of ligand-exchange reaction arising from unstable geometries upon oxidation/reduction of the various redox centers. However, simple geometrical rearrangements, as in the Babcock and Mitchell models are also possible. In any model, however, hydrogen bonds must be broken and reformed due to conformational changes that result from oxidation/reduction of the linkage site during enzyme turnover. Perhaps the most important point emphasized in this discussion, however, is the fact that proton pumping is a directed process and it is electron and proton gating mechanisms that drive the proton pump cycle in the forward direction. Since many of the models discussed above lack effective electron and/or proton gating, it is clear that the major difficulty in developing a viable chemical model is not formulating a cyclic set of protein conformational changes effecting proton pumping (redox linkage) but rather constructing the model with a set of physical constraints so that the proposed cycle proceeds efficiently as postulated. In our discussion of these models, we have not been too concerned about which electron of the catalytic cycle was entering the site of linkage, but merely whether an ET to the binuclear center played a role. However, redox linkage only occurs if ET to the activated binuclear center is coupled to the proton pump. Since all of the models of proton pumping presented here, with the exception of the Rousseau expanded model and the Wikström model, have a maximum stoichiometry of 1 H+/e-, they inadequately explain the 2 H+/e- ratio for the third and fourth electrons of the dioxygen reduction cycle (see Section V.B). One way of interpreting this shortfall of protons is that the remaining protons are pumped by an as yet undefined indirectly coupled mechanism. In this scenario, the site of linkage could be coupled to the pumping of one proton in a direct fashion and one proton in an indirect fashion for a given electron. For a long time, it was assumed that at least some elements of such an indirect mechanism reside in subunit III. While recent evidence argues against the involvement of subunit III in the proton pump, subunit III may still participate in a regulatory and/or structural capacity (Section II.E). Attention has now focused on subunits I and II in the search for residues intimately involved in the proton pump mechanism and/or as part of a proton channel. In particular, the role of some of the highly conserved residues of helix VIII of subunit I are currently being studied by site directed mutagenesis. In our opinion, any model that invokes heme alpha 3 or CuB as the site of linkage must propose a very effective means by which the presumedly fast uncoupling ET to the dioxygen intermediates is prevented. It is difficult to imagine that ET over the short distance from heme alpha 3 or CuB to the dioxygen intermediate requires more than 1 ns. In addition, we expect the conformational changes of the proton pump to require much more than 1 ns (see Section V.B).
Collapse
Affiliation(s)
- S M Musser
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
3
|
Abstract
Archaea or archaebacteria are the microorganism living in extreme environments such as hot springs and salt lakes. The membrane is featured universally by lipids which possess saturated polyisoprenoid chains in the hydrophobic moiety. This paper concerns the surface properties of Langmuir membranes made of archaeal lipid models (AL) bearing a phytanyl group or (3RS, 7R, 11R)-3,7,11,15-tetramethylhexadecyl group. All of the AL provide a Langmuir membrane on an air-water interface with an abnormally low surface tension (32-37 mN/m at 20-70 degrees C), while the conventional lipids having n-alkyl chains give membranes of 54-56 mN/m. The abnormally low energy surface of AL lipids is considered to arise from the bulky and fluid polyisoprenoid chain.
Collapse
Affiliation(s)
- Takahiro Kitano
- Department of Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | |
Collapse
|
4
|
Komorowski L, Verheyen W, Schäfer G. The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 2002; 383:1791-9. [PMID: 12530544 DOI: 10.1515/bc.2002.200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hyperthermoacidophilic archaeon Sulfolobus acidocaldarius has a unique respiratory system with at least two terminal oxidases. Genetic and preliminary biochemical studies suggested the existence of a unique respiratory supercomplex, SoxM. Here we show (i) that all respective genes are translated into polypeptides, and (ii) that the supercomplex can be separated from the alternative oxidase SoxABCD and in that way characterized in a catalytically competent form for the first time. It acts as a quinol oxidase and contains a total of seven metal redox centers. One of it--the blue copper protein sulfocyanin--functionally links two subcomplexes. One is a bb3-type terminal oxidase moiety containing CuA and CuB, whereas the other consists of a Rieske FeS-protein and a homolog to cytochrome b--in this case hosting two hemes As. Based on a 1:1 stoichiometry, 1 mol complex contains 6 mol Fe and 4 mol Cu. Its activity is completely inhibited by cyanide and strongly by aurachin-C and -D derivatives as inhibitors of the quinol binding site. These data suggest that the complex provides two proton pumping sites. Interestingly, subunit-II reveals an unusual pH dependence and is proposed to act as a pH sensor as well as a regulator of catalytic activity via a reversible transition between two states of the CuA ligation. This is a novel hint at how S. acidocaldarius can adapt to and survive in its extreme natural environment.
Collapse
Affiliation(s)
- Lars Komorowski
- Institute of Biochemistry, Medical University of Lübeck, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
5
|
Abstract
Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.
Collapse
Affiliation(s)
- J Castresana
- European Molecular Biology Laboratory, Biocomputing Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
6
|
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Lübeck D-23538, Germany
| | | | | |
Collapse
|
7
|
Poole RK, Cook GM. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 2001; 43:165-224. [PMID: 10907557 DOI: 10.1016/s0065-2911(00)43005-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacteria are the most remarkable organisms in the biosphere, surviving and growing in environments that support no other life forms. Underlying this ability is a flexible metabolism controlled by a multitude of environmental sensors and regulators of gene expression. It is not surprising, therefore, that bacterial respiration is complex and highly adaptable: virtually all bacteria have multiple, branched pathways for electron transfer from numerous low-potential reductants to several terminal electron acceptors. Such pathways, particularly those involved in anaerobic respiration, may involve periplasmic components, but the respiratory apparatus is largely membrane-bound and organized such that electron flow is coupled to proton (or sodium ion) transport, generating a protonmotive force. It has long been supposed that the multiplicity of pathways serves to provide flexibility in the face of environmental stresses, but the existence of apparently redundant pathways for electrons to a single acceptor, say dioxygen, is harder to explain. Clues have come from studying the expression of oxidases in response to growth conditions, the phenotypes of mutants lacking one or more oxidases, and biochemical characterization of individual oxidases. Terminal oxidases that share the essential properties of substrate (cytochrome c or quinol) oxidation, dioxygen reduction and, in some cases, proton translocation, differ in subunit architecture and complement of redox centres. Perhaps more significantly, they differ in their affinities for oxidant and reductant, mode of regulation, and inhibitor sensitivity; these differences to some extent rationalize the presence of multiple oxidases. However, intriguing requirements for particular functions in certain physiological functions remain unexplained. For example, a large body of evidence demonstrates that cytochrome bd is essential for growth and survival under certain conditions. In this review, the physiological basis of the many phenotypes of Cyd-mutants is explored, particularly the requirement for this oxidase in diazotrophy, growth at low protonmotive force, survival in the stationary phase, and resistance to oxidative stress and Fe(III) chelators.
Collapse
Affiliation(s)
- R K Poole
- Krebs Institute for Biomolecular Research, University of Sheffield, UK
| | | |
Collapse
|
8
|
Komorowski L, Anemüller S, Schäfer G. First expression and characterization of a recombinant CuA-containing subunit II from an archaeal terminal oxidase complex. J Bioenerg Biomembr 2001; 33:27-34. [PMID: 11460923 DOI: 10.1023/a:1005668522801] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The branched respiratory chain of the archaeon Sulfolobus acidocaldarius contains a supercomplex, SoxM, consisting of a bc1-like subcomplex and a terminal oxidase moiety, including a subunit II analogous polypeptide, SoxH. However, the latter component has never been identified in preparations of SoxM. We demonstrate the presence of an mRNA transcript by Northern analysis. We succeeded in cloning and expressing the respective gene with truncated N-terminus by deleting a 20 AS membrane anchor, which resulted in a water-soluble purple copper protein, which was further characterized. The recombinant subunit II of the SoxM complex contains a correctly inserted binuclear CuA cluster as revealed by UV/vis and EPR spectroscopy. The protein is highly thermostable and displays a redox potential of +237 mV. In recombinant form, the metal interacts with cytochrome c as an artificial electron donor; the physiological electron donor is still unknown, since S. acidocaldarius does not contain any c-type cytochromes. The purple copper center of SoxM shows an interesting pH dependency with a pKa at 6.4, suggesting protonation of the Cu-ligating histidines. Further lowering the pH causes a reversible transition into another cluster form with concomitant liberation of one copper. It may thus provide a model for the study of cluster rearrangements in response to pH.
Collapse
Affiliation(s)
- L Komorowski
- Institute of Biochemistry, Medical University of Luebeck, Germany
| | | | | |
Collapse
|
9
|
Arslan E, Kannt A, Thöny-Meyer L, Hennecke H. The symbiotically essential cbb(3)-type oxidase of Bradyrhizobium japonicum is a proton pump. FEBS Lett 2000; 470:7-10. [PMID: 10722835 DOI: 10.1016/s0014-5793(00)01277-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Purified cbb(3)-type oxidase of Bradyrhizobium japonicum was reconstituted into phospholipid vesicles. Tight vesicles were obtained as shown by the disturbance of deltapH with CCCP and the membrane potential with valinomycin, which led to a six-fold increase in cytochrome c oxidase activity. The vesicles were thus suitable for proton translocation experiments. In the presence of valinomycin, a pulse with reduced cytochrome c caused an acidification with a subsequent alkalinization, whereas the same pulse caused only an alkalinization in the presence of valinomycin plus CCCP. We conclude that the cbb(3)-type oxidase of B. japonicum is a proton pump.
Collapse
Affiliation(s)
- E Arslan
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092, Zürich, Switzerland
| | | | | | | |
Collapse
|
10
|
Baba T, Minamikawa H, Hato M, Motoki A, Hirano M, Zhou D, Kawasaki K. Synthetic phytanyl-chained glycolipid vesicle membrane as a novel matrix for functional reconstitution of cyanobacterial photosystem II complex. Biochem Biophys Res Commun 1999; 265:734-8. [PMID: 10600489 DOI: 10.1006/bbrc.1999.1754] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vesicles composed of synthetic phytanyl-chained glycolipid and natural sulfoquinovosyldiacylglycerol at 9:1 molar ratio were successfully applied to functional reconstitution of photosystem II complex (PS II) from a thermophilic cyanobacterium. The synthetic glycolipid employed was one of our model archaeal diether lipids, 1, 3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol. The light-induced oxygen-evolving activity of PS II reconstituted in the glycolipid vesicles was approximately 6-fold higher than that reconstituted in several phosphatidylcholine vesicles. The present results reveal the first evidence that a well-designed synthetic glycolipid is effective for the functional reconstitution of complicated and labile membrane protein complexes, such as PS II.
Collapse
Affiliation(s)
- T Baba
- Department of Polymer Physics, National Institute of Materials and Chemical Research (NIMC), 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
12
|
Schell C, Hombrecher HK. Synthesis and investigation of glycosylated mono- and diarylporphyrins for photodynamic therapy. Bioorg Med Chem 1999; 7:1857-65. [PMID: 10530933 DOI: 10.1016/s0968-0896(99)00133-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The synthesis of a diaryl substituted porphyrin bearing a galactosyl and a cholesteryloxy substituent and of a galactosyl substituted monoaryl porphyrin is described. The spectroscopic and aggregation properties of both compounds were investigated. The galactosyl substituted monoaryl porphyrin (12) was efficiently incorporated into liposomes and lipoproteins whereas the diaryl porphyrin showed no interaction with these lipids. Furthermore the binding constants of compound 12 to HDL, LDL, VLDL, and PE and DMPC liposomes were estimated.
Collapse
Affiliation(s)
- C Schell
- Institut für Chemie der Medizinischen Universität zu Lübeck, Germany
| | | |
Collapse
|
13
|
Kolonay JF, Maier RJ. Formation of pH and potential gradients by the reconstituted Azotobacter vinelandii cytochrome bd respiratory protection oxidase. J Bacteriol 1997; 179:3813-7. [PMID: 9171438 PMCID: PMC179186 DOI: 10.1128/jb.179.11.3813-3817.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To directly characterize the bioenergetic properties of the cytochrome bd terminating branch of the Azotobacter vinelandii electron transport chain, the purified cytochrome bd oxidase was reconstituted into a phospholipid environment consisting of phosphatidylethanolamine and phosphatidylglycerol (3:1). The average diameter of the proteoliposomes after extrusion through a polycarbonate membrane was 94 +/- 4 nm. Initiation of respiration upon the addition of 20 microM ubiquinone-1 to proteoliposomes loaded with the pH-sensitive dye pyranine resulted in an immediate alkalization of the vesicle lumen by an average pH change of 0.11 unit. This pH gradient was readily collapsed upon the addition of nigericin, carbonyl cyanide p-(tri-fluoromethoxy) phenyl-hydrazone, gramicidin, Triton X-100, or 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). Proteoliposomal respiration initiated in the presence of the potentiometric membrane dye rhodamine 123 caused the generation of a transmembrane potential; the potential was collapsed upon the addition of either valinomycin or HQNO. The formation of both pH and potential gradients during turnover demonstrates that the A. vinelandii cytochrome bd oxidase is coupled to energy conservation in vivo.
Collapse
Affiliation(s)
- J F Kolonay
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
14
|
Gleissner M, Kaiser U, Antonopoulos E, Schäfer G. The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 1997; 272:8417-26. [PMID: 9079667 DOI: 10.1074/jbc.272.13.8417] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thermoacidophilic archaeon Sulfolobus acidocaldarius expresses a very unusual quinol oxidase, which contains four heme a redox centers and one copper atom. The enzyme was solubilized with dodecyl maltoside and purified to homogeneity by a combination of hydrophobic interaction and anion exchange chromatography. The oxidase complex consists of four polypeptide subunits with apparent molecular masses of 64, 39, 27, and 14 kDa that are encoded by the soxABCD operon (Lübben, M., Kolmerer, B., and Saraste, M. (1992) EMBO J. 11, 805-812). The optical spectra and redox potentials of the SoxABCD complex have been characterized, and the absorption coefficients of the contributing cytochromes a587 and aa3 were determined. The EPR spectra indicate the presence of three low spin and one high spin heme species, the latter associated with the binuclear heme CuB site. Standard midpoint potentials of the cytochrome a587 heme centers were determined as +210 and +270 mV, respectively. The maximum turnover of the complex (1300 s-1 at 65 degrees C) was found to be about three times greater than that of the previously studied isolated cytochrome aa3 subunit alone (Gleissner, M., Elferink, M. G., Driessen, A. J., Konings, W. N., Anemüller, S., and Schäfer, G. (1994) Eur. J. Biochem. 224, 983-990). With N,N,N',N'-tetramethyl-1,4-phenylenediamine as a reductant, the SoxABCD complex reconstituted into liposomes generates a proton motive force. A new method is described by co-reconstitution of SoxABCD with a Sulfolobus Rieske FeS-protein (SoxL), allowing energization by cytochrome c. It is based on the finding that this Rieske protein can equilibrate electrons between cytochrome c and quinones reversibly (Schmidt, C. L., Anemüller, S., Teixeira, M., and Schäfer, G. (1995) FEBS Lett. 359, 239-243). With this system, generating no scalar protons, the stoichiometry of proton translocation could be determined. A net H+/e- ratio >1 was determined, identifying the SoxABCD complex as a proton-pumping quinol oxidase. According to structural analysis, the cytochrome aa3 moiety of the complex does not contain the signature of a H+ pumping channel as identified in Rhodobacter sphaeroides or Paracoccus denitrificans. Therefore, for H+ translocation, a mechanism different from that in typical heme-copper oxidases of the aa3 or bo3 type is discussed.
Collapse
Affiliation(s)
- M Gleissner
- Institute für Biochemie, Medizinische Universität Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
Archaea are forming one of the three kingdoms defining the universal phylogenetic tree of living organisms. Within itself this kingdom is heterogenous regarding the mechanisms for deriving energy from the environment for support of cellular functions. These comprise fermentative and chemolithotrophic pathways as well as light driven and respiratory energy conservation. Due to their extreme growth conditions access to the molecular machineries of energy transduction in archaea can be experimentally limited. Among the aerobic, extreme thermoacidophilic archaea, the genus Sulfolobus has been studied in greater detail than many others and provides a comprehensive picture of bioenergetics on the level of substrate metabolism, formation and utilization of high energy phosphate bonds, and primary energy conservation in respiratory electron transport. A number of novel metabolic reactions as well as unusual structures of respiratory enzyme complexes have been detected. Since their genomic organization and many other primary structures could be determined, these studies shed light on the evolution of various bioenergetic modules. It is the aim of this comprehensive review to bring the different aspects of Sulfolobus bioenergetics into focus as a representative example of, and point of comparison for closely related, aerobic archaea.
Collapse
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| |
Collapse
|
16
|
Schäfer G, Purschke WG, Gleissner M, Schmidt CL. Respiratory chains of archaea and extremophiles. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1275:16-20. [PMID: 8688447 DOI: 10.1016/0005-2728(96)00043-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Extremophilic organisms are adapted to harsh environmental conditions like high temperature, extremely acidic or alkaline pH, high salt, or a combination of those. With a few exceptions extremophilic bacteria are colonizing only moderately hot biotopes, whereas hyperthermophiles are found specifically among archaea (formerly 'archaebacteria') which can thrive at temperatures close to or even above the boiling point of water. It has been a challenging question whether the special properties of their proteins and membranes have been acquired by adaptation, or whether they might reflect early evolutionary states as suggested by their phylogenetic position at the lowest branches of the universal tree of life.
Collapse
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Germany
| | | | | | | |
Collapse
|
17
|
Schäfer G, Purschke W, Schmidt CL. On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 1996; 18:173-88. [PMID: 8639327 DOI: 10.1111/j.1574-6976.1996.tb00235.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All aerobic organisms use the exergonic reduction of molecular oxygen to water as primary source of metabolic energy. This reaction is catalyzed by membrane residing terminal heme/Cu-oxidases which belong to a superfamily of widely varying structural complexity between mitochondrial and bacterial members of this family. Over the last few years, considerable information from this and other laboratories accumulated also on archaeal respiratory chains and their terminal oxidases. In the following, the molecular and catalytic properties of the latter are discussed and compared to those from bacteria and eucarya under the aspect of their energy conserving capabilities and their phylogenetic relations. The Rieske iron-sulfur proteins being important functional constituents of energy transducing respiratory complexes are included in this study. A number of essential conclusions can be drawn. (1) Like bacteria, archaea can also contain split respiratory chains with parallel expression of separate terminal oxidases. (2) The functional core of all oxidases is the highly conserved topological motif of subunit I consisting of at least 12 membrane spanning helices with the 6 histidine residues of the heme/Cu-binding centers in identical locations. (3) Some archaeal oxidases are organized in unusual supercomplexes with other cytochromes and Rieske [2Fe2S] proteins. These complexes are likely to function as proton pumps, whereas on a structural basis several subunit I equivalents alone are postulated to be unable to pump protons. (4) The genes of two archaeal Rieske proteins have been cloned from Sulfolobus; phylogenetically they are forming a separate archaeal branch and suggest the existence of an evolutionary ancestor preceding the split into the three urkingdoms. (5) Archaeal oxidase complexes may combine features of electron transport systems occurring exclusively as separate respiratory complexes in bacteria and eucarya. (6) As far back as the deepest branches of the phylogentic tree, terminal oxidases reveal a degree of complexity comparable to that found in higher organisms. (7) Sequence analysis suggests a monophyletic origin of terminal oxidases with an early split into two types found in archaea as well as bacteria. This view implies an origin of terminal oxidases prior to oxygenic photosynthesis in contrast to the widely accepted inverse hypothesis.
Collapse
Affiliation(s)
- G Schäfer
- Institute of Biochemistry, Medical University of Lübeck, Germany
| | | | | |
Collapse
|
18
|
Maier RJ. Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases, and electron transport factors that function at temperatures exceeding 100 degrees C. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:35-99. [PMID: 8791624 DOI: 10.1016/s0065-3233(08)60361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R J Maier
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
19
|
Elferink MG, Bosma T, Lolkema JS, Gleiszner M, Driessen AJ, Konings WN. Thermostability of respiratory terminal oxidases in the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1230:31-7. [PMID: 7612641 DOI: 10.1016/0005-2728(95)00028-h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of the lipid environment on the thermostability of three respiratory terminal oxidases was determined. Cytochrome-c oxidase from beef heart and Bacillus stearothermophilus were used as representative proteins from mesophilic and thermophilic origin, respectively. Quinol oxidase from the archaeon Sulfolobus acidocaldarius represented the model for a extreme thermoacidophilic enzyme. All three integral membrane proteins were tested for their thermal inactivation in detergent and after reconstitution in liposomes composed of phospholipids of Escherichia coli or tetraether lipids from S. acidocaldarius. When preincubated at 0 degrees C, all three enzymes exhibited biphasic thermal inactivation curves. Data could be analysed according to a two-state model that defines two conformations of the enzyme, differing in their thermostability. Monophasic inactivation curves were observed when the enzymes were preincubated at higher temperatures prior to thermal inactivation. Lipids rendered the beef-heart cytochrome-c oxidase and S. acidocaldarius quinol oxidase more thermostable as compared to detergent solution. In contrast, the B. stearothermophilus oxidase, an intrinsically thermostable enzyme, was as thermostable in detergent as in the reconstituted state. These data suggest that the lipid environment can be an important factor in the thermostability of membrane proteins.
Collapse
Affiliation(s)
- M G Elferink
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
21
|
Schmidt CL, Anemüller S, Teixeira M, Schäfer G. Purification and characterization of the Rieske iron-sulfur protein from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett 1995; 359:239-43. [PMID: 7867807 DOI: 10.1016/0014-5793(94)00052-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The previously detected Rieske iron-sulfur protein from the membranes of the thermoacidophile Sulfolobus acidocaldarius [Anemüller, S., et al. (1993) FEBS Lett. 318, 61-64] was purified to electrophoretic homogeneity and the N-terminal amino acids determined. The apparent molecular weight was estimated to be 32 kDa. The reduced protein displays a rhombic EPR spectrum with gxyz = 1.768, 1.895, 2.035. The average g-value of 1.902 is typical for nitrogen ligand-containing clusters. EPR spin quantification and the iron content indicate the presence of one [2Fe-2S] cluster. The purified protein displays ubiquinol cytochrome c reductase activity. The pH optimum of this reaction is temperature dependent and was determined to be pH 7 at 56 degrees C. The results presented in this study clearly prove that the Sulfolobus Rieske protein belongs to the family of the true Rieske iron-sulfur proteins.
Collapse
Affiliation(s)
- C L Schmidt
- Institut für Biochemie, Medizinische Universität zu Lübeck, Germany
| | | | | | | |
Collapse
|