1
|
Pellegri C, Moreau A, Duché D, Houot L. Direct interaction between fd phage pilot protein pIII and the TolQ-TolR proton-dependent motor provides new insights into the import of filamentous phages. J Biol Chem 2023; 299:105048. [PMID: 37451481 PMCID: PMC10424213 DOI: 10.1016/j.jbc.2023.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Filamentous phages are one of the simplest examples of viruses with a protein capsid that protects a circular single-stranded DNA genome. The infection is very specific, nonlytic, and can strongly affect the physiology or provide new pathogenic factors to its bacterial host. The infection process is proposed to rely on a pore-forming mechanism similar to that of certain nonenveloped eukaryotic viruses. The Ff coliphages (including M13, fd, and f1) have been intensively studied and were used to establish the sequence of events taking place for efficient crossing of the host envelope structure. However, the mechanism involved in the penetration of the cell inner membrane is not well understood. Here, we identify new host players involved in the phage translocation mechanism. Interaction studies by a combination of in vivo biochemical methods demonstrate that the adhesion protein pIII located at the tip of the phage binds to TolQ and TolR, two proteins that form a conserved proton-dependent molecular motor in the inner membrane of the host cell. Moreover, in vivo cysteine cross-linking studies reveal that the interactions between the pIII and TolQ or TolR occur between their transmembrane helix domains and may be responding to the proton motive force status of the cell. These results allow us to propose a model for the late stage of filamentous phage translocation mediated by multiple interactions with each individual component of the host TolQRA complex.
Collapse
Affiliation(s)
- Callypso Pellegri
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Ambre Moreau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France.
| |
Collapse
|
2
|
Membrane Insertion of the M13 Minor Coat Protein G3p Is Dependent on YidC and the SecAYEG Translocase. Viruses 2021; 13:v13071414. [PMID: 34372619 PMCID: PMC8310372 DOI: 10.3390/v13071414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
The minor coat protein G3p of bacteriophage M13 is the key component for the host interaction of this virus and binds to Escherichia coli at the tip of the F pili. As we show here, during the biosynthesis of G3p as a preprotein, the signal sequence interacts primarily with SecY, whereas the hydrophobic anchor sequence at the C-terminus interacts with YidC. Using arrested nascent chains and thiol crosslinking, we show here that the ribosome-exposed signal sequence is first contacted by SecY but not by YidC, suggesting that only SecYEG is involved at this early stage. The protein has a large periplasmic domain, a hydrophobic anchor sequence of 21 residues and a short C-terminal tail that remains in the cytoplasm. During the later synthesis of the entire G3p, the residues 387, 389 and 392 in anchor domain contact YidC in its hydrophobic slide to hold translocation of the C-terminal tail. Finally, the protein is processed by leader peptidase and assembled into new progeny phage particles that are extruded out of the cell.
Collapse
|
3
|
Sutherland BJ, Olesen SW, Kusumaatmaja H, Morgan JWR, Wales DJ. Morphological analysis of chiral rod clusters from a coarse-grained single-site chiral potential. SOFT MATTER 2019; 15:8147-8155. [PMID: 31589219 DOI: 10.1039/c9sm01343a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a coarse-grained single-site potential for simulating chiral interactions, with adjustable strength, handedness, and preferred twist angle. As an application, we perform basin-hopping global optimisation to predict the favoured geometries for clusters of chiral rods. The morphology phase diagram based upon these predictions has four distinct families, including previously reported structures for potentials that introduce chirality based on shape, such as membranes and helices. The transition between these two configurations reproduces some key features of experimental results for fd bacteriophage. The potential is computationally inexpensive, intuitive, and versatile; we expect it will be useful for large scale simulations of chiral molecules. For chiral particles confined in a cylindrical container we reproduce the behaviour observed for fusilli pasta in a jar. Hence this chiropole potential has the capability to provide insight into structures on both macroscopic and molecular length scales.
Collapse
Affiliation(s)
- B J Sutherland
- Physical & Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - S W Olesen
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - H Kusumaatmaja
- Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
| | - J W R Morgan
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - D J Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
4
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
5
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
6
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
7
|
Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. J Mol Biol 2012; 417:129-43. [PMID: 22310045 DOI: 10.1016/j.jmb.2012.01.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Huan Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
8
|
Branston S, Stanley E, Keshavarz-Moore E, Ward J. Precipitation of filamentous bacteriophages for their selective recovery in primary purification. Biotechnol Prog 2011; 28:129-36. [DOI: 10.1002/btpr.705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/06/2011] [Indexed: 11/06/2022]
|
9
|
Løset GÅ, Roos N, Bogen B, Sandlie I. Expanding the versatility of phage display II: improved affinity selection of folded domains on protein VII and IX of the filamentous phage. PLoS One 2011; 6:e17433. [PMID: 21390283 PMCID: PMC3044770 DOI: 10.1371/journal.pone.0017433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/03/2011] [Indexed: 12/11/2022] Open
Abstract
Background Phage display is a leading technology for selection of binders with affinity for specific target molecules. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII) or the minor coat protein III (pIII). Whereas pVIII display suffers from drawbacks such as heterogeneity in display levels and polypeptide fusion size limitations, toxicity and infection interference effects have been described for pIII display. Thus, display on other coat proteins such as pVII or pIX might be more attractive. Neither pVII nor pIX display have gained widespread use or been characterized in detail like pIII and pVIII display. Methodology/Principal Findings Here we present a side-by-side comparison of display on pIII with display on pVII and pIX. Polypeptides of interest (POIs) are fused to pVII or pIX. The N-terminal periplasmic signal sequence, which is required for phage integration of pIII and pVIII and that has been added to pVII and pIX in earlier studies, is omitted altogether. Although the POI display level on pIII is higher than on pVII and pIX, affinity selection with pVII and pIX display libraries is shown to be particularly efficient. Conclusions/Significance Display through pVII and/or pIX represent platforms with characteristics that differ from those of the pIII platform. We have explored this to increase the performance and expand the use of phage display. In the paper, we describe effective affinity selection of folded domains displayed on pVII or pIX. This makes both platforms more attractive alternatives to conventional pIII and pVIII display than they were before.
Collapse
Affiliation(s)
- Geir Åge Løset
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail: (GAL); (IS)
| | - Norbert Roos
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Institute of Immunology, University of Oslo, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail: (GAL); (IS)
| |
Collapse
|
10
|
Scott N, Reynolds CB, Wright MJ, Qazi O, Fairweather N, Deonarain MP. Single-chain Fv phage display propensity exhibits strong positive correlation with overall expression levels. BMC Biotechnol 2008; 8:97. [PMID: 19113995 PMCID: PMC2630973 DOI: 10.1186/1472-6750-8-97] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 12/29/2008] [Indexed: 01/09/2023] Open
Abstract
Background Single chain Fvs (scFvs) are widely applied in research, diagnostics and therapeutic settings. Display and selection from combinatorial libraries is the main route to their discovery and many factors influence the success of this process. They exhibit low thermodynamic stability, resulting in low levels of premature cytosolic folding or aggregation which facilitates sec YEG-mediated translocation and phage in E. coli. However, there is little data analysing how this is related to and influenced by scFv protein expression. Results We characterised the relationship between overall scFv expression and display propensity for a panel of 15 anti-tetanus toxin scFvs and found a strong positive correlation (Rho = 0.88, p < 0.005) between the two parameters. Display propensity, overall expression and soluble localisation to the periplasm and extracellular fractions were clone specific characteristics which varied despite high levels of sequence homology. There was no correlation between display of scFv or its expression in non-fused (free) form with soluble scFv localisation to the periplasm or culture supernatant. This suggests that divergence in the fate of scFv-pIII and non-fused scFv after translocation to the periplasm accounts for the observed disparity. Differential degrees of periplasmic aggregation of non-fused scFv between clones may affect the partitioning of scFv in the periplasm and culture supernatant abrogating any correlation. We suggest that these factors do not apply to the scFv-pIII fusion since it remains anchored to the bacterial inner membrane as part of the innate phage packaging and budding process. Conclusion We conclude that in the absence of premature cytosolic aggregation or folding, the propensity of a scFv to be displayed on phage is directly related to its overall expression level and is thus indirectly influenced by factors such as codon bias, mRNA abundance or putative DNA motifs affecting expression. This suggests that scFvs capable of high overall expression and display levels may not produce high yields of non phage-fused soluble protein in either the periplasmic or extracellular fractions of E. coli. This should be considered when screening clones selected from combinatorial libraries for further study. The nucleotide and amino acid sequences of the anti-tetanus toxin scFvs have been deposited in the EMBL data base: accession numbers-C1: AM749134, C2: AM749135, C3: AM749136, C4: AM749137, C5: AM749138, N1: AM749139, N2: AM749140, N3: AM749141, N4: AM749142, N5: AM749143 J1; AM749144, J2: AM749145, J3: AM749146, J4: AM749147, J5: AM749148.
Collapse
Affiliation(s)
- Nathan Scott
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Weichel M, Jaussi R, Rhyner C, Crameri R. Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules. Open Biochem J 2008; 2:38-43. [PMID: 18949073 PMCID: PMC2570559 DOI: 10.2174/1874091x00802010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/04/2008] [Accepted: 03/14/2008] [Indexed: 11/22/2022] Open
Abstract
Active alkaline phosphatase of Escherichia coli (PhoA, EC 3.1.3.1) was displayed via the leucine zipper element of the Jun-Fos heterodimer on the surface of filamentous phage and the kinetic parameters K(m) and k(cat) were determined. The phoA gene was cloned downstream of fos while jun was inserted upstream of pIII or pVIII, alternatively, in the pJuFo phagemid vector. Both fusion genes are regulated by independent lacZ promoters. PhoA displayed on the phagemid pIII surface exhibited a K(m) of 11.2 microM with 4-nitrophenyl phosphate as substrate, which is consistent with data published for soluble PhoA. Based on these data we calculated the decoration of pJuFo phagemid with PhoA using the minor and major coat proteins pIII and pVIII as fusion partners under variable inducing conditions. We found that, even if the promoters are fully induced at a concentration of 1000 microM IPTG, the phagemids display maximally one copy of PhoA-Fos-Jun-coat protein fusion, irrespective of whether the protein is presented via pIII or pVIII. However, since PhoA is displayed in a native-like fashion, as deduced from the kinetic parameters of the enzymatic reaction, the pJuFo technology provides a versatile tool for the functional screening of complex cDNA libraries displayed on the phagemids' surface.
Collapse
Affiliation(s)
- Michael Weichel
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH-7270 Davos, Switzerland
| | - Rolf Jaussi
- Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH-7270 Davos, Switzerland
| | - Reto Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH-7270 Davos, Switzerland
| |
Collapse
|
12
|
Steiner D, Forrer P, Stumpp MT, Plückthun A. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 2006; 24:823-31. [PMID: 16823375 DOI: 10.1038/nbt1218] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 05/12/2006] [Indexed: 11/09/2022]
Abstract
Even proteins that fold well in bacteria are frequently displayed poorly on filamentous phages. Low protein presentation on phage might be caused by premature cytoplasmic folding, leading to inefficient translocation into the periplasm. As translocation is an intermediate step in phage assembly, we tested the display levels of a range of proteins using different translocation pathways by employing different signal sequences. Directing proteins to the cotranslational signal recognition particle (SRP) translocation pathway resulted in much higher display levels than directing them to the conventional post-translational Sec translocation pathway. For example, the display levels of designed ankyrin-repeat proteins (DARPins) were improved up to 700-fold by simply exchanging Sec- for SRP-dependent signal sequences. In model experiments this exchange of signal sequences improved phage display from tenfold enrichment to >1,000-fold enrichment per phage display selection round. We named this method 'SRP phage display' and envision broad applicability, especially when displaying cDNA libraries or very stable and fast-folding proteins from libraries of alternative scaffolds.
Collapse
Affiliation(s)
- Daniel Steiner
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
Bennett NJ, Rakonjac J. Unlocking of the Filamentous Bacteriophage Virion During Infection is Mediated by the C Domain of pIII. J Mol Biol 2006; 356:266-73. [PMID: 16373072 DOI: 10.1016/j.jmb.2005.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 11/13/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Protein III (pIII) of filamentous phage is required for both the beginning and the end of the phage life cycle. The infection starts by binding of the N-terminal N2 and N1 domains to the primary and secondary host receptors, F pilus and TolA protein, respectively, whereas the life cycle terminates by the C-terminal domain-mediated release of the membrane-anchored virion from the cell. It has been assumed that the role of the C-terminal domain of pIII in the infection is that of a tether for the receptor-binding domains N1N2 to the main body of the virion. In a poorly understood process that follows receptor binding, the virion disassembles as its protein(s) become integrated into the host inner membrane, resulting in the phage genome entry into the bacterial cytoplasm. To begin revealing the mechanism of this process, we showed that tethering the functional N1N2 receptor-binding domain to the virion via termination-incompetent C domain abolishes infection. This infection defect cannot be complemented by in trans supply of the functional C domain. Therefore, the C domain of pIII acts in concert with the receptor-binding domains to mediate the post receptor binding events in the infection. Based on these findings, we propose a model in which binding of the N1 domain to the periplasmic portion of TolA, the secondary receptor, triggers in cis a conformational change in the C domain, and that this change opens or unlocks the pIII end of the virion, allowing the entry phase of infection to proceed. To our knowledge, this is the first virus that uses the same protein domain both for the insertion into and release from the host membrane.
Collapse
Affiliation(s)
- Nicholas J Bennett
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
14
|
Rakonjac J, Feng JN, Model P. Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 1999; 289:1253-65. [PMID: 10373366 DOI: 10.1006/jmbi.1999.2851] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Filamentous phage assemble at the membrane of infected cells. The phage filament is released from the membrane at the end of assembly, after four to five copies of the minor proteins, pIII and pVI, have been added to the end of the virion. In the absence of pIII or pVI, phage filaments are not released, but remain associated with the cells. The C-terminal portion of pIII, termed the "C" domain, is required for the release of stable virions. With the use of pIII C-terminal fragments of increasing size, termination of assembly can be divided into various steps. An 83-residue fragment leads to the incorporation of pVI into the assembling phage, but does not release it from the membrane. A slightly longer fragment (93 residues) is sufficient to release the particle into the culture supernatant. However, these released particles are unstable in the detergent, sarkosyl, which does not disrupt wild-type phage. A fragment of >121 residues is needed for the particle to become detergent resistant. Thus, the C-domain can be divided into two subdomains: C2, sufficient for release, and C1, required for virion stability.A model for termination of phage assembly is proposed in which pIII and pVI dock to the membrane-associated filament and form a pre- termination complex. Then, a conformational change involving the C2 domain of pIII disrupts the hydrophobic interactions with the inner membrane, releasing the phage from the cells. The pIII-mediated release of phage from the membranes points to one possible mechanism for excision of membrane-anchored protein complexes from lipid bilayers.
Collapse
Affiliation(s)
- J Rakonjac
- The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | |
Collapse
|
15
|
Abstract
Phage display, SELEX and other methods of combinatorial chemistry have become very popular means of finding ligands with high affinities to given targets. Despite their success, they suffer from numerous sources of error and bias, such as very low initial concentrations of species, non-specific binding, and the sampling of only a tiny fraction of the library at the end of an experiment. To understand the interaction of these errors and to better devise molecular search strategies that take the errors into account, I devise and analyze a highly detailed model of phage display. The model is specifically designed to study the influence of the stochastic nature of each laboratory step. The model includes phage multivalency, multiple classes of targets, and solid-phase equilibrium and washing, yet it is amenable to analytic results and rapid computer simulation. With both analytic and simulation approaches, I: (1) describe the effects of target concentration, phage valency, degree of background binding and other laboratory parameters on the probabilities of phage binding and of being selected; (2) show the effects of an increasing selection stringency strategy and how it results in a tradeoff between rapid library enrichment and high probability of sampling the best ligands; and (3) show how the number of phage sampled for detailed study at the end of a search alters search success. The work concludes with several practical suggestions for the control of selection stringency.
Collapse
Affiliation(s)
- B Levitan
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
16
|
Abstract
The structural model of filamentous phage derived by X-ray fibre diffraction is supported by spectroscopic and genetic experiments. The structure of the receptor-binding domain at the end of the phage and the structure of the phage-coded intracellular DNA-binding protein have been determined at high resolution. The recent dissection of the virus life cycle by genetic and biochemical analyses, combined with structural information, suggests models for virus infection and assembly.
Collapse
Affiliation(s)
- D A Marvin
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
17
|
Liu TJ, Wen FS, Tseng TT, Yang MT, Lin NT, Tseng YH. Identification of gene VI of filamentous phage phi Lf coding for a 10-kDa minor coat protein. Biochem Biophys Res Commun 1997; 239:752-5. [PMID: 9367841 DOI: 10.1006/bbrc.1997.7548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ORF95 in the filamentous phage phi Lf genome, locating behind gIII, was identified to be the gene (gVI) coding for minor coat protein pVI (95 amino acids, 10,245 dal). It was shown to be virion associated by Western blot analysis of chloroform-treated phage particles. Computer analysis predicted two transmembrane regions for this protein. Since no signal peptide was suggested and the size estimated by SDS-polyacrylamide gel electrophoresis matches that deduced from nucleotide sequence, it appears to be incorporated into the phage particle as its primary translational product. After completion of this study, eight genes organizing into an order of gVII-gX-gV-gVII-gIX-gIII-gIII-gVI have been identified for phi Lf.
Collapse
Affiliation(s)
- T J Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Krebber C, Spada S, Desplancq D, Krebber A, Ge L, Pluckthun A. Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions. J Mol Biol 1997; 268:607-18. [PMID: 9171284 DOI: 10.1006/jmbi.1997.0981] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selectively-infective phage (SIP) is a novel methodology for the in vivo selection of interacting protein-ligand pairs. It consists of two components, (1) a phage particle made non-infective by replacing its N-terminal domains of geneIII protein (gIIIp) with a ligand-binding protein, and (2) an "adapter" molecule in which the ligand is linked to those N-terminal domains of gIIIp which are missing from the phage particle. Infectivity is restored when the displayed protein binds to the ligand and thereby attaches the missing N-terminal domains of gIIIp to the phage particle. Phage propagation is thus strictly dependent on the protein-ligand interaction. We have shown that the insertion of beta-lactamase into different positions of gIIIp, mimicking the insertion of a protein-ligand pair, led to highly infective phage particles. Any phages lacking the first N-terminal domain were not infective at all. In contrast, those lacking only the second N-terminal domain showed low infectivity irrespective of the presence or absence of the F-pilus on the recipient cell, which could be enhanced by addition of calcium. An anti-fluorescein scFv antibody and its antigen fluorescein were examined as a protein-ligand model system for SIP experiments. Adapter molecules, synthesized by chemical coupling of fluorescein to the purified N-terminal domains, were mixed with non-infective anti-fluorescein scFv-displaying phages. Infection events were strictly dependent on fluorescein being coupled to the N-terminal domains and showed a strong dependence on the adapter concentration. Up to 10(6) antigen-specific events could be obtained from 10(10) input phages, compared to only one antigen-independent event. Since no separation of binders and non-binders is necessary, SIP is promising as a rapid procedure to select for high affinity interactions.
Collapse
Affiliation(s)
- C Krebber
- Biochemisches Institut, Universität Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Lasters I, Van Herzeele N, Lijnen HR, Collen D, Jespers L. Enzymatic properties of phage-displayed fragments of human plasminogen. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:946-52. [PMID: 9108270 DOI: 10.1111/j.1432-1033.1997.00946.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two low-molecular-mass forms of human plasminogen, plasminogen-(543-791)-peptide (micro-plasminogen), comprising the serine protease domain, and plasminogen-(444-791)-peptide (mini-plasminogen), which in addition contains kringle 5, were displayed on filamentous phage by fusion to the N-terminus of the minor coat protein pIII, to levels of 0.5 molecules micro-plasminogen-pIII/phage particle and 0.1 molecules mini-plasminogen-pIII/phage particle. The proenzymes, quantitatively activated by urokinase, showed catalytic efficiencies that were virtually identical to their soluble counterparts, and activity remained associated with the phage as demonstrated by phage ELISA and biopanning with human alpha2-antiplasmin or the inhibitor Phe-Pro-Arg-CH2Cl. Micro-plasminogen-pIII was activated by streptokinase and staphylokinase, two non-enzymatic plasminogen activators, to the same extent as by urokinase. Activated forms of mini-plasminogen-pIII micro-plasminogen-pIII and mini-plasminogen dissolved 125I-labelled fibrin films in a dose-dependent time-dependent manner, with 50% lysis in 20 h requiring 0.52, 3.2 and 0.46 nM active plasmin, respectively. Thus, proenzyme moieties derived from plasminogen can be successfully displayed on phage with maintenance of their enzymatic properties. The micro-plasminogen and mini-plasminogen phage-display systems may be useful to study mechanisms of plasminogen activation.
Collapse
Affiliation(s)
- I Lasters
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Belgium
| | | | | | | | | |
Collapse
|
20
|
Gailus V, Ramsperger U, Johner C, Kramer H, Rasched I. The role of the adsorption complex in the termination of filamentous phage assembly. Res Microbiol 1994; 145:699-709. [PMID: 7746960 DOI: 10.1016/0923-2508(94)90042-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adsorption complex of filamentous phage fd consists of two minor coat proteins, g3p and g6p, and is considered to be not only a structural entity, but also a functional unit to terminate phage assembly. Cells were infected with phage M13am8H1, which cannot assemble because it lacks the major coat protein g8p, although producing all of the other minor coat proteins. The membranes of infected cells were solubilized and analysed by non-denaturing PAGE and gel filtration. The data suggest the presence of the adsorption complex in these membranes. Furthermore, the non-polar gene 3 amber-mutant phage R171 was shown to lack g6p in the phage coat as well. The termination of assembly of this phage is disturbed, resulting in synthesis of polyphages. Electron micrographs and transient electrical birefringence show that these polyphages are eight times longer as compared to unit length phage. From these results, we conclude that the formation of the g3p-g6p complex is essential for correct termination of filamentous phage assembly.
Collapse
Affiliation(s)
- V Gailus
- Fakultät für Biologie, Universität, Konstanz, Germany
| | | | | | | | | |
Collapse
|