1
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
2
|
de Aguiar RB, da Silva TDA, Costa BA, Machado MFM, Yamada RY, Braggion C, Perez KR, Mori MAS, Oliveira V, de Moraes JZ. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep 2021; 11:1432. [PMID: 33446839 PMCID: PMC7809466 DOI: 10.1038/s41598-020-80746-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
Single-chain variable fragments (scFvs) are small-sized artificial constructs composed of the immunoglobulin heavy and light chain variable regions connected by a peptide linker. We have previously described an anti-fibroblast growth factor 2 (FGF2) immunoglobulin G (IgG) monoclonal antibody (mAb), named 3F12E7, with notable antitumor potential revealed by preclinical assays. FGF2 is a known angiogenesis-associated molecule implicated in tumor progression. In this report, we describe a recombinant scFv format for the 3F12E7 mAb. The results demonstrate that the generated 3F12E7 scFv, although prone to aggregation, comprises an active anti-FGF2 product that contains monomers and small oligomers. Functionally, the 3F12E7 scFv preparations specifically recognize FGF2 and inhibit tumor growth similar to the corresponding full-length IgG counterpart in an experimental model. In silico molecular analysis provided insights into the aggregation propensity and the antigen-recognition by scFv units. Antigen-binding determinants were predicted outside the most aggregation-prone hotspots. Overall, our experimental and prediction dataset describes an scFv scaffold for the 3F12E7 mAb and also provides insights to further engineer non-aggregated anti-FGF2 scFv-based tools for therapeutic and research purposes.
Collapse
Affiliation(s)
- Rodrigo Barbosa de Aguiar
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil.
| | - Tábata de Almeida da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Bruno Andrade Costa
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Marcelo Ferreira Marcondes Machado
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Renata Yoshiko Yamada
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Camila Braggion
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Kátia Regina Perez
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | | | - Vitor Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil.
| |
Collapse
|
3
|
|
4
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
5
|
In vitro affinity maturation of antibody against membrane-bound GPCR molecules. Appl Microbiol Biotechnol 2019; 103:7703-7717. [PMID: 31359103 PMCID: PMC6719327 DOI: 10.1007/s00253-019-10030-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors, are among the most important targets against which many small molecule drugs have been developed. However, only two antibody drugs targeting GPCRs have been approved for clinical use although many antibody drugs against non-GPCR protein targets have been successfully developed for various disease indications. One of the challenges for developing anti-GPCR drugs is the high difficulty to perform affinity maturation due to their insolubility in aqueous solutions. To address this issue, CHO cell display libraries of single-chain variable fragments (scFvs) and full-length antibodies were maturated directly against vesicle probes prepared from CHO cells displaying the endothelin A receptor (ETaR) GPCR. The probe in the vesicle form ensures the physiological conformation and functional activity of the protein and avoids issues with membrane protein insolubility. The size of the vesicle had a clear effect on protein-ligand interaction; we used small-sized vesicles with low expression levels of GPCRs for the affinity maturation. Four rounds of affinity maturation combining vesicles as probes with the CHO cell display platform improved affinity by 13.58-fold for scFvs and 5.05-fold for full-length antibodies. We expect that this method will not only be used for the affinity maturation of antibodies against GPCRs but will also be used to mature antibodies for other types of proteins where the conformation/activity of which depends on the proper membrane environment.
Collapse
|
6
|
Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions. Molecules 2019; 24:molecules24142620. [PMID: 31323851 PMCID: PMC6681014 DOI: 10.3390/molecules24142620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected to be utilized as next-generation medical antibodies. However, the practical use of scFvs has been limited due to low homogeneity caused by their aggregation propensity mediated by inter-chain VH-VL interactions. Because the interactions between the VH and VL domains of antibodies are generally weak, individual scFvs are assumed to be in equilibrium between a closed state and an open state, in which the VH and VL domains are assembled and disassembled, respectively. This dynamic feature of scFvs triggers the formation of dimer, trimer, and larger aggregates caused by the inter-chain VH-VL interactions. To overcome this problem, the N-terminus and C-terminus were herein connected by sortase A-mediated ligation to produce a cyclic scFv. Open-closed dynamics and aggregation were markedly suppressed in the cyclic scFv, as judged from dynamic light scattering and high-speed atomic force microscopy analyses. Surface plasmon resonance and differential scanning fluorometry analysis revealed that neither the affinity for antigen nor the thermal stability was disrupted by the scFv cyclization. Generality was confirmed by applying the present method to several scFv proteins. Based on these results, cyclic scFvs are expected to be widely utilized in industrial and therapeutic applications.
Collapse
|
7
|
Fukuda N, Noi K, Weng L, Kobashigawa Y, Miyazaki H, Wakeyama Y, Takaki M, Nakahara Y, Tatsuno Y, Uchida-Kamekura M, Suwa Y, Sato T, Ichikawa-Tomikawa N, Nomizu M, Fujiwara Y, Ohsaka F, Saitoh T, Maenaka K, Kumeta H, Shinya S, Kojima C, Ogura T, Morioka H. Production of Single-Chain Fv Antibodies Specific for GA-Pyridine, an Advanced Glycation End-Product (AGE), with Reduced Inter-Domain Motion. Molecules 2017; 22:molecules22101695. [PMID: 28994732 PMCID: PMC6151396 DOI: 10.3390/molecules22101695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and larger oligomers. The scFv protein is assumed to be in equilibrium between the closed and open states formed by assembly or disassembly of VH and VL domains. Therefore, the production of an scFv with equilibrium biased to the closed state would be critical to overcome the problem in inhomogeneity of scFv for industrial or therapeutic applications. In this study, we obtained scFv clones stable against GA-pyridine, an advanced glycation end-product (AGE), by using a combination of a phage display system and random mutagenesis. Executing the bio-panning at 37 °C markedly improved the stability of scFvs. We further evaluated the radius of gyration by small-angle X-ray scattering (SAXS), obtained compact clones, and also visualized open.
Collapse
Affiliation(s)
- Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Lidong Weng
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Hiromi Miyazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yukari Wakeyama
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Michiyo Takaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yusuke Nakahara
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yuka Tatsuno
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Makiyo Uchida-Kamekura
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Naoki Ichikawa-Tomikawa
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Motoyoshi Nomizu
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Fumina Ohsaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takashi Saitoh
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Katsumi Maenaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Kumeta
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-15 Nishi-8, Kita-ku, Sapporo 060-0815, Japan.
| | - Shoko Shinya
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
8
|
Škerlová J, Král V, Fábry M, Sedláček J, Veverka V, Řezáčová P. Optimization of the crystallizability of a single-chain antibody fragment. Acta Crystallogr F Struct Biol Commun 2014; 70:1701-6. [PMID: 25484230 PMCID: PMC4259244 DOI: 10.1107/s2053230x1402247x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
Single-chain variable antibody fragments (scFvs) are molecules with immense therapeutic and diagnostic potential. Knowledge of their three-dimensional structure is important for understanding their antigen-binding mode as well as for protein-engineering approaches such as antibody humanization. A major obstacle to the crystallization of single-chain variable antibody fragments is their relatively poor homogeneity caused by spontaneous oligomerization. A new approach to optimization of the crystallizability of single-chain variable antibody fragments is demonstrated using a representative single-chain variable fragment derived from the anti-CD3 antibody MEM-57. A Thermofluor-based assay was utilized to screen for optimal conditions for antibody-fragment stability and homogeneity. Such an optimization of the protein storage buffer led to a significantly improved ability of the scFv MEM-57 to yield crystals.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Juraj Sedláček
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Molecular Genetics, ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
9
|
|
10
|
Wang HR, Xiao ZY, Chen M, Wang FL, Liu J, Zhong H, Zhong JH, Ou-Yang RR, Shen YL, Pan SM. Anti-CHMP5 single chain variable fragment antibody retrovirus infection induces programmed cell death of AML leukemic cells in vitro. Acta Pharmacol Sin 2012; 33:809-16. [PMID: 22609838 DOI: 10.1038/aps.2012.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. METHODS The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. RESULTS We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CONCLUSION CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.
Collapse
|
11
|
Weatherill EE, Cain KL, Heywood SP, Compson JE, Heads JT, Adams R, Humphreys DP. Towards a universal disulphide stabilised single chain Fv format: importance of interchain disulphide bond location and vL-vH orientation. Protein Eng Des Sel 2012; 25:321-9. [PMID: 22586154 DOI: 10.1093/protein/gzs021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Engineered introduction of interface interchain disulphide bonds is perceived to be a simple method to increase the stability of single chain Fv (scFv). Six disulphide bond locations have been cited within the literature but the potential for the broad use of each has not been examined. Five of these disulphide bond locations were introduced into one scFv in order to compare their relative effects on expression, thermal stability, percent monomer formation and retention of antigen binding. The disulphide bond position vH44-vL100 was observed to enable the most favourable balance of biophysical properties. The vH44-vL100 disulphide bond was introduced into five additional scFv in both vL-vH and vH-vL orientations in order to investigate its general applicability. Data are presented to show the relative influence of scFv sequence, v-region organisation and interchain disulphide bond on expression yield, thermal stability and percent monomer. Introduction of the vH44-vL100 disulphide bond typically resulted in no or little increase in thermal stability and no change in percent monomer but did confer the benefit of permanently fixing monomer:dimer ratios during purification and analysis.
Collapse
Affiliation(s)
- Eve E Weatherill
- Protein Expression and Purification Group, UCB, Slough, Berkshire SL1 3WE, England
| | | | | | | | | | | | | |
Collapse
|
12
|
Murali R, Greene MI. Structure based antibody-like peptidomimetics. Pharmaceuticals (Basel) 2012; 5:209-35. [PMID: 24288089 PMCID: PMC3763629 DOI: 10.3390/ph5020209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022] Open
Abstract
Biologics such as monoclonal antibodies (mAb) and soluble receptors represent new classes of therapeutic agents for treatment of several diseases. High affinity and high specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies have been used as diagnostic agents when coupled with radionuclide, immune modulatory agents or in the treatment of cancers. Among other limitations of using large molecules for therapy the actual cost of biologics has become an issue. There is an effort among chemists and biologists to reduce the size of biologics which includes monoclonal antibodies and receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides have been identified using phage screening. Our laboratory used a structure-based approach to develop small-size peptidomimetics from the three-dimensional structure of proteins with immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from the receptor or their cognate ligand mimics the functions of the parental macromolecule. These constrained peptides not only provide a platform for developing small molecule drugs, but also provide insight into the atomic features of protein-protein interactions. A general overview of the reduction of monoclonal antibodies to small exocyclic peptide and its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed.
Collapse
Affiliation(s)
- Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, D5091 Davis Building, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Quintero-Hernández V, Del Pozo-Yauner L, Pedraza-Escalona M, Juárez-González VR, Alcántara-Recillas I, Possani LD, Becerril B. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability. Immunol Lett 2012; 143:152-60. [PMID: 22306104 DOI: 10.1016/j.imlet.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | |
Collapse
|
14
|
Powers GA, Hudson PJ, Wheatcroft MP. Design and production of multimeric antibody fragments, focused on diabodies with enhanced clinical efficacy. Methods Mol Biol 2012; 907:699-712. [PMID: 22907381 DOI: 10.1007/978-1-61779-974-7_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multimeric antibody fragments, particularly dimers (diabodies), trimers (triabodies), and tetramers (tetrabodies) of single-chain Fv molecules (scFv), provide high avidity through multivalent binding to the target antigen. The combination of their smaller size and avid binding can provide desirable biological characteristics for tumor targeting applications in vivo; for example, diabodies can have greater tumor penetration and faster blood clearance rates compared to intact full-size antibodies (IgGs). The pharmacokinetic and biodistribution characteristics can further be optimized by the addition of specific thiolation sites for conjugation of PEG molecules to regulate molecular weight and reduce kidney uptake. Thiolation sites can also be used for precise loading of therapeutic payloads. This protocol describes our method for construction and bacterial production of soluble multimeric antibody scFv fragments, focusing on diabodies (scFv dimers).
Collapse
|
15
|
Abstract
Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates. For the successful production of antibody fragments, which includes single-chain variable fragments (scFvs), we describe here the modification of linker, signal, and Shine-Dalgarno (SD) sequences, the coexpression of cytoplasmic and periplasmic chaperones, and a method for fed-batch cultivation with exponential feed.
Collapse
Affiliation(s)
- Tomohisa Katsuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
16
|
Koti M, Nagy E, Kaushik AK. A single point mutation in framework region 3 of heavy chain affects viral neutralization dynamics of single-chain Fv against bovine herpes virus type 1. Vaccine 2011; 29:7905-12. [DOI: 10.1016/j.vaccine.2011.08.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/20/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
17
|
Abstract
While antibody-based therapeutics have become firmly established as front-line drugs, the use of antibodies as research tools in small molecule drug discovery is still in its infancy. In this review we focus on the use of antibody fragments as crystallization chaperones to aid the structural determination of otherwise 'uncrystallizable' or 'undruggable' target proteins. We also highlight a potential application for this technology, in which antibody-mediated structures may be used to inform the design of new chemical entities.
Collapse
Affiliation(s)
- L Griffin
- Department of Structural Biology, UCB, Slough, UK
| | | |
Collapse
|
18
|
Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment. PLoS One 2011; 6:e19023. [PMID: 21552519 PMCID: PMC3084267 DOI: 10.1371/journal.pone.0019023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
Abstract
A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to VH and VL for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of VH frameworks and VH-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.
Collapse
|
19
|
Treweek JB, Roberts AJ, Janda KD. Immunopharmacotherapeutic manifolds and modulation of cocaine overdose. Pharmacol Biochem Behav 2011; 98:474-84. [PMID: 21356233 DOI: 10.1016/j.pbb.2011.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/28/2022]
Abstract
Cocaine achieves its psychostimulant, reinforcing properties through selectively blocking dopamine transporters, and this neurobiological mechanism impedes the use of classical receptor-antagonist pharmacotherapies to outcompete cocaine at CNS sites. Passive immunization with monoclonal antibodies (mAb) specific for cocaine circumvents this problem as drug is sequestered in the periphery prior to entry into the brain. To optimize an immunopharmacotherapeutic strategy for reversing severe cocaine toxicity, the therapeutic properties of mAb GNC92H2 IgG were compared to those of its engineered formats in a mouse overdose model. Whereas the extended half-life of an IgG justifies its application to the prophylactic treatment of addiction, the rapid, thorough biodistribution of mAb-based fragments, including F(ab')₂, Fab and scFv, may correlate to accelerated scavenging of cocaine and reversal of toxicity. To test this hypothesis, mice were administered the anti-cocaine IgG (180 mg/kg, i.v.) or GNC92H2-based agent after receiving an LD₅₀ cocaine dose (93 mg/kg, i.p.), and the timeline of overdose symptoms was recorded. All formats lowered the rate of lethality despite the >100-fold molar excess of drug to antibody binding capacity. However, only F(ab')₂-92H2 and Fab-92 H2 significantly attenuated the progression of premorbid behaviors, and Fab-92H2 prevented seizure generation in a percentage of mice. The calculation of serum half-life of each format demonstrated that the pharmacokinetic profile of Fab-92H2 (elimination half-life, t½~100 min) best approximated that of cocaine. These results not only confirm the importance of highly specific and tight drug binding by the mAb, but also highlight the benefit of aligning the pharmacokinetic and pharmacodynamic properties of the immunopharmacotherapeutic with the targeted drug.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
20
|
Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer's disease mice. Mol Ther 2010; 18:1471-81. [PMID: 20551911 DOI: 10.1038/mt.2010.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive dementing disorder characterized by age-related amyloid-beta (Abeta) deposition, neurofibrillary tangles, and synapse and neuronal loss. It is widely recognized that Abeta is a principal pathogenic mediator of AD. Our goal was to develop an immunotherapeutic approach, which would specifically lead to the clearance and/or neutralization of Abeta in the triple transgenic mouse model (3xTg-AD). These mice develop the amyloid and tangle pathologies and synaptic dysfunction reminiscent of human AD. Using a human single-chain variable fragment (scFv) antibody phage display library, a novel scFv antibody specific to Abeta was isolated, its activity characterized in vitro, and its open reading frame subsequently cloned into a recombinant adeno-associated virus (rAAV) vector. Three-month-old 3xTg-AD mice were intrahippocampally infused with serotype-1 rAAV vectors encoding Abeta-scFv or a control vector using convection-enhanced delivery (CED). Mice receiving rAAV1-Abeta-scFv harbored lower levels of insoluble Abeta and hyperphosphorylated tau, and exhibited improved cognitive function as measured by the Morris Water Maze (MWM) spatial memory task. These results underscore the potential of gene-based passive vaccination for AD, and provide further rationale for the development of Abeta-targeting strategies for this debilitating disease.
Collapse
|
21
|
Bossi S, Ferranti B, Martinelli C, Capasso P, de Marco A. Antibody-mediated purification of co-expressed antigen-antibody complexes. Protein Expr Purif 2010; 72:55-8. [PMID: 20060475 DOI: 10.1016/j.pep.2010.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 12/30/2022]
Abstract
Immunoaffinity is an established chromatographic method for isolating macromolecules independently on the presence of specific tags while the tight interaction between antigen and antibody has been exploited to stabilize proteins during crystallization trials. Therefore, it seems reasonable to try to combine the two protocols, namely to co-express the target proteins together with their specific antibodies to obtain stable complexes suitable for direct purification and further analyses. Using the variable region of single domain llama antibodies, we showed that the co-expression of antigen-antibody pairs is feasible in both the periplasm and the cytoplasm of bacteria. Moreover, the complexes that were formed in vivo could be purified using a tag fused to the recombinant antibody and remained stable during gel-filtration. The co-expression and co-purification strategy significantly increased the final protein yields promoting the accumulation of functional intrabodies. The described method may offer a suitable alternative for the purification of proteins intended for crystallization trials and it may also be used as a general purification protocol for both antigens and recombinant antibodies.
Collapse
Affiliation(s)
- Sergio Bossi
- Protein Chemistry Unit, Cogentech - IFOM-IEO Campus for Oncogenomics, via Adamello 16, 20139 Milano, Italy
| | | | | | | | | |
Collapse
|
22
|
Olafsen T, Sirk SJ, Betting DJ, Kenanova VE, Bauer KB, Ladno W, Raubitschek AA, Timmerman JM, Wu AM. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies). Protein Eng Des Sel 2010; 23:243-9. [PMID: 20053640 DOI: 10.1093/protein/gzp081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid clearing engineered antibody fragments for immunoPET promise high sensitivity at early time points. Here, tumor targeting of anti-CD20 diabodies (scFv dimers) for detection of low-grade B-cell lymphomas were evaluated. In addition, the effect of linker length on oligomerization of the diabody was investigated. Four rituximab scFv variants in the V(L)-V(H) orientation with different linker lengths between the V domains (scFv-1, scFv-3, scFv-5, scFv-8), plus the scFv-5 with a C-terminal cysteine (Cys-Db) for site-specific modification were generated. The scFv-8 and Cys-Db were radioiodinated with (124)I for PET imaging, and biodistribution of (131)I-Cys-Db was carried out at 2, 4 10 and 20 h. The five anti-CD20 scFv variants were expressed as fully functional dimers. Shortening the linker to three or one residue did not produce higher order of multimers. Both (124)I-labeled scFv-8 and Cys-Db exhibited similar tumor targeting at 8 h post injection, with significantly higher uptakes than in control tumors (P < 0.05). At 20 h, less than 1% ID/g of (131)I-labeled Cys-Db was present in tumors and tissues. Specific tumor targeting and high contrast images were achieved with the anti-CD20 diabodies. These agents extend the repertoire of reagents that can potentially be used to improve detection of low-grade lymphomas.
Collapse
Affiliation(s)
- Tove Olafsen
- Department of Molecular and Medical Pharmacology, UCLA Crump Institute for Molecular Imaging, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The antigenome: from protein subunit vaccines to antibody treatments of bacterial infections? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:90-117. [PMID: 20047038 PMCID: PMC7123057 DOI: 10.1007/978-1-4419-1132-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New strategies are needed to master infectious diseases. The so-called "passive vaccination", i.e., prevention and treatment with specific antibodies, has a proven record and potential in the management of infections and entered the medical arena more than 100 years ago. Progress in the identification of specific antigens has become the hallmark in the development of novel subunit vaccines that often contain only a single immunogen, frequently proteins, derived from the microbe in order to induce protective immunity. On the other hand, the monoclonal antibody technology has enabled biotechnology to produce antibody species in unlimited quantities and at reasonable costs that are more or less identical to their human counterparts and bind with high affinity to only one specific site of a given antigen. Although, this technology has provided a robust platform for launching novel and successful treatments against a variety of devastating diseases, it is up till now only exceptionally employed in therapy of infectious diseases. Monoclonal antibodies engaged in the treatment of specific cancers seem to work by a dual mode; they mark the cancerous cells for decontamination by the immune system, but also block a function that intervenes with cell growth. The availability of the entire genome sequence of pathogens has strongly facilitated the identification of highly specific protein antigens that are suitable targets for neutralizing antibodies, but also often seem to play an important role in the microbe's life cycle. Thus, the growing repertoire of well-characterized protein antigens will open the perspective to develop monoclonal antibodies against bacterial infections, at least as last resort treatment, when vaccination and antibiotics are no options for prevention or therapy. In the following chapter we describe and compare various technologies regarding the identification of suitable target antigens and the foundation of cognate monoclonal antibodies and discuss their possible applications in the treatment of bacterial infections together with an overview of current efforts.
Collapse
|
24
|
Dobson CL, Main S, Newton P, Chodorge M, Cadwallader K, Humphreys R, Albert V, Vaughan TJ, Minter RR, Edwards BM. Human monomeric antibody fragments to TRAIL-R1 and TRAIL-R2 that display potent in vitro agonism. MAbs 2009; 1:552-62. [PMID: 20068388 DOI: 10.4161/mabs.1.6.10057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.
Collapse
|
25
|
Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, Sun Y, Wang Y, Li Y, Long M. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 2009; 38:537-49. [PMID: 19816775 DOI: 10.1007/s10439-009-9810-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 09/23/2009] [Indexed: 11/29/2022]
Abstract
One of existing strategies to engineer active antibody is to link V(H) and V(L) domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or single-chain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned V(H) and V(L) domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and approximately 24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Collapse
Affiliation(s)
- Xin Gu
- Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road, Beijing 100850, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kumada Y, Hamasaki K, Shiritani Y, Nakagawa A, Kuroki D, Ohse T, Choi DH, Katakura Y, Kishimoto M. Direct immobilization of functional single-chain variable fragment antibodies (scFvs) onto a polystyrene plate by genetic fusion of a polystyrene-binding peptide (PS-tag). Anal Bioanal Chem 2009; 395:759-65. [PMID: 19680637 DOI: 10.1007/s00216-009-2999-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/30/2022]
Abstract
Single-chain Fv antibodies (scFv) genetically fused with polystyrene-binding peptides (PS-tags, (PS19-1; RAFIASRRIRRP, PS19-6; RIIIRRIRR)) were generated by recombinant Escherichia coli for direct and site-specific immobilization of scFv on polystyrene supports with high antigen-binding activity. PS-tag-fused scFvs (scFv-PS-tags) specific for human C-reactive protein (CRP) were successfully over-expressed as an inclusion body and were refolded using the batch-dilution method. When scFv-PS-tags were immobilized on a hydrophilic PS (phi-PS) plate in the presence of Tween 20, they showed high antigen-binding activity comparable to, or greater than, that of a whole monoclonal antibody (mAb) on a hydrophobic PS (pho-PS) plate, which has been the exclusive method for enzyme-linked immunosorbent assay (ELISA). Furthermore, when a scFv-PS-tag was used as a ligand antibody in one- and two-step ELISA, the assay time was reduced without loss of sensitivity. These results indicate that strong and specific attachment of PS-tags onto the phi-PS surface prevented scFv conformational changes and consequently, the high antigen-binding activities of scFvs were preserved. Nearly identical results were obtained by use of PS-tag-fused scFvs with different VH/VL pairs. Therefore, a variety of scFvs could be functionalized onto phi-PS plates by genetic fusion of PS-tags. ScFv-PS-tags, which possess high antigen-binding activity on the phi-PS plate, are more useful ligand antibodies than whole mAbs. Thus, scFv-PS-tags are applicable in both clinical diagnosis and proteomic research.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Arredondo SA, Chen TF, Riggs AF, Gilbert HF, Georgiou G. Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC. J Biol Chem 2009; 284:23972-9. [PMID: 19581640 DOI: 10.1074/jbc.m109.010199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial protein-disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two alpha-helical linkers, and two opposing thioredoxin fold catalytic domains. The functional significance of the two catalytic domains of DsbC is not well understood yet. We have engineered heterodimer-like DsbC derivatives covalently linked via (Gly(3)-Ser) flexible linkers. We either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Variants having a single active catalytic site display significant levels of isomerase activity. Furthermore, mDsbC[H45D]-dim[D53H], a DsbC variant lacking an entire catalytic domain but with an intact dimerization domain, also showed isomerase activity, albeit at lower levels. In addition, the absence of the catalytic domain allowed this protein to catalyze in vivo oxidation. Our results reveal that two catalytic domains in DsbC are not essential for disulfide bond isomerization and that a determining feature in isomerization is the availability of a substrate binding domain.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Department of Chemical Engineering, School of Biological Sciences, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
28
|
Rajamanonmani R, Nkenfou C, Clancy P, Yau YH, Shochat SG, Sukupolvi-Petty S, Schul W, Diamond MS, Vasudevan SG, Lescar J. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J Gen Virol 2009; 90:799-809. [PMID: 19264660 DOI: 10.1099/vir.0.006874-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb). 9F12, a mouse mAb raised against a dengue virus (DENV) serotype 2 recombinant domain III, cross-reacts with corresponding domains from the other three DENV serotypes and also with West Nile virus. mAb 9F12 binds with nanomolar affinity to a conserved epitope that maps to the viral surface comprising residues 305, 307, 310 and 330 of the E protein. mAb 9F12 neutralizes all four DENV serotypes in plaque reduction assays. We expressed a single-chain Fv from 9F12 that retains the binding activity of the parent mAb. Adsorption and fusion inhibition assays indicate that mAb 9F12 prevents early steps of viral entry. Its virus inhibition activity and broad cross-reactivity makes mAb 9F12 a suitable candidate for optimization and humanization into a therapeutic antibody to treat severe infections by dengue.
Collapse
Affiliation(s)
- Ravikumar Rajamanonmani
- Program in Emerging Infectious Diseases, Duke-NUS, Graduate Medical School, Singapore.,School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| | - Celine Nkenfou
- Novartis Institute for Tropical Diseases, Biopolis, Singapore
| | - Paula Clancy
- Department of Biochemistry and Molecular Biology, James Cook University, Australia
| | - Yin Hoe Yau
- School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| | | | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, USA
| | - Wouter Schul
- Novartis Institute for Tropical Diseases, Biopolis, Singapore
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, USA
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS, Graduate Medical School, Singapore.,Department of Biochemistry and Molecular Biology, James Cook University, Australia
| | - Julien Lescar
- AFMB CNRS UMR6098, Marseille, France.,School of Biological Sciences, Nanyang Technological University, Biopolis, Singapore
| |
Collapse
|
29
|
Zeev-Ben-Mordehai T, Paz A, Peleg Y, Toker L, Wolf SG, Rydberg EH, Sussman JL, Silman I. Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: Over-expression, purification and biophysical characterization. Protein Expr Purif 2009; 63:147-57. [DOI: 10.1016/j.pep.2008.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022]
|
30
|
Hosse RJ, Tay L, Hattarki MK, Pontes-Braz L, Pearce LA, Nuttall SD, Dolezal O. Kinetic screening of antibody–Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors. Anal Biochem 2009; 385:346-57. [DOI: 10.1016/j.ab.2008.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/07/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
31
|
Li C, Tian M, Yuan Y, Zhou Q. Expression of Human Peroxisome Proliferator-Activated Receptors Ligand Binding Domain–Maltose Binding Protein Fusion Protein in Escherichia coli: A Convenient and Reliable Method for Preparing Receptor for Screening Ligands. Assay Drug Dev Technol 2008. [DOI: 10.1089/adt.2008.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Li C, Tian M, Yuan Y, Zhou Q. Expression of Human Peroxisome Proliferator-Activated Receptors Ligand Binding Domain–Maltose Binding Protein Fusion Protein inEscherichia coli:A Convenient and Reliable Method for Preparing Receptor for Screening Ligands. Assay Drug Dev Technol 2008; 6:803-10. [DOI: 10.1089/adt.2008.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Changqing Li
- Division of Pharmacology, Chongqing Medical University, Chongqing, People's Republic of China
- Pharmaceutical Research Institute, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Mi Tian
- Division of Pharmacology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ye Yuan
- Division of Pharmacology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qinxin Zhou
- Division of Pharmacology, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
33
|
Mori K, Kim YU. Molecular cloning and characterization of a single-chain variable fragment antibody specific for benzoylecgonine expressed in Escherichia coli. J Microbiol 2008; 46:571-8. [PMID: 18974960 DOI: 10.1007/s12275-008-0123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Benzoylecgonine is a major metabolite of cocaine. We generated hybridoma cells (C1303) producing anti-benzoylecgonine monoclonal antibody (mAb) with a single-chain variable fragment (scFv) and an antigen-binding domain from the C1303 cells. Genes encoding an scFv antibody and constant region (Fc) were amplified from a cDNA library of C1303 cells using PCR. The two frameworks built for scFv and scFv-Fc consisted of HL [(heavy chain variable region, V(H)) - linker - (light chain variable region, V(L))] and HL-Fc, respectively. A 45 base-pair-long sequence encoding (Gly(4)-Ser)(3) was used as the linker, and the mouse IgG1 constant region sequence (225 amino acids) was used as the Fc domain. These two types of recombinant Abs were determined to be 750 bp in length (which corresponds to a 30 kDa protein) in the HL and 1,432 bp in length (which corresponds to a 65 kDa protein) in the HL-Fc, respectively. The parental Ab and HL-Fc affinities against benzoylecgonine were measured by ELISA and found to be nearly equal to the Ab concentration. We were also able to measure HL affinity using an agarose diffusion assay (Ouchterlony test). The affinity of the recombinant single-chain antibody against benzoylecgonine was sufficiently comparable to that of the parent antibodies to be used for the immunodetection of specific drug compounds or the detoxification of drug abusers by immunotherapy.
Collapse
Affiliation(s)
- Kenichiro Mori
- Department of Microbiology and Immunochemistry Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | |
Collapse
|
34
|
Robert R, Dolezal O, Waddington L, Hattarki MK, Cappai R, Masters CL, Hudson PJ, Wark KL. Engineered antibody intervention strategies for Alzheimer's disease and related dementias by targeting amyloid and toxic oligomers. Protein Eng Des Sel 2008; 22:199-208. [PMID: 18927231 DOI: 10.1093/protein/gzn052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most neurodegenerative disorders, such as Alzheimer's (AD), Parkinson's, Huntington's and Creutzfeldt-Jakob disease, are characterised by the accumulation of insoluble filamentous aggregates known as amyloid. These pathologies share common pathways involving protein aggregation which can lead to fibril formation and amyloid plaques. The 4 kDa Abeta peptide (39-43 amino acids) derived from the proteolysis of the amyloid precursor protein is currently a validated target for therapy in AD. Both active and passive immunisation studies against Abeta are being trialled as potential AD therapeutic approaches. In this study, we have characterised engineered antibody fragments derived from the monoclonal antibody, WO-2 which recognises an epitope in the N-terminal region of Abeta (amino acids 2-8 of Abeta). A chimeric recombinant Fab (rFab) and single chain fragments (scFvs) of WO-2 were constructed and expressed in Escherichia coli. Rationally designed mutants to improve the stability of antibody fragments were also constructed. All antibody formats retained high affinity (K(D) approximately 8 x 10(-9) M) for the Abeta peptide, comparable with the intact parental IgG as measured by surface plasmon resonance. Likewise, all engineered fragments were able to: (i) prevent amyloid fibrillisation, (ii) disaggregate preformed Abeta(1-42) fibrils and (iii) inhibit Abeta(1-42) oligomer-mediated neurotoxicity in vitro as efficiently as the whole IgG molecule. These data indicate that the WO-2 antibody and its fragments have immunotherapeutic potential. The perceived advantages of using small Fab and scFv engineered antibody formats which lack the effector function include more efficient passage across the blood-brain barrier and minimising the risk of triggering inflammatory side reactions. Hence, these recombinant antibody fragments represent attractive candidates and safer formulations of passive immunotherapy for AD.
Collapse
Affiliation(s)
- Remy Robert
- CSIRO Molecular and Health Technologies, University of Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sennhauser G, Grütter MG. Chaperone-assisted crystallography with DARPins. Structure 2008; 16:1443-53. [PMID: 18940601 DOI: 10.1016/j.str.2008.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/29/2022]
Abstract
The structure of proteins that are difficult to crystallize can often be solved by forming a noncovalent complex with a helper protein--a crystallization "chaperone." Although several such applications have been described to date, their handling usually is still very laborious. A valuable addition to the present repertoire of binding proteins is the recently developed designed ankyrin repeat protein (DARPin) technology. DARPins are built based on the natural ankyrin repeat protein fold with randomized surface residue positions allowing specific binding to virtually any target protein. The broad potential of these binding proteins for X-ray crystallography is illustrated by five cocrystal structures that have been determined recently comprising target proteins from distinct families, namely a sugar binding protein, two kinases, a caspase, and a membrane protein. This article reviews the opportunities of this technology for structural biology and the structural aspects of the DARPin-protein complexes.
Collapse
Affiliation(s)
- Gaby Sennhauser
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
36
|
Bhalgat MK, Roberts JC, Mercer-Smith JA, Vessella RL, Lavallee DK. Effect of chemical modification strategy on the characteristics of copper-67-labeled immunoconjugates, Part II: Aggregation. Drug Deliv 2008. [DOI: 10.3109/10717549709033182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Horáček J, Garrett SD, Skládal P, Morgan MRA. Characterization of the interactions between immobilized parathion and the corresponding recombinant scfv antibody using a piezoelectric biosensor. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540109809354999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Galanis M, Irving RA, Hudson PJ. Bacteriophage library construction and selection of recombinant antibodies. ACTA ACUST UNITED AC 2008; Chapter 17:17.1.1-17.1.48. [PMID: 18432742 DOI: 10.1002/0471142735.im1701s34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes the use of E. coli and bacteriophages to display a diverse library of antibody fragments equivalent in complexity to the mammalian immune repertoire, and subsequent screening of the library for antibody fragments with specific binding affinities. The methods are also used for affinity enhancement (maturation), through the display and selection of improved affinity mutants derived from a single parent antibody. This unit discusses the following key components needed in library construction technology: a repertoire of antibody genes, typically amplified by polymerase chain reaction (PCR) technology; construction of scFv genes by PCR assembly; a method for producing a stable library, using bacteriophage that can both display individual antibodies on the viral surface and carry the gene encoding the antibody; a method of growing phage for selection; a method of selecting the highest-affinity antibody from the phage library; a method for monitoring progress of phage selection; an affinity-enhancement strategy for improving and manipulating the selected antibody; and expression of affinity-enhanced antibodies.
Collapse
Affiliation(s)
- M Galanis
- Cooperative Research Center for Diagnostic Technologies at CSIRO Molecular Science, Parkville, Victoria, Australia
| | | | | |
Collapse
|
39
|
Wu J, Yang Y, Zhang J, Ji P, Du W, Jiang P, Xie D, Huang H, Wu M, Zhang G, Wu J, Shi Y. Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins. J Biol Chem 2007; 282:35988-99. [PMID: 17897942 DOI: 10.1074/jbc.m703826200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zonula occludens proteins (ZOs), including ZO1/2/3, are tight junction-associated proteins. Each of them contains three PDZ domains. It has been demonstrated that ZO1 can form either homodimers or heterodimers with ZO2 or ZO3 through the second PDZ domain. However, the underlying structural basis is not well understood. In this study, the solution structure of the second PDZ domain of ZO2 (ZO2-PDZ2) was determined using NMR spectroscopy. The results revealed a novel dimerization mode for PDZ domains via three-dimensional domain swapping, which can be generalized to homodimers of ZO1-PDZ2 or ZO3-PDZ2 and heterodimers of ZO1-PDZ2/ZO2-PDZ2 or ZO1-PDZ2/ZO3-PDZ2 due to high conservation between PDZ2 domains in ZO proteins. Furthermore, GST pulldown experiments and immunoprecipitation studies demonstrated that interactions between ZO1-PDZ2 and ZO2-PDZ2 and their self-associations indeed exist both in vitro and in vivo. Chemical cross-linking and dynamic laser light scattering experiments revealed that both ZO1-PDZ2 and ZO2-PDZ2 can form oligomers in solution. This PDZ domain-mediated oligomerization of ZOs may provide a structural basis for the polymerization of claudins, namely the formation of tight junctions.
Collapse
Affiliation(s)
- Jiawen Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cline K, McCaffery M. Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J 2007; 26:3039-49. [PMID: 17568769 PMCID: PMC1914107 DOI: 10.1038/sj.emboj.7601759] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022] Open
Abstract
Tat systems transport completely folded proteins across ion-tight membranes. Three membrane proteins comprise the Tat machinery in most systems. In thylakoids, cpTatC and Hcf106 mediate precursor recognition, whereas Tha4 facilitates translocation. We used chimeric precursor proteins with unstructured peptides and folded domains to test predictions of competing translocation models. Two models invoke protein-conducting channels, whereas another model proposes that cpTatC pulls substrates through a patch of Tha4 on the lipid bilayer. The thylakoid system transported unstructured peptide substrates alone or when fused to folded domains. However, larger substrates stalled before completion, some with amino- and carboxyl-folded domains on opposite sides of the membrane. The length of the precursor that resulted in translocation arrest (20 to 30 nm) exceeded that expected for a single 'pull' mechanism, suggesting that a sustained driving force rather than a single pull moves the protein across the bilayer. Three different methods showed that stalled substrates were not stuck in a channel or even associated with Tat machinery. This finding favors the Tha4 patch model for translocation.
Collapse
Affiliation(s)
- Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA.
| | | |
Collapse
|
41
|
Kumada Y, Kawasaki T, Kikuchi Y, Katoh S. Polypeptide linkers suitable for the efficient production of dimeric scFv in Escherichia coli. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
On the origin of the histone fold. BMC STRUCTURAL BIOLOGY 2007; 7:17. [PMID: 17391511 PMCID: PMC1847821 DOI: 10.1186/1472-6807-7-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/28/2007] [Indexed: 12/04/2022]
Abstract
Background Histones organize the genomic DNA of eukaryotes into chromatin. The four core histone subunits consist of two consecutive helix-strand-helix motifs and are interleaved into heterodimers with a unique fold. We have searched for the evolutionary origin of this fold using sequence and structure comparisons, based on the hypothesis that folded proteins evolved by combination of an ancestral set of peptides, the antecedent domain segments. Results Our results suggest that an antecedent domain segment, corresponding to one helix-strand-helix motif, gave rise divergently to the N-terminal substrate recognition domain of Clp/Hsp100 proteins and to the helical part of the extended ATPase domain found in AAA+ proteins. The histone fold arose subsequently from the latter through a 3D domain-swapping event. To our knowledge, this is the first example of a genetically fixed 3D domain swap that led to the emergence of a protein family with novel properties, establishing domain swapping as a mechanism for protein evolution. Conclusion The helix-strand-helix motif common to these three folds provides support for our theory of an 'ancient peptide world' by demonstrating how an ancestral fragment can give rise to 3 different folds.
Collapse
|
43
|
Cline K, Theg SM. The Sec and Tat Protein Translocation Pathways in Chloroplasts. MOLECULAR MACHINES INVOLVED IN PROTEIN TRANSPORT ACROSS CELLULAR MEMBRANES 2007. [DOI: 10.1016/s1874-6047(07)25018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the cross-reaction between an antibody to the Trypanosoma cruzi ribosomal P2beta protein and the human beta1 adrenergic receptor. FASEB J 2006; 20:1396-406. [PMID: 16816115 DOI: 10.1096/fj.05-5699com] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibodies from patients with Chagas heart disease and monoclonal antibodies (or mAb) to the carboxy-terminal end (B cell epitope R13) of the ribosomal P2beta protein of Trypanosoma cruzi (TcP2beta) cross-react with the beta1 adrenergic receptor (beta1-AR). Two single-chain Fv fragments (scFv) C5 and B7 derived from the variable regions of the anti-R13 mAb 17.2 were expressed. scFv C5 was a dimer and bound to TcP2beta with an affinity of K(d) = 8 nM, whereas scFv B7 was monomeric and had less affinity than scFv C5 for TcP2beta, K(d) = 46 nM. The affinity constant of scFv C5 to the second extracellular loop of the human beta1-AR was of 10 microM. Moreover, scFv C5 induced an increase in cAMP levels of CHO-K cells transfected with the human beta1-AR; scFv B7 had no effect but blocked isoproterenol stimulation. The agonist-like activity of scFv C5 and the antagonist activity of scFv B7 were both confirmed in vivo on heart beating frequency after their passive transfer to mice. Molecular modeling of the variable region of mAb 17.2 indicated which amino acids were likely to be involved in recognizing both peptide EDDDMGFGLF, derived from the R13 epitope of TcP2beta, and peptide ESDEARRCYN from the second extracellular loop of the human beta1-AR. It is plausible that the recently described cross-reaction of mAb 17.2 with rhodopsin can also be explained by this model. The physiological effects of this type of anti-T. cruzi antibodies may increase the liability of patients with Chagas disease.
Collapse
Affiliation(s)
- C Smulski
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LaBMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), National Research Council (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD. Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 2006; 128:2635-40. [PMID: 16492049 DOI: 10.1021/ja0555668] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method of rigid, specific labeling of proteins with gold clusters has been devised. The method relies on the conjugation of a glutathione monolayer-protected gold cluster (MPC) with a single chain Fv antibody fragment (scFv), mutated to present an exposed cysteine residue. Efficient formation of a gold-thiolate bond between the MPC and scFv depends on activation of the gold cluster by chemical oxidation. Once formed, the MPC-scFv conjugate is treated with a reductant to quench cluster reactivity. The procedure has been performed with an MPC with an average Au(71) core and an scFv directed against a tetrameric protein, the influenza neuraminidase. A complex of the MPC-scFv conjugate with the neuraminidase was isolated, and the presence of four gold clusters was verified by cryoelectron microscopy.
Collapse
Affiliation(s)
- Christopher J Ackerson
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
46
|
Remmele RL, Callahan WJ, Krishnan S, Zhou L, Bondarenko PV, Nichols AC, Kleemann GR, Pipes GD, Park S, Fodor S, Kras E, Brems DN. Active dimer of Epratuzumab provides insight into the complex nature of an antibody aggregate. J Pharm Sci 2006; 95:126-45. [PMID: 16315222 DOI: 10.1002/jps.20515] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the intermolecular products of antibodies as a consequence of host-cell expression, aging, and heat-stress can be insightful especially when it involves the development of a stable biopharmaceutical product. The dimerized form of Epratuzumab (an IgG(1) antibody) with a molecular mass of approximately 300 kDa (twice the monomer antibody molecular weight of approximately 150 kDa) was examined to gain a better perspective of its properties pertaining to structure and activity. The nascent dimer was shown to partially dissociate upon incubation at 30 degrees C and 37 degrees C, exhibit no discernable alteration of structure (i.e., secondary or tertiary structure based on CD and 2nd derivative UV spectroscopy), have approximately 70% covalent forms (based upon CE-SDS results) and manifest twofold higher activity relative to the active monomer form (on a weight basis the dimer and monomer have equal activity). Interestingly, these properties were not attributed to a single dimer species, but rather to a more complex dimer assembly. The Epratuzumab dimer was digested with papain to reveal three uniquely dimerized aggregates. The relative molar distribution of Fab:Fab, Fc:Fc, and Fab:Fc was found to be 4:3:8, respectively. The data suggest that all three predominantly covalent dimer adducts are capable of full activity, shedding light on their complex nature and showing that their target specificity was unaltered. ESI-MS data indicated the presence of remnant levels of noncovalent dimers for all three dimerized forms. Material aged at 37 degrees C exhibited a similar papain digest molar distribution of the three dimerized forms, except with enhanced chemical heterogeneity and an increase in covalent forms to approximately 84%.
Collapse
Affiliation(s)
- Richard L Remmele
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rossi EA, Chang CH, Losman MJ, Sharkey RM, Karacay H, McBride W, Cardillo TM, Hansen HJ, Qu Z, Horak ID, Goldenberg DM. Pretargeting of Carcinoembryonic Antigen–Expressing Cancers with a Trivalent Bispecific Fusion Protein Produced in Myeloma Cells. Clin Cancer Res 2005; 11:7122s-7129s. [PMID: 16203811 DOI: 10.1158/1078-0432.ccr-1004-0020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize a novel trivalent bispecific fusion protein and evaluate its potential utility for pretargeted delivery of radionuclides to tumors. EXPERIMENTAL DESIGN hBS14, a recombinant fusion protein that binds bispecifically to carcinoembryonic antigen (CEA) and the hapten, histamine-succinyl-glycine (HSG), was produced by transgenic myeloma cells and purified to near homogeneity in a single step using a novel HSG-based affinity chromatography system. Biochemical characterization included size-exclusion high-performance liquid chromatography (SE-HPLC), SDS-PAGE, and isoelectric focusing. Functional characterization was provided by BIAcore and SE-HPLC. The efficacy of hBS14 for tumor pretargeting was evaluated in CEA-expressing GW-39 human colon tumor-bearing nude mice using a bivalent HSG hapten (IMP-241) labeled with (111)In. RESULTS Biochemical analysis showed that single-step affinity chromatography provided highly purified material. SE-HPLC shows a single protein peak consistent with the predicted molecular size of hBS14. SDS-PAGE analysis shows only two polypeptide bands, which are consistent with the calculated molecular weights of the hBS14 polypeptides. BIAcore showed the bispecific binding properties and suggested that hBS14 possesses two functional CEA-binding sites. This was supported by SE-HPLC immunoreactivity experiments. All of the data suggest that the structure of hBS14 is an 80 kDa heterodimer with one HSG and two CEA binding sites. Pretargeting experiments in the mouse model showed high uptake of radiopeptide in the tumor, with favorable tumor-to-nontumor ratios as early as 3 hours postinjection. CONCLUSIONS The results indicate that hBS14 is an attractive candidate for use in a variety of pretargeting applications, particularly tumor therapy with radionuclides and drugs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, Jew Jersey, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peterson NC. Advances in monoclonal antibody technology: genetic engineering of mice, cells, and immunoglobulins. ILAR J 2005; 46:314-9. [PMID: 15953839 DOI: 10.1093/ilar.46.3.314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to produce antibodies that are directed against specific antigens has played a crucial role in advancing scientific discoveries. Recombinant technologies have extended the application of antibodies beyond the research laboratory and into the clinic for the treatment of cancer and other diseases. Creative approaches using these technologies have been used to reduce the antibody to its minimal functional size, and/or make them bifunctional (immunotoxins), bispecific, or less immunoreactive (humanized). Additionally, mice that are engineered to generate antibodies of human genomic origin have been used to produce therapeutic antibodies and are being further developed. As the research and clinical demands for antibodies continue to increase, the development of improved resources (cell lines and animals) to improve production efficiency, generate larger repertoires, and deliver greater yields of antibodies is being explored, and advances in this area are discussed further in this review.
Collapse
Affiliation(s)
- Norman C Peterson
- Department of Comparative Medicine, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Nishi K, Ishiuchi M, Morimune K, Ohkawa H. Molecular and immunochemical characteristics of monoclonal and recombinant antibodies selective for the triazine herbicide simetryn and application to environmental analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5096-104. [PMID: 15969481 DOI: 10.1021/jf050246t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A monoclonal antibody (mab) selective for the thiomethyl-s-triazine herbicide simetryn was obtained and characterized in enzyme-linked immunosorbent assay (ELISA). An IC(50) value for simetryn was 8.5 ng/mL, and the detection range extended from 1.1 to 70 ng/mL in ELISA. The cDNAs encoding variable heavy chain (VH) and variable light chain (VL) of the mab were cloned to produce various recombinant antibodies. Single-chain variable fragment (scFv) antibodies derived from the mab were characterized in ELISA and showed similar reactivities and specificities to the parent mab. A urea denaturation test revealed that the scFv antibodies bound to simetryn were more stable than those in the absence of antigen. A sandwich ELISA based on VH and VL fragments of the mab was successfully developed and showed similar sensitivity to those based on the mab and scFv antibodies in ELISA. In the recovery experiments using spiked environmental samples, the results obtained in ELISA based on the mab were favorably correlated with those by HPLC.
Collapse
Affiliation(s)
- Kosuke Nishi
- Research Center for Environmental Genomics, Kobe University, Japan.
| | | | | | | |
Collapse
|
50
|
Kimura N, Kawai S, Kinoshita Y, Ishiguro T, Azuma Y, Ozaki S, Abe M, Sugimoto M, Hirata Y, Orita T, Okabe H, Matsumoto T, Tsuchiya M. 2D7 diabody bound to the α2 domain of HLA class I efficiently induces caspase-independent cell death against malignant and activated lymphoid cells. Biochem Biophys Res Commun 2004; 325:1201-9. [PMID: 15555554 DOI: 10.1016/j.bbrc.2004.10.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Indexed: 12/18/2022]
Abstract
A mouse monoclonal antibody (2D7 mAb), which specifically bound to the alpha2 domain of HLA class I, rapidly induces cell aggregation accompanied by weak cytotoxicity against ARH-77 cells, suggesting that 2D7 mAb had a potential for agonist antibody. In order to enhance this cytotoxicity, 2D7 mAb was engineered to be a small bivalent antibody fragment, 2D7 diabody. The resultant 2D7 diabody showed a strong cytotoxicity against ARH-77 cells. As a notable characteristic feature, the lethal effect of 2D7 diabody was quite rapid, mediated by a caspase-independent death pathway. Furthermore, 2D7 diabody also showed cytotoxicity against several leukemia and lymphoma cell lines, and mitogen-activated peripheral blood mononuclear cells (PBMC), but not for normal resting PBMC and adherent cell lines such as HUVEC. These results suggest that 2D7 diabody could be expected as a novel therapeutic antibody for hematological malignancies as well as inflammatory diseases.
Collapse
Affiliation(s)
- Naoki Kimura
- Genome Antibody Product Research Department, Chugai Pharmaceutical Co., Ltd., Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|