1
|
Maijala P, Harrington TC, Raudaskoski M. A peroxidase gene family and gene trees inHeterobasidionand related genera. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pekka Maijala
- Department of Applied Chemistry and Microbiology, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Thomas C. Harrington
- Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, Iowa 50011, USA
| | - Marjatta Raudaskoski
- Department of Biosciences, Division of Plant Physiology, P.O. Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
2
|
Kim SJ, Joo JC, Song BK, Yoo YJ, Kim YH. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites. Biotechnol Bioeng 2014; 112:668-76. [PMID: 25335829 DOI: 10.1002/bit.25483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/27/2014] [Accepted: 10/13/2014] [Indexed: 12/07/2022]
Abstract
Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack.
Collapse
Affiliation(s)
- Su Jin Kim
- Interdisciplinary Program of Bioengineering, School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Korea; Korea Research Institute of Chemical Technology, Daejeon, 305-600, Korea
| | | | | | | | | |
Collapse
|
3
|
Kim SJ, Joo JC, Kim HS, Kwon I, Song BK, Yoo YJ, Kim YH. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack. J Biotechnol 2014; 189:78-85. [DOI: 10.1016/j.jbiotec.2014.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
|
4
|
Zakharova GS, Uporov IV, Tishkov VI. Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. BIOCHEMISTRY (MOSCOW) 2012; 76:1391-401. [PMID: 22339595 DOI: 10.1134/s0006297911130037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification-through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.
Collapse
Affiliation(s)
- G S Zakharova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
5
|
Murphy EJ, Metcalfe CL, Nnamchi C, Moody PCE, Raven EL. Crystal structure of guaiacol and phenol bound to a heme peroxidase. FEBS J 2011; 279:1632-9. [PMID: 22093282 DOI: 10.1111/j.1742-4658.2011.08425.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guaiacol is a universal substrate for all peroxidases, and its use in a simple colorimetric assay has wide applications. However, its exact binding location has never been defined. Here we report the crystal structures of guaiacol bound to cytochrome c peroxidase (CcP). A related structure with phenol bound is also presented. The CcP-guaiacol and CcP-phenol crystal structures show that both guaiacol and phenol bind at sites distinct from the cytochrome c binding site and from the δ-heme edge, which is known to be the binding site for other substrates. Although neither guaiacol nor phenol is seen bound at the δ-heme edge in the crystal structures, inhibition data and mutagenesis strongly suggest that the catalytic binding site for aromatic compounds is the δ-heme edge in CcP. The functional implications of these observations are discussed in terms of our existing understanding of substrate binding in peroxidases [Gumiero A et al. (2010) Arch Biochem Biophys 500, 13-20].
Collapse
Affiliation(s)
- Emma J Murphy
- Department of Chemistry, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
6
|
Kulikova NA, Klein OI, Stepanova EV, Koroleva OV. Use of basidiomycetes in industrial waste processing and utilization technologies: Fundamental and applied aspects (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s000368381106007x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
D'Antonio EL, D'Antonio J, de Serrano V, Gracz H, Thompson MK, Ghiladi RA, Bowden EF, Franzen S. Functional consequences of the creation of an Asp-His-Fe triad in a 3/3 globin. Biochemistry 2011; 50:9664-80. [PMID: 21950839 DOI: 10.1021/bi201368u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proximal side of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata has been modified via site-directed mutagenesis of methionine 86 into aspartate (M86D) to introduce an Asp-His-Fe triad charge relay. X-ray crystallographic structure determination of the metcyano forms of M86D [Protein Data Bank (PDB) entry 3MYN ] and M86E (PDB entry 3MYM ) mutants reveal the structural origins of a stable catalytic triad in DHP A. A decrease in the rate of H(2)O(2) activation as well as a lowered reduction potential versus that of the wild-type enzyme was observed in M86D. One possible explanation for the significantly lower activity is an increased affinity for the distal histidine in binding to the heme Fe to form a bis-histidine adduct. Resonance Raman spectroscopy demonstrates a pH-dependent ligation by the distal histidine in M86D, which is indicative of an increased trans effect. At pH 5.0, the heme Fe is five-coordinate, and this structure resembles the wild-type DHP A resting state. However, at pH 7.0, the distal histidine appears to form a six-coordinate ferric bis-histidine (hemichrome) adduct. These observations can be explained by the effect of the increased positive charge on the heme Fe on the formation of a six-coordinate low-spin adduct, which inhibits the ligation and activation of H(2)O(2) as required for peroxidase activity. The results suggest that the proximal charge relay in peroxidases regulate the redox potential of the heme Fe but that the trans effect is a carefully balanced property that can both activate H(2)O(2) and attract ligation by the distal histidine. To understand the balance of forces that modulate peroxidase reactivity, we studied three M86 mutants, M86A, M86D, and M86E, by spectroelectrochemistry and nuclear magnetic resonance spectroscopy of (13)C- and (15)N-labeled cyanide adducts as probes of the redox potential and of the trans effect in the heme Fe, both of which can be correlated with the proximity of negative charge to the N(δ) hydrogen of the proximal histidine, consistent with an Asp-His-Fe charge relay observed in heme peroxidases.
Collapse
Affiliation(s)
- Edward L D'Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gumiero A, Murphy EJ, Metcalfe CL, Moody PC, Raven EL. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch Biochem Biophys 2010; 500:13-20. [DOI: 10.1016/j.abb.2010.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
|
9
|
Ryan BJ, Carolan N, O'Fágáin C. Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends Biotechnol 2006; 24:355-63. [PMID: 16815578 DOI: 10.1016/j.tibtech.2006.06.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/04/2006] [Accepted: 06/15/2006] [Indexed: 12/21/2022]
Abstract
Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful biotechnological tools. HRP is often termed the classical plant heme peroxidase and although it has been studied for decades, our understanding has deepened since its cloning and subsequent expression, enabling numerous mutational and protein engineering studies. SBP, however, has been neglected until recently, despite offering a real alternative to HRP: SBP actually outperforms HRP in terms of stability and is now used in numerous biotechnological applications, including biosensors. Review of both is timely. This article summarizes and discusses the main insights into the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and outlines its use in a variety of applications. It also reviews the current knowledge and applications to date of SBP, particularly biosensors. The final paragraphs speculate on the future of plant heme-based peroxidases, with probable trends outlined and explored.
Collapse
Affiliation(s)
- Barry J Ryan
- School of Biotechnology and National Centre for Sensors Research, Dublin City University, Dublin 9, Ireland
| | | | | |
Collapse
|
10
|
Indiani C, Santoni E, Becucci M, Boffi A, Fukuyama K, Smulevich G. New Insight into the Peroxidase−Hydroxamic Acid Interaction Revealed by the Combination of Spectroscopic and Crystallographic Studies. Biochemistry 2003; 42:14066-74. [PMID: 14636075 DOI: 10.1021/bi035290l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic hydroxamic acids, such as salicylhydroxamic (SHA) and benzohydroxamic (BHA) acids, are commonly used as probes for studying the active sites of peroxidases. In this paper, we have extended the study of the complexes of Arthromyces ramosus peroxidase (ARP/CIP) with BHA and SHA by analyzing their Raman spectra in solution and in single crystals. The experiments were carried out under various conditions to identify the best experimental conditions, and hence, avoid artifacts deriving from the preparation of the samples or collection of the spectra. The analysis of the data takes also into account the characteristic of the electronic absorption spectra in solution and the crystal structures of the complexes. The results showed small differences between the solution and the crystal phases even though the coordination state can be dramatically affected by the physical or chemical conditions. The greater sensitivity of the spectroscopic technique enabled us to establish the existence of multiple species upon complexation of the protein with the hydroxamic acids that could not be detected by ordinary X-ray crystallography. Furthermore, SHA titration experiments and singular value decomposition analysis of the absorption spectra indicated the presence of two binding sites in the protein, one with a high affinity (K(d) = 1.7 mM), which should correspond to the SHA bound protein as determined by X-ray, and the other with a very low affinity (K(d) > 80 mM) probably located in a non-heme site. This suggests that the heterogeneous titration line shape involves ligand binding to a non-heme site in competition with the canonical heme site. In contrast, the titration profile obtained with the BHA ligand is monophasic, in agreement with all the peroxidases so far studied.
Collapse
Affiliation(s)
- Chiara Indiani
- Dipartimento di Chimica, Universita' di Firenze, Polo Scientifico, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
11
|
de Ropp JS, Sham S, Asokan A, Newmyer S, Ortiz de Montellano PR, La Mar GN. Influence of the distal his in imparting imidazolate character to the proximal his in heme peroxidase: (1)h NMR spectroscopic study of cyanide-inhibited his42-->ala horseradish peroxidase. J Am Chem Soc 2002; 124:11029-37. [PMID: 12224950 DOI: 10.1021/ja020176w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional higher oxidation states of heme peroxidases have been proposed to be stabilized by the significant imidazolate character of the proximal His. This is induced by a "push-pull" combination effect produced by the proximal Asp that abstracts ("pulls") the axial His ring N(delta)H, along with the distal protonated His that contributes ("pushes") a strong hydrogen bond to the distal ligand. The molecular and electronic structure of the distal His mutant of cyanide-inhibited horseradish peroxidase, H42A-HRPCN, has been investigated by NMR. This complex is a valid model for the active site hydrogen-bonding network of HRP compound II. The (1)H and (15)N NMR spectral parameters characterize the relative roles of the distal His42 and proximal Asp247 in imparting imidazolate character to the axial His. 1D/2D spectra reveal a heme pocket molecular structure that is highly conserved in the mutant, except for residues in the immediate proximity of the mutation. This conserved structure, together with the observed dipolar shifts of numerous active site residue protons, allowed a quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor, both of which are only minimally perturbed relative to wild-type HRPCN. The quantitated dipolar shifts allowed the factoring of the hyperfine shifts to reveal that the significant changes in hyperfine shifts for the axial His and ligated (15)N-cyanide result primarily from changes in contact shifts that reflect an approximately one-third reduction in the axial His imidazolate character upon abolishing the distal hydrogen-bond to the ligated cyanide. Significant changes in side chain orientation were found for the distal Arg38, whose terminus reorients to partially fill the void left by the substituted His42 side chain. It is concluded that 1D/2D NMR can quantitate both molecular and electronic structural changes in cyanide-inhibited heme peroxidase and that, while both residues contribute, the proximal Asp247 is more important than the distal His42 in imparting imidazole character to the axial His 170.
Collapse
Affiliation(s)
- Jeffrey S de Ropp
- Contribution from the Department of Chemistry and NMR Facility, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochemistry 2001; 40:11013-21. [PMID: 11551197 DOI: 10.1021/bi010661o] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anionic Arabidopsis thaliana peroxidase ATP A2 was expressed in Escherichia coli and used as a model for the 95% identical commercially available horseradish peroxidase HRP A2. The crystal structure of ATP A2 at 1.45 A resolution at 100 K showed a water molecule only 2.1 A from heme iron [Ostergaard, L., et al. (2000) Plant Mol. Biol. 44, 231-243], whereas spectroscopic studies of HRP A2 in solution at room temperature [Feis, A., et al. (1998) J. Raman Spectrosc. 29, 933-938] showed five-coordinated heme iron, which is common in peroxidases. Presented here, the X-ray crystallographic, single-crystal, and solution resonance Raman studies at room temperature confirmed that the sixth coordination position of heme iron of ATP A2 is essentially vacant. Furthermore, electronic absorption and resonance Raman spectroscopy showed that the heme environments of recombinant ATP A2 and glycosylated plant HRP A2 are indistinguishable at neutral and alkaline pH, from room temperature to 12 K, and are highly flexible compared with other plant peroxidases. Ostergaard et al. (2000) also demonstrated that ATP A2 expression and lignin formation coincide in Arabidopsis tissues, and docking of lignin precursors into the substrate binding site of ATP A2 predicted that coniferyl and p-coumaryl alcohols were good substrates. In contrast, the additional methoxy group of the sinapyl moiety gave rise to steric hindrance, not only in A2 type peroxidases but also in all peroxidases. We confirm these predictions for ATP A2, HRP A2, and HRP C. The specific activity of ATP A2 was lower than that of HRP A2 (pH 4-8), although a steady-state study at pH 5 demonstrated very little difference in their rate constants for reaction with H2O2 (k1 = 1.0 microM(-1) x s(-1). The oxidation of coniferyl alcohol, ferulic, p-coumaric, and sinapic acids by HRP A2, and ATP A2, however, gave modest but significantly different k3 rate constants of 8.7 +/- 0.3, 4.0 +/- 0.2, 0.70 +/- 0.03, and 0.04 +/- 0.2 microM(-1) x s(-1) for HRP A2, respectively, and 4.6 +/- 0.2, 2.3 +/- 0.1, 0.25 +/- 0.01, and 0.01 +/- 0.004 microM(-1) x s(-1) for ATP A2, respectively. The structural origin of the differential reactivity is discussed in relation to glycosylation and amino acid substitutions. The results are of general importance to the use of homologous models and structure determination at low temperatures.
Collapse
Affiliation(s)
- K L Nielsen
- Institut for Bioteknologi, Aalborg Universitet, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Laberge M, Osvath S, Fidy J. Aromatic substrate specificity of horseradish peroxidase C studied by a combined fluorescence line narrowing/energy minimization approach: the effect of localized side-chain reorganization. Biochemistry 2001; 40:9226-37. [PMID: 11478890 DOI: 10.1021/bi002938a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Horseradish peroxidase C binds a wide variety of small H-donor compounds such as benzohydroxamic acid (BHA) and 2-naphthohydroxamic acid (NHA). In this work, we use the Mg(II)-mesoporphyrin prosthetic group derivative as a spectroscopic probe of the active site and of the interaction with the substrates. We report on high-resolution fluorescence line-narrowed spectra which show that the effects of substrate binding on the electronic transitions are similar for both substrates and present data on the normal vibrational modes that are active in the vibronic spectra. Analysis of the vibrational frequencies shows that the Mg(II) ion is 5-coordinate in all cases, thus ruling out a solvent water as sixth ligand. The frequency shifts observed as a result of substrate binding are also indicative of a more rigid prosthetic group upon substrate binding. We present models for MgMP-HRP and its complexes with both substrates and compare the resulting structures on the basis of a modeling approach combining energy minimization to finite difference Poisson--Boltzmann calculations which partitions the various relative protein contributions to substrate binding. We show that the electrostatic potential of the prosthetic group is modified by the binding event. Analysis of the unbound and bound energy-minimized structures shows that the enzyme modulates substrate binding by subtle charge reorganization in the vicinity of the catalytic site and that this rearrangement is not attributable to significant secondary structure conformational changes but to side-chain reorganization.
Collapse
Affiliation(s)
- M Laberge
- Institute of Biophysics and Radiation Biology, Semmelweis University, Puskin u. 9, Hungary H-1088
| | | | | |
Collapse
|
14
|
Asokan A, de Ropp JS, Newmyer SL, Ortiz de Montellano PR, La Mar GN. Solution 1H NMR of the molecular and electronic structure of the heme cavity and substrate binding pocket of high-spin ferric horseradish peroxidase: effect of His42Ala mutation. J Am Chem Soc 2001; 123:4243-54. [PMID: 11457190 DOI: 10.1021/ja003687w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solution 1H NMR has been used to assign a major portion of the heme environment and the substrate-binding pocket of resting state horseradish peroxidase, HRP, despite the high-spin iron(III) paramagnetism, and a quantitative interpretive basis of the hyperfine shifts is established. The effective assignment protocol included 2D NMR over a wide range of temperatures to locate residues shifted by paramagnetism, relaxation analysis, and use of dipolar shifts predicted from the crystal structure by an axial paramagnetic susceptibility tensor normal to the heme. The most effective use of the dipolar shifts, however, is in the form of their temperature gradients, rather than by their direct estimation as the difference of observed and diamagnetic shifts. The extensive assignments allowed the quantitative determination of the axial magnetic anisotropy, Deltachi(ax) = -2.50 x 10(-8) m(3)/mol, oriented essentially normal to the heme. The value of Deltachi(ax) together with the confirmed T(-2) dependence allow an estimate of the zero-field splitting constant D = 15.3 cm(-1), which is consistent with pentacoordination of HRP. The solution structure was generally indistinguishable from that in the crystal (Gajhede, M.; Schuller, D. J.; Henriksen, A.; Smith, A. T.; Poulos, T. L. Nature Structural Biology 1997, 4, 1032-1038) except for Phe68 of the substrate-binding pocket, which was found turned into the pocket as found in the crystal only upon substrate binding (Henriksen, A.; Schuller, D. J.; Meno, K.; Welinder, K. G.; Smith, A. T.; Gajhede, M. Biochemistry 1998, 37, 8054-8060). The reorientation of several rings in the aromatic cluster adjacent to the proximal His170 is found to be slow on the NMR time scale, confirming a dense, closely packed, and dynamically stable proximal side up to 55 degrees C. Similar assignments on the H42A-HRP mutant reveal conserved orientations for the majority of residues, and only a very small decrease in Deltachi(ax) or D, which dictates that five-coordination is retained in the mutant. The two residues adjacent to residue 42, Ile53 and Leu138, reorient slightly in the mutant H42A protein. It is concluded that effective and very informative 1H NMR studies of the effect of either substrate binding or mutation can be carried out on resting state heme peroxidases.
Collapse
Affiliation(s)
- A Asokan
- Department of Chemistry and NMR Facility, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
15
|
Indiani C, Feis A, Howes BD, Marzocchi MP, Smulevich G. Benzohydroxamic Acid−Peroxidase Complexes: Spectroscopic Characterization of a Novel Heme Spin Species. J Am Chem Soc 2000. [DOI: 10.1021/ja000587h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiara Indiani
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Alessandro Feis
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Barry D. Howes
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Mario P. Marzocchi
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Giulietta Smulevich
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| |
Collapse
|
16
|
|
17
|
Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 1999; 274:10324-30. [PMID: 10187820 DOI: 10.1074/jbc.274.15.10324] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP.
Collapse
Affiliation(s)
- S Camarero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
de Ropp JS, Mandal PK, La Mar GN. Solution 1H NMR investigation of the heme cavity and substrate binding site in cyanide-inhibited horseradish peroxidase. Biochemistry 1999; 38:1077-86. [PMID: 9894004 DOI: 10.1021/bi982125a] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution two-dimensional 1H NMR studies have been carried out on cyanide-inhibited horseradish peroxidase isozyme C (HRPC-CN) to explore the scope and limitations of identifying residues in the heme pocket and substrate binding site, including those of the "second sphere" of the heme, i.e. residues which do not necessarily have dipolar contact with the heme. The experimental methods use a range of experimental conditions to obtain data on residue protons with a wide range of paramagnetic relaxivity. The signal assignment strategy is guided by the recently reported crystal structure of recombinant HRPC and the use of calculated magnetic axes. The goal of the assignment strategy is to identify signals from all residues in the heme, as well as proximal and distal, environment and the benzhydroxamic acid (BHA) substrate binding pocket. The detection and sequence specific assignment of aromatic and aliphatic residues in the vicinity of the heme pocket confirm the validity of the NMR methodologies described herein. Nearly all residues in the heme periphery are now assigned, and the first assignments of several "second sphere" residues in the heme periphery are reported. The results show that nearly all catalytically relevant amino acids in the active site can be identified by the NMR strategy. The residue assignment strategy is then extended to the BHA:HRPC-CN complex. Two Phe rings (Phe 68 and Phe 179) and an Ala (Ala 140) are shown to be in primary dipolar contact to BHA. The shift changes induced by substrate binding are shown to reflect primarily changes in the FeCN tilt from the heme normal. The present results demonstrate the practicality of detailed solution 1H NMR investigation of the manner in which substrate binding is perturbed by either variable substrates or point mutations of HRP.
Collapse
Affiliation(s)
- J S de Ropp
- NMR Facility, Department of Chemistry, University of California, Davis 95616, USA
| | | | | |
Collapse
|
19
|
Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 1999; 31:223-35. [PMID: 9987124 DOI: 10.1046/j.1365-2958.1999.01164.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58-60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (C alpha-distance 1.2 A). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP.
Collapse
Affiliation(s)
- F J Ruiz-Dueñas
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
20
|
Adak S, Banerjee RK. Haem propionates control oxidative and reductive activities of horseradish peroxidase by maintaining the correct orientation of the haem. Biochem J 1998; 334 ( Pt 1):51-6. [PMID: 9693101 PMCID: PMC1219660 DOI: 10.1042/bj3340051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of haem propionates in oxidative and reductive reactions catalysed by horseradish peroxidase (HRP) was studied after successful reconstitution of ferric protoporphyrin IX dimethyl ester (PPDME) into the apoperoxidase. The reconstituted enzyme oxidizes neither guaiacol (aromatic electron donor) nor iodide or thiocyanate (inorganic donor). Although the reconstituted enzyme binds guaiacol with a similar Kd (13 mM) to that of the native enzyme (10 mM), the Kd for SCN- binding (5 mM) is decreased 20-fold compared with that of the native enzyme (100 mM). This indicates that haem propionates hinder the entry or binding of inorganic anion to the active site of the native HRP. However, the reconstituted enzyme is catalytically inactive as it does not form spectroscopically detectable compound II with H2O2. CD measurements indicate a significant loss of haem CD spectrum of the reconstituted enzyme at 409 nm, suggesting a loss of asymmetry of the haem-protein interaction. Thus the inability of the reconstituted enzyme to form catalytic intermediates results from the change in orientation of the haem due to loss of interactions via the haem propionates. HRP also catalyses reductive reactions such as reduction of iodine (I+) in the presence of EDTA and H2O2. The reconstituted enzyme cannot catalyse I+ reduction because of the loss of I+ binding to the haem propionate. Since I+ reduction requires formation of the catalytically active enzyme-I+-EDTA ternary complex, the loss of reductive activity is primarily due to the loss of active enzyme formation. Haem propionates thus play a vital role in the oxidative and reductive reactions of HRP by favouring the formation of catalytic intermediates with H2O2 by maintaining the correct orientation of the haem with respect to the surrounding residues.
Collapse
Affiliation(s)
- S Adak
- Department of Physiology, Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Calcutta-700032, India
| | | |
Collapse
|
21
|
Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 1998; 37:8054-60. [PMID: 9609699 DOI: 10.1021/bi980234j] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three-dimensional structure of recombinant horseradish peroxidase in complex with BHA (benzhydroxamic acid) is the first structure of a peroxidase-substrate complex demonstrating the existence of an aromatic binding pocket. The crystal structure of the peroxidase-substrate complex has been determined to 2.0 A resolution with a crystallographic R-factor of 0.176 (R-free = 0. 192). A well-defined electron density for BHA is observed in the peroxidase active site, with a hydrophobic pocket surrounding the aromatic ring of the substrate. The hydrophobic pocket is provided by residues H42, F68, G69, A140, P141, and F179 and heme C18, C18-methyl, and C20, with the shortest distance (3.7 A) found between heme C18-methyl and BHA C63. Very little structural rearrangement is seen in the heme crevice in response to substrate binding. F68 moves to form a lid on the hydrophobic pocket, and the distal water molecule moves 0.6 A toward the heme iron. The bound BHA molecule forms an extensive hydrogen bonding network with H42, R38, P139, and the distal water molecule 2.6 A above the heme iron. This remarkably good match in hydrogen bond requirements between the catalytic residues of HRPC and BHA makes the extended interaction between BHA and the distal heme crevice of HRPC possible. Indeed, the ability of BHA to bind to peroxidases, which lack a peripheral hydrophobic pocket, suggests that BHA is a general counterpart for the conserved hydrogen bond donors and acceptors of the distal catalytic site. The closest aromatic residue to BHA is F179, which we predict provides an important hydrophobic interaction with more typical peroxidase substrates.
Collapse
Affiliation(s)
- A Henriksen
- Department of Chemistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Candeias LP, Gěbicka L. Investigation of mechanisms of peroxidase-catalyzed reactions by radiation-chemical techniques. J Radioanal Nucl Chem 1998. [DOI: 10.1007/bf02383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Chang YT, Veitch NC, Loew GH. A Theoretical Study of Benzhydroxamic Acid Binding Modes in Horseradish Peroxidase. J Am Chem Soc 1998. [DOI: 10.1021/ja973907e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Tyng Chang
- Contribution from the Molecular Research Institute, 845 Page Mill Road, Palo Alto, California 94304-1011, and Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, England
| | - Nigel C. Veitch
- Contribution from the Molecular Research Institute, 845 Page Mill Road, Palo Alto, California 94304-1011, and Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, England
| | - Gilda H. Loew
- Contribution from the Molecular Research Institute, 845 Page Mill Road, Palo Alto, California 94304-1011, and Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, England
| |
Collapse
|
24
|
Henriksen A, Welinder KG, Gajhede M. Structure of barley grain peroxidase refined at 1.9-A resolution. A plant peroxidase reversibly inactivated at neutral pH. J Biol Chem 1998; 273:2241-8. [PMID: 9442067 DOI: 10.1074/jbc.273.4.2241] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The crystal structure of the major peroxidase of barley grain (BP 1) has been solved by molecular replacement and phase combination and refined to an R-factor of 19.2% for all data between 38 and 1.9 A. The refined model includes amino acid residues 1-309, one calcium ion, one sodium ion, iron-protoporphyrin IX, and 146 solvent molecules. BP 1 has the apparently unique property of being unable to catalyze the reaction with the primary substrate hydrogen peroxide to form compound I at pH values > 5, a feature investigated by obtaining crystal structure data at pH 5.5, 7.5, and 8.5. Structural comparison shows that the overall fold of inactive barley grain peroxidase at these pH values resembles that of both horseradish peroxidase C and peanut peroxidase. The key differences between the structures of active horseradish peroxidase C and inactive BP 1 include the orientation of the catalytic distal histidine, disruption of a hydrogen bond between this histidine and a conserved asparagine, and apparent substitution of calcium at the distal cation binding site with sodium at pH 7.5. These profound changes are a result of a dramatic structural rearrangement to the loop region between helices B and C. This is the first time that structural rearrangements linked to active site chemistry have been observed by crystallography in the peroxidase domain distal to heme.
Collapse
Affiliation(s)
- A Henriksen
- Department of Physical Chemistry, University of Copenhagen, København O, Denmark.
| | | | | |
Collapse
|
25
|
Veitch NC, Gao Y, Smith AT, White CG. Identification of a critical phenylalanine residue in horseradish peroxidase, Phe179, by site-directed mutagenesis and 1H-NMR: implications for complex formation with aromatic donor molecules. Biochemistry 1997; 36:14751-61. [PMID: 9398195 DOI: 10.1021/bi9718402] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional and structural significance of Phe179 of horseradish peroxidase isoenzyme C (HRP C) has been investigated by site-directed mutagenesis. This residue is located in a structurally variable insertion between helices F and G, a motif unique to peroxidases of higher plants. Results obtained for three recombinant enzymes, with Phe179 substituted by Ala, His, or Ser, provide the first demonstration of the importance of this side chain for the binding of aromatic donor molecules. Experimental parameters for direct comparison with the wild-type enzyme were obtained by extensive solution state characterization using both optical and 1H-NMR spectroscopy. Significant chemical shift variations for resonances associated with the exposed heme edge, notably heme methyl C18H3 and heme propionate C17(1)H2, were recorded in NMR spectra of both the resting and cyanide-ligated states of the three Phe179 mutants. Furthermore, comparison of NOE connectivities in NOESY spectra of cyanide-ligated wild-type and mutant enzymes enabled the elusive assignment of the aromatic side chain in close proximity to heme methyl C18H3 to be made to Phe179. Replacement of Phe179 by Ala resulted in an 80-fold decrease in the binding affinity of the cyanide-ligated enzyme for benzhydroxamic acid, with a Kd value similar to that determined for cyanide-ligated HRP A2 (an acidic isoenzyme with valine at position 179). The binding affinity of Phe179-->Ser was similarly decreased, while that of Phe179-->His was partially restored relative to wild-type HRP C. Cyanide-ligated Phe179-->His HRP C exhibited a unique pH-dependent spectral transition associated with a pKa value of 6.5 +/- 0.2, assigned to the His179 side chain. Two closely related enzyme forms exhibiting different affinities for benzhydroxamic acid were observed at neutral pH and above, indicating that the protonation state of His179 gave rise to microheterogeneity in the aromatic donor molecule binding site.
Collapse
Affiliation(s)
- N C Veitch
- Jodrell Laboratory, Royal Botanic Gardens, surrey, U.K.
| | | | | | | |
Collapse
|
26
|
Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL. Crystal structure of horseradish peroxidase C at 2.15 A resolution. NATURE STRUCTURAL BIOLOGY 1997; 4:1032-8. [PMID: 9406554 DOI: 10.1038/nsb1297-1032] [Citation(s) in RCA: 517] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The crystal structure of horseradish peroxidase isozyme C (HRPC) has been solved to 2.15 A resolution. An important feature unique to the class III peroxidases is a long insertion, 34 residues in HRPC, between helices F and G. This region, which defines part of the substrate access channel, is not present in the core conserved fold typical of peroxidases from classes I and II. Comparison of HRPC and peanut peroxidase (PNP), the only other class III (higher plant) peroxidase for which an X-ray structure has been completed, reveals that the structure in this region is highly variable even within class III. For peroxidases of the HRPC type, characterized by a larger FG insertion (seven residues relative to PNP) and a shorter F' helix, we have identified the key residue involved in direct interactions with aromatic donor molecules. HRPC is unique in having a ring of three peripheral Phe residues, 142, 68 and 179. These guard the entrance to the exposed haem edge. We predict that this aromatic region is important for the ability of HRPC to bind aromatic substrates.
Collapse
Affiliation(s)
- M Gajhede
- Department of Chemistry, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Hill AP, Modi S, Sutcliffe MJ, Turner DD, Gilfoyle DJ, Smith AT, Tam BM, Lloyd E. Chemical, spectroscopic and structural investigation of the substrate-binding site in ascorbate peroxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:347-54. [PMID: 9346287 DOI: 10.1111/j.1432-1033.1997.00347.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of recombinant ascorbate peroxidase (APX) with its physiological substrate, ascorbate, has been studied by electronic and NMR spectroscopies, and by phenylhydrazine-modification experiments. The binding interaction for the cyanide-bound derivative (APX-CN) is consistent with a 1:1 stoichiometry and is characterised by an equilibrium dissociation binding constant. Kd, of 11.6 +/- 0.4 microM (pH 7.002, mu = 0.10 M, 25.0 degrees C). Individual distances between the non-exchangeable substrate protons of APX-CN and the haem iron were determined by paramagnetic-relaxation NMR measurements, and the data indicate that the ascorbate binds 0.90-1.12 nm from the haem iron. The reaction of ferric APX with the suicide substrate phenylhydrazine yields predominantly (60%) a covalent haem adduct which is modified at the C20 carbon, indicating that substrate binding and oxidation is close to the exposed C20 position of the haem, as observed for other classical peroxidases. Molecular-modelling studies, using the NNM-derived distance restraints in conjunction with the crystal structure of the enzyme [Patterson, W. R. & Poulos, T. L. (1995) Biochemistry 34, 4331-4341], are consistent with binding of the substrate close to the C20 position and a possible functional role for alanine 134 (proline in other class-III peroxidases) is implicated.
Collapse
Affiliation(s)
- A P Hill
- Department of Chemistry, University of Leicester, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Adak S, Mazumdar A, Banerjee RK. Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate. J Biol Chem 1997; 272:11049-56. [PMID: 9110998 DOI: 10.1074/jbc.272.17.11049] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The catalytic turnover of horseradish peroxidase (HRP) to oxidize SCN- is a hundredfold lower than that of lactoperoxidase (LPO) at optimum pH. While studying the mechanism, HRP was found to be reversibly inactivated following pseudo-first order kinetics with a second order rate constant of 400 M-1 min-1 when incubated with SCN- and H2O2. The slow rate of SCN- oxidation is increased severalfold in the presence of free radical traps, 5-5-dimethyl-1-pyrroline N-oxide or alpha-phenyl-tert-butylnitrone, suggesting the plausible role of free radical or radical-derived product in the inactivation. Spectral studies indicate that SCN- at a lower concentrations slowly reduces compound II to native state by one-electron transfer as evidenced by a time-dependent spectral shift from 418 to 402 nm through an isosbestic point at 408 nm. In the presence of higher concentrations of SCN-, a new stable Soret peak appears at 421 nm with a visible peak at 540 nm, which are the characteristics of the inactivated enzyme. The one-electron oxidation product of SCN- was identified by electron spin resonance spectroscopy as 5-5-dimethyl-1-pyrroline N-oxide adduct of the sulfur-centered thiocyanate radical (aN = 15.0 G and abetaH = 16.5 G). The inactivation of the enzyme in the presence of SCN- and H2O2 is prevented by electron donors such as iodide or guaiacol. Binding studies indicate that both iodide and guaiacol compete with SCN- for binding at or near the SCN- binding site and thus prevent inactivation. The spectral characteristics of the inactivated enzyme are exactly similar to those of the native HRP-CN- complex. Quantitative measurements indicate that HRP produces a 10-fold higher amount of CN- than LPO when incubated with SCN- and H2O2. As HRP has higher affinity for CN- than LPO, it is concurrently inactivated by CN- formed during SCN- oxidation, which is not observed in case of LPO. This study further reveals that HRP catalyzes SCN- oxidation by two one-electron transfers with the intermediate formation of thiocyanate radicals. The radicals dimerize to form thiocyanogen, (SCN)2, which is hydrolyzed to form CN-. As LPO forms OSCN- as the major stable oxidation product through a two-electron transfer mechanism, it is not significantly inactivated by CN- formed in a small quantity.
Collapse
Affiliation(s)
- S Adak
- Department of Physiology, Indian Institute of Chemical Biology, Calcutta 700 032, India
| | | | | |
Collapse
|
29
|
Ostergaard L, Abelskov AK, Mattsson O, Welinder KG. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture. FEBS Lett 1996; 398:243-7. [PMID: 8977116 DOI: 10.1016/s0014-5793(96)01244-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely sequenced. The cDNA clone comprised 1194 bp and encodes a 30 residue signal peptide and a 305 residue mature protein (Mr 31,966). The sequence of the mature protein is 95% identical to the well-characterized horseradish peroxidase HRP A2 and has therefore been designated ATP A2. Three introns at positions identical to those found in Arabidopsis and horseradish genes encoding cationic peroxidases were identified. RT-PCR analysis revealed root-specific expression.
Collapse
Affiliation(s)
- L Ostergaard
- Department of Protein Chemistry, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
30
|
Zhao D, Gilfoyle DJ, Smith AT, Loew GH. Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites. Proteins 1996; 26:204-16. [PMID: 8916228 DOI: 10.1002/(sici)1097-0134(199610)26:2<204::aid-prot10>3.0.co;2-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, two alternative three-dimensional (3D) models of horseradish peroxidase (HRP-C)-differing mainly in the structure of a long untemplated insertion-were refined, systematically assessed, and used to make predictions that can both guide and be tested by future experimental studies. A key first step in the model-building process was a procedure for multiple sequence alignment based on structurally conserved regions and key conserved residues, including those side chains providing ligands to the two Ca2+ binding sites. The model refinements reported here include (1) optimization of side-chain conformations; (3) addition of structural waters using a template-independent procedure; (2) structural refinement of the untemplated 34 amino acid insertion located between the F and G helices, using both energy criteria and NMR data; (4) unconstrained energy optimization of the refined models. Using these procedures, two refined structures of HRP-C were obtained, differing mainly in the conformation of this long insertion. The presence of residues in this insertion that could potentially interact with bound substrates suggests a functional role that may be related to the general ability of class III peroxidases to form stable 1:1 complexes with a variety of substrates. The structural validity of the models was systematically assessed by a variety of criteria. Most notably, the ProsaII z scores and Profiles 3D scores of the two HRP-C models indicated that they are significantly better than would be obtained by simple amino acid replacement, using any of the known structures as a template. These two 3D HRP-C models, were then used to predict candidate residues for the assignment of NOESY cross-peaks previously noted in 2D-NMR studies. Specifically, the residues known as Ile X, Phe A, Phe B, aliphatic residue Q, and Ile T. Candidate substrate binding sites were also identified and compared with experimentally based predictions. This work is timely because new X-ray structures are anticipated that will facilitate the validation of these procedures.
Collapse
Affiliation(s)
- D Zhao
- Molecular Research Institute, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|
31
|
Gilfoyle DJ, Rodriguez-Lopez JN, Smith AT. Probing the aromatic-donor-binding site of horseradish peroxidase using site-directed mutagenesis and the suicide substrate phenylhydrazine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:714-22. [PMID: 8612649 DOI: 10.1111/j.1432-1033.1996.00714.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The haem groups from two classes of site-directed mutants of horseradish peroxidase isoenzyme C (HRP-C) (distal haem pocket mutants, [H42L]HRP-C* and [R38K]-HRP-C* and peripheral-haem-access-channel mutants, [F142A]HRP-C* and [F143A]HRP-C*) were extracted and analysed by reverse-phase HPLC after phenylhydrazine-induced suicide inactivation. The relative abundance of the two covalently modified haems, C20-phenyl (delta-meso phenyl) and C18-hydroxymethyl haem, provided a sensitive topological probe for changes induced in the protein architecture in the vicinity of the haem active site and substrate-access channel. Although differing considerably in their efficiency as peroxidases ([H42L]HRP-C* exhibited only approximately 0.03% of the peroxidase activity of wild type), the variants studied gave rise to a modification pattern typical of an exposed haem edge thereby strengthening the argument that it is the overall protein topology rather than the intrinsic catalytic activity of the active site that determines the sites of covalent haem modification. Mutants which showed impaired ability to bind the aromatic donor benzhydroxamic acid were less readily modified by the phenyl radical at the haem C18-methyl position although the level of arylation at the haem C20 position remained remarkable constant. Our findings suggest that the overall efficacy of haem modification catalysed by HRP-C during turnover with phenylhydrazine and its vulnerability towards inactivation are related to its general ability to bind aromatic donor molecules. Results from phenylhydrazine treatment of HRP-C wild-type and mutant variants were compared with those obtained for Coprinus cinereus peroxidase, an enzyme which from its structure is known to have a remarkably open access channel to the haem edge. We show evidence that C. cinereus peroxidase is able to bind benzhydroxamic acid, albeit with a relatively high Kd (Kd 3.7 mM), a probe for aromatic-donor binding. We suggest reasons why phenylhydrazine-treated C. cinereus peroxidase was more resistant to haem modification and phenyl-radical-based inactivation than HRP-C.
Collapse
Affiliation(s)
- D J Gilfoyle
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
32
|
Modern Enzymology of Plant Peroxidases. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(08)60299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Hiner AN, Hernández-Ruíz J, García-Cánovas F, Smith AT, Arnao MB, Acosta M. A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:506-12. [PMID: 8536696 DOI: 10.1111/j.1432-1033.1995.506_b.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism-based inactivation of four horseradish peroxidase (HRP-C) enzyme variants has been studied kinetically with either hydrogen peroxide or the xenobiotic m-chloroperoxybenzoic acid (mClO2-BzOH) as sole substrate. The concentration and time dependence of inactivation was investigated for the wild-type plant enzyme (HRP-C), the unglycosylated recombinant enzyme (HRP-C*), and two site-directed mutants with Phe143 replaced by Ala ([F143A]HRP-C*) or Arg38 replaced by Lys ([R38K]HRP-C*). The number of turnovers (r) of H2O2 required to completely inactivate the enzymes was found to vary between the different enzymes with HRP-C being most resistant to inactivation (r = 625), HRP-C* and [F143A]HRP-C* being approximately twice as sensitive (r = 335 and 385, respectively) in comparison, and [R38K]HRP-C* being inactivated much more easily (r = 20). In the cases of HRP-C* and [F143A]HRP-C*, compared to HRP-C the differences were due to the absence of glycosylation on the exterior of the proteins, whilst the [R38K]HRP-C* variant exhibited a distinct mechanistic difference. When mClO2BzOH was used as the substrate the differences in sensitivity to inactivation disappeared. The values of r were all around 3 reflecting the strong affinity of mClO2BzOH for the active site. The apparent rate constant for inactivation by H2O2 was found to be about twofold higher in [R38K]HRP-C* than the other enzymes and the catalytic constant for turnover of H2O2 was approximately ten times lower. The affinity of compound I for H2O2 leading to the formation of a transitory intermediate implicated in the inactivation of peroxidase decreased in the order HRP-C, HRP-C*, [F143A]HRP-C*, [R38K]HRP-C*.
Collapse
Affiliation(s)
- A N Hiner
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Spain
| | | | | | | | | | | |
Collapse
|