1
|
Friganović T, Borko V, Weitner T. Protein sialylation affects the pH-dependent binding of ferric ion to human serum transferrin. Dalton Trans 2024; 53:10462-10474. [PMID: 38873789 DOI: 10.1039/d4dt01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Physiological or pathophysiological changes lead to posttranslational changes in the sialic acid content of human serum transferrin (hTf), an essential mediator of iron transport in the human body, resulting in a significantly increased concentration of desialylated hTf. The intrinsic fluorescence quenching upon binding of iron to hTf was successfully modeled using the binding polynomial for two iron-binding sites, allowing measurements in a high-throughput format. Removal of sialic acid residues resulted in a 3-fold increase in iron binding affinity for both sites of hTf at pH 7.4. The pH-dependence of iron binding showed significant differences in equilibrium constants, resulting in a 10-fold increase in binding affinity for desialylated hTf at pH 5.9. The changes in hTf sialylation apparently result in tuning of the stability of the conformational state, which in turn contributes to the stability of the diferric hTf. The observed differences in the conditional thermodynamic equilibrium constants suggest that the desialylated protein has a higher preference for diferric hTf over monoferric hTf species down to pH 6.5, which may also influence the interaction with transferrin receptors that preferentially bind to diferric hTf. The results suggest a link between changes in hTf glycan structure and alterations in iron binding equilibrium associated with tissue acidosis.
Collapse
Affiliation(s)
- Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Borko V, Friganović T, Weitner T. Preparation and characterization of iron(III) nitrilotriacetate complex in aqueous solutions for quantitative protein binding experiments. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6499-6513. [PMID: 37966722 DOI: 10.1039/d3ay01261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Various preparations of iron(III) nitrilotriacetate (FeNTA) solution reported in the literature lack a comprehensive method for accurate determination of FeNTA concentration and often result in unstable solutions. A detailed procedure for the preparation of FeNTA solution is presented that includes the standardization of both components of the chelate. The standardization of the components allowed the accurate determination of the molar absorption coefficients for the calculation of the FeNTA concentration in two different buffers at pH 5.6 and 7.4. The variation of pH in this range or ionic strength in the range from 0 M to 3 M (KCl) has little effect on the value of the molar absorption coefficient. The precise concentrations of all species involved in the equilibria between Fe and NTA were determined in the pH range 2-12 using the Jenkins-Traub algorithm to solve the 5th-order polynomial in Microsoft Excel. In view of the experimental observations and the calculated distribution of species, the stability of FeNTA solutions may be affected by the Fe : NTA ratio and the total concentrations, with dilute solutions and those with an excess of NTA over Fe showing higher stability.
Collapse
Affiliation(s)
- Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| | - Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Parrow NL, Li Y, Feola M, Guerra A, Casu C, Prasad P, Mammen L, Ali F, Vaicikauskas E, Rivella S, Ginzburg YZ, Fleming RE. Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 2019; 134:1373-1384. [PMID: 31434707 PMCID: PMC6839954 DOI: 10.1182/blood.2018893099] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.
Collapse
Affiliation(s)
- Nermi L Parrow
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Yihang Li
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Maria Feola
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Princy Prasad
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Luke Mammen
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Faris Ali
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Edvinas Vaicikauskas
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yelena Z Ginzburg
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Sagasser J, Ma BN, Baecker D, Salcher S, Hermann M, Lamprecht J, Angerer S, Obexer P, Kircher B, Gust R. A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. J Med Chem 2019; 62:8053-8061. [PMID: 31369259 DOI: 10.1021/acs.jmedchem.9b00814] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chlorido[N,N'-disalicylidene-1,2-phenylenediamine]iron(III) complexes generate lipid-based ROS and induce ferroptosis in leukemia and neuroblastoma cell lines. The extent of ferroptosis on the mode of action is regulated by simple modifications of the substituents at the 1,2-phenylenediamine moiety. In HL-60 cells, the unsubstituted lead exclusively caused ferroptosis. For instance, a 4-F substituent shifted the mode of action toward both ferroptosis and necroptosis, while the analogously chlorinated derivative exerted only necroptosis. Remarkably, cell-death in NB1 neuroblastoma cells was solely induced by ferroptosis, independent of the used substituents. The effects were higher than that of the therapeutically applied drug cisplatin. These data clearly demonstrate for the first time that not only iron ions but also iron salophene complexes are potent ferroptosis inducers, which can be optimized as antitumor agents.
Collapse
Affiliation(s)
- Jessica Sagasser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Benjamin N Ma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Daniel Baecker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Stefan Salcher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Julia Lamprecht
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Stefanie Angerer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Department of Pediatrics II , Medical University Innsbruck , Innrain 66 , 6020 Innsbruck , Austria
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
5
|
Hai J, Serradji N, Mouton L, Redeker V, Cornu D, El Hage Chahine JM, Verbeke P, Hémadi M. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway. PLoS One 2016; 11:e0150031. [PMID: 26919720 PMCID: PMC4768884 DOI: 10.1371/journal.pone.0150031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023] Open
Abstract
Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.
Collapse
Affiliation(s)
- Jun Hai
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Nawal Serradji
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Ludovic Mouton
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience, CNRS-UMR 9197, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - David Cornu
- Service d’Identification et de Caractérisation des Protéines, CNRS-UMR 9198, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Michel El Hage Chahine
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| | - Philippe Verbeke
- UMR 1149 Inserm, Université Paris Diderot, Sorbonne Paris Cité, ERL-CNRS 8252, Faculté de Médecine, site Bichat, 16 rue Henri Huchard, 75018 Paris, France
- * E-mail: (MH); (JEHC); (PV)
| | - Miryana Hémadi
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| |
Collapse
|
6
|
Abdizadeh H, Atilgan C. Predicting long term cooperativity and specific modulators of receptor interactions in human transferrin from dynamics within a single microstate. Phys Chem Chem Phys 2016; 18:7916-26. [DOI: 10.1039/c5cp05107j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PRS identifies regions contacting rapidly evolving residues that mechanically manipulate dissociation from the pathogen in the human transferrin–bacterial receptor complex.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| |
Collapse
|
7
|
Eid C, Hémadi M, Ha-Duong NT, El Hage Chahine JM. Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta Gen Subj 2014; 1840:1771-81. [DOI: 10.1016/j.bbagen.2014.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/03/2023]
|
8
|
Majka G, Śpiewak K, Kurpiewska K, Heczko P, Stochel G, Strus M, Brindell M. A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Anal Bioanal Chem 2013; 405:5191-200. [PMID: 23604471 PMCID: PMC3656221 DOI: 10.1007/s00216-013-6943-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
Abstract
Lactoferrin is considered as a part of the innate immune system that plays a crucial role in preventing bacterial growth, mostly via an iron sequestration mechanism. Recent data show that bovine lactoferrin prevents late-onset sepsis in preterm very low birth weight neonates by serving as an iron chelator for some bacterial strains; thus, it is very important to control the iron saturation level during diet supplementation. An accurate estimation of lactoferrin iron saturation is essential not only because of its clinical applications but also for a wide range of biochemical experiments. A comprehensive method for the quantification of iron saturation in lactoferrin preparations was developed to obtain a calibration curve enabling the determination of iron saturation levels relying exclusively on the defined ratio of absorbances at 280 and 466 nm (A280/466). To achieve this goal, selected techniques such as spectrophotometry, ELISA, and ICP-MS were combined. The ability to obtain samples of lactoferrin with determination of its iron content in a simple and fast way has been proven to be very useful. Furthermore, a similar approach could easily be implemented to facilitate the determination of iron saturation level for other metalloproteins in which metal binding results in the appearance of a distinct band in the visible part of the spectrum.
Collapse
Affiliation(s)
- Grzegorz Majka
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
9
|
El Hage Chahine JM, Hémadi M, Ha-Duong NT. Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta Gen Subj 2011; 1820:334-47. [PMID: 21872645 DOI: 10.1016/j.bbagen.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. SCOPE OF THE REVIEW This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. MAJOR CONCLUSIONS The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. GENERAL SIGNIFICANCE A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Jean-Michel El Hage Chahine
- Université Paris Diderot Sorbonne Paris Cité–CNRS, Interfaces, Traitements, Organisation Dynamique des Systèmes–UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf,75205 Paris Cedex 13, France.
| | | | | |
Collapse
|
10
|
Hémadi M, Ha-Duong NT, El Hage Chahine JM. Can Uranium Be Transported by the Iron-Acquisition Pathway? Ur Uptake by Transferrin. J Phys Chem B 2011; 115:4206-15. [DOI: 10.1021/jp111950c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miryana Hémadi
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Nguyêt-Thanh Ha-Duong
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- ITODYS, Interactions, Traitements et Organisation et Dynamique des Systèmes, Université Paris-Diderot, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
11
|
Ko K, Mendonca A, Ahn D. Influence of Zinc, Sodium Bicarbonate, and Citric Acid on the Antibacterial Activity of Ovotransferrin Against Escherichia coli O157:H7 and Listeria monocytogenes in Model Systems and Ham. Poult Sci 2008; 87:2660-70. [DOI: 10.3382/ps.2007-00503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Evolutionary analysis of the transferrin gene in Antarctic Notothenioidei: A history of adaptive evolution and functional divergence. Mar Genomics 2008; 1:95-101. [DOI: 10.1016/j.margen.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 10/23/2008] [Indexed: 01/09/2023]
|
13
|
Biver T, Friani R, Gattai C, Secco F, Tiné MR, Venturini M. Mechanism of Indium(III) Exchange between NTA and Transferrin: A Kinetic Approach. J Phys Chem B 2008; 112:12168-73. [DOI: 10.1021/jp8045033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Rossella Friani
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Chiara Gattai
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Fernando Secco
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Maria Rosaria Tiné
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Marcella Venturini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| |
Collapse
|
14
|
Kinetics and thermodynamics of complex formation with iron of a new series of dicatecholspermidine siderophore-like ligands. J Inorg Biochem 2008; 102:636-46. [DOI: 10.1016/j.jinorgbio.2007.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/17/2007] [Accepted: 10/12/2007] [Indexed: 11/21/2022]
|
15
|
Halbrooks PJ, Giannetti AM, Klein JS, Björkman PJ, Larouche JR, Smith VC, MacGillivray RTA, Everse SJ, Mason AB. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Biochemistry 2006; 44:15451-60. [PMID: 16300393 DOI: 10.1021/bi0518693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transferrins (TF) are a family of bilobal glycoproteins that tightly bind ferric iron. Each of the homologous N- and C-lobes contains a single iron-binding site situated in a deep cleft. Human serum transferrin (hTF) serves as the iron transport protein in the blood; circulating transferrin binds to receptors on the cell surface, and the complex is internalized by endocytosis. Within the cell, a reduction in pH leads to iron release from hTF in a receptor-dependent process resulting in a large conformational change in each lobe. In the hTF N-lobe, two critical lysines facilitate this pH-dependent conformational change allowing entry of a chelator to capture the iron. In the C-lobe, the lysine pair is replaced by a triad of residues: Lys534, Arg632, and Asp634. Previous studies show that mutation of any of these triad residues to alanine results in significant retardation of iron release at both pH 7.4 and pH 5.6. In the present work, the role of the three residues is probed further by conversion to the residues observed at the equivalent positions in ovotransferrin (Q-K-L) and human lactoferrin (K-N-N) as well as a triad with an interchanged lysine and arginine (K534R/R632K). As expected, all of the constructs bind iron and associate with the receptor with nearly the same K(D) as the wild-type monoferric hTF control. However, interesting differences in the effect of the substitutions on the iron release rate in the presence and absence of the receptor at pH 5.6 are observed. Additionally, titration with KCl indicates that position 632 must have a positively charged residue to elicit a robust rate acceleration as a function of increasing salt. On the basis of these observations, a model for iron release from the hTF C-lobe is proposed. These studies provide insight into the importance of charge and geometry of the amino acids at these positions as a partial explanation for differences in behavior of individual TF family members, human serum transferrin, ovotransferrin, and lactoferrin. The studies collectively highlight important features common to both the N- and C-lobes of TF and the critical role of the receptor in iron release.
Collapse
Affiliation(s)
- Peter J Halbrooks
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rinaldo D, Field MJ. A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein. Biophys J 2004; 85:3485-501. [PMID: 14645044 PMCID: PMC1303656 DOI: 10.1016/s0006-3495(03)74769-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.
Collapse
Affiliation(s)
- David Rinaldo
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique, and the Centre National de Recherche Scientifique, Grenoble, France
| | | |
Collapse
|
17
|
Hémadi M, Miquel G, Kahn PH, El Hage Chahine JM. Aluminum exchange between citrate and human serum transferrin and interaction with transferrin receptor 1. Biochemistry 2003; 42:3120-30. [PMID: 12627980 DOI: 10.1021/bi020627p] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics and thermodynamics of Al(III) exchange between aluminum citrate (AlL) and human serum transferrin were investigated in the 7.2-8.9 pH range. The C-site of human serum apotransferrin in interaction with bicarbonate removes Al(III) from Al citrate with an exchange equilibrium constant K1 = (2.0 +/- 0.6) x 10(-2); a direct second-order rate constant k1 = 45 +/- 3 M(-1) x s(-1); and a reverse second-order rate constant k(-1) = (2.3 +/- 0.5) x 10(3) M(-1) x s(-1). The newly formed aluminum-protein complex loses a single proton with proton dissociation constant K1a = (15 +/- 3) nM to yield a first kinetic intermediate. This intermediate then undergoes a modification in its conformation followed by two proton losses; first-order rate constant k2 = (4.20 +/- 0.02) x 10(-2) s(-1) to produce a second kinetic intermediate, which in turn undergoes a last slow modification in the conformation to yield the aluminum-loaded transferrin in its final state. This last process rate-controls Al(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau3(-1) = (6 +/- 1) x 10(-5) x s(-1). The affinities involved in aluminum uptake by serum transferrins are about 10 orders of magnitude lower than those involved in the uptake of iron. The interactions of iron-loaded transferrins with transferrin receptor 1 occur with average dissociation constants of 3 +/- 1 and 5 +/- 1 nM for the only C-site iron-loaded and of 6.0 +/- 0.6 and 7 +/- 0.5 nM for the iron-saturated ST in the absence or presence of CHAPS, respectively. No interaction is detected between receptor 1 and aluminum-saturated or mixed C-site iron-loaded/N-site aluminum-loaded transferrin under the same conditions. The fact that aluminum can be solubilized by serum transferrin in biological fluids does not necessarily imply that its transfer from the blood stream to cytoplasm follows the receptor-mediated pathway of iron transport by transferrins.
Collapse
Affiliation(s)
- Miryana Hémadi
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris 7-CNRS UMR 7086, 1, rue Guy de la Brosse, 75005 Paris, France
| | | | | | | |
Collapse
|
18
|
Abstract
Iron loss in vitro by the iron scavenger bovine lactoferrin was investigated in acidic media in the presence of three different monoanions (NO(3)(-), Cl(-) and Br(-)) and one dianion (SO(4)(2-)). Holo and monoferric C-site lactoferrins lose iron in acidic media (pH< or =3.5) by a four-step mechanism. The first two steps describe modifications in the conformation affecting the whole protein, which occur also with apolactoferrin. These two processes are independent of iron load and are followed by a third step consisting of the gain of two protons. This third step is kinetically controlled by the interaction with two Cl(-), Br(-) and NO(3)(-) or one SO(4)(2-). In the fourth step, iron loss is under the kinetic control of a slow gain of two protons; third-order rate-constants k(2), 4.3(+/-0.2)x10(3), 3.4(+/-0.5)x10(3), 3.3(+/-0.5)x10(3) and 1.5(+/-0.5)x10(3) M(-2) s(-1) when the protein is in interaction with SO(4)(2-), NO(3)(-), Cl(-) or Br(-), respectively. This step is accompanied by the loss of the interaction with the anions; equilibrium constant K(2), 20+/-5 mM, 1.0(+/-0.2)x10(-1), 1.5(+/-0.5)x10(-1) and 1.0(+/-0.3)x10(-1) M(2), for SO(4)(-), NO(3)(-), Cl(-) and Br(-), respectively. This mechanism is very different from that determined in mildly acidic media at low ionic strength (micro<0.5) for the iron transport proteins, serum transferrin and ovotransferrin, with which no prior change in conformation or interaction with anions is required. These differences may result from the fact that in the transport proteins, the interdomain hydrogen bonds that consolidate the closed conformation of the iron-binding cleft occur between amino acid side-chain residues that can protonate in mildly acidic media. With bovine lactoferrin, most of the interdomain hydrogen bonds involved in the C-site and one of those involved in the N-site occur between amino acid side-chain residues that cannot protonate. The breaking of the interdomain H-bond upon protonation can trigger the opening of the iron cleft, facilitating iron loss in serum transferrin and ovotransferrin. This situation is, however, different in lactoferrin, where iron loss requires a prior change in conformation. This can explain why lactoferrin does not lose its iron load in acidic media and why it is not involved in iron transport in acidic endosomes.
Collapse
Affiliation(s)
- F B Abdallah
- Institut de Topologie et de Dynamique des Systèmes de l'Université Denis Diderot Paris 7, associé au CNRS, 1 rue Guy de la Brosse, 75005 Paris, France
| | | |
Collapse
|
19
|
Hirose M. The structural mechanism for iron uptake and release by transferrins. Biosci Biotechnol Biochem 2000; 64:1328-36. [PMID: 10945247 DOI: 10.1271/bbb.64.1328] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transferrins are a group of iron-binding proteins that control the levels of iron in the body fluids of vertebrates by their ability to bind two Fe3+ and two CO3(2-). The transferrin molecule, with a molecular mass of about 80 kDa, is folded into two similarly sized homologous N- and C-lobes that are stabilized by many intrachain disulfides. As observed by X-ray crystallography, each lobe is further divided into two similarly sized domains, domain 1 and domain 2, and an Fe3+-binding site is within the interdomain cleft. Four of the six Fe3+ coordination sites are occupied by protein ligands (2 Tyr residues, 1 Asp, and 1 His) and the other two by a bidentate CO3(2-). Upon uptake and release of Fe3+, transferrins undergo a large-scale conformational change depending on a common structural mechanism: domains 1 and 2 rotate as rigid bodies around a rotation axis that passes through the two antiparallel beta-strands linking the domains. The extent of the rotation is, however, variable for different transferrin species and lobes. As a Fe3+ release mechanisms at low pH from the N-lobes of serum transferrin and ovotransferrin, the structural evidence for 'dilysine trigger mechanism' is shown. A structural mechanism for the Fe3+ release in presence of a non-synergistic anion is proposed on the basis of the sulfate-bound apo crystal structure of the ovotransferrin N-lobe. Domain-opened structures with the coordinated Fe3+ by the two tyrosine residues are demonstrated in fragment and intact forms, and their functional implications as a possible intermediate for iron uptake and release are discussed.
Collapse
Affiliation(s)
- M Hirose
- The Research Institute for Food Science, Kyoto University, Uji, Japan
| |
Collapse
|
20
|
Pakdaman R, Abdallah FB, El Hage Chahine JM. Transferrin, is a mixed chelate-protein ternary complex involved in the mechanism of iron uptake by serum-transferrin in vitro? J Mol Biol 1999; 293:1273-84. [PMID: 10547300 DOI: 10.1006/jmbi.1999.3238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron uptake by transferrin from triacetohydroxamatoFe(III) (Fe(AHA)3) in the presence of bicarbonate has been investigated between pH 7 and 8.2. The protein transits from the opened apo- to the closed holoform by several steps with the accumulation of at least three kinetic intermediates. All these steps are accompanied by proton losses, probably occurring from the protein ligands and the side-chains involved in the interdomain H-bonding nets. The minor bihydroxamatoFe(III) species Fe(AHA)2 exchanges its iron with the C-site of apotransferrin in interaction with bicarbonate without detectable formation of any intermediate protein-iron-ligand mixed complex; direct second-order rate constant k1=4.15(+/-0.05)x10(7) M(-1) s(-1). The kinetic product loses a single proton and undergoes a modification in its conformation followed by the loss of two or three protons; first-order rate constant k2=3.25(+/-0.15) s(-1). This induces a new modification in the conformation; first-order rate constant k3=5.90(+/-0.30)x10(-2) s(-1). This new modification in conformation rate controls iron uptake by the N-site of the protein and is followed by a single proton loss; K3a=6.80 nM. Finally, the holoprotein or the monoferric transferrin in its thermodynamic equilibrated state is produced by a last modification in the conformation occurring in about 4000 seconds. But for the Fe(AHA)3 dissociation and the involvement of Fe(AHA)2 in the first step of iron uptake, this mechanism is identical to that reported for iron uptake from FeNAc3. This implies that the exchange of iron between a chelate and serum-transferrin occurs by a single general mechanism. The nature of the iron-providing chelate is only important for the first kinetic step of the exchange, which can be slowed to such an extent that it rate limits the exchange of iron.
Collapse
Affiliation(s)
- R Pakdaman
- Institut de Topologie et de Dynamique des Systèmes de l'Université Denis Diderot Paris 7, associé au CNRS, 1 rue Guy de la Brosse, Paris, 75005, France
| | | | | |
Collapse
|
21
|
Abdallah FB, Chahine JM. Transferrins, the mechanism of iron release by ovotransferrin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:912-20. [PMID: 10469158 DOI: 10.1046/j.1432-1327.1999.00596.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron release from ovotransferrin in acidic media (3 < pH < 6) occurs in at least six kinetic steps. The first is a very fast (</= 5 ms) decarbonation of the iron-loaded protein. Iron release from both sites of the protein is controlled by what appear to be slow proton transfers. The N-site loses its iron first in two steps, the first occurring in the tenth of a second range with second order rate constant k1 = (2.30 +/- 0.10) x 104 M-1.s-1, first order rate constant k-1 = (1.40 +/- 0.10) s-1 and equilibrium constant K1a = (60 +/- 6) microM. The second step occurs in the second range with a second order rate constant k2 = (5.2 +/- 0.15) x 103 M-1.s-1, first order rate constant k-2 = (0.2 +/- 0.02) s-1 and equilibrium constant K2a = (39 +/- 5) microM. Iron is afterward lost from the C-site of the protein by two different pathways, one in the presence of a strong Fe(III) ligand such as citrate and the other in the presence of weak ligands such as formate or acetate. The first step, common to both paths, is a slow proton uptake which occurs in the tens of second range with a second order rate constant k3 = (1.22 +/- 0.03) x 103 M-1.s-1 and equilibrium constant K3a = (1.0 +/- 0.1) mM. In the presence of citrate, this step is followed by formation of an intermediate complex with monoferric ovotransferrin; stability constant KLC = (0.435 +/- 0.015) mM. This last step is rate-controlled by slow proton gain which occurs in the hundred second range with a second order rate constant k4 = (1.05 +/- 0.05) x 104 M-1.s-1, first order rate constant k-4 = (1.0 +/- 0.1) x 10-2 s-1 and equilibrium constant K4a = (0.95 +/- 0.15) microM. In the presence of a weak iron(III) ligand such as acetate or formate, formation of an intermediate complex is not detected and iron release is controlled by two final slow proton uptakes. The first occurs in the hundred to thousand second range, second order rate constant k5 = (6.90 +/- 0.30) x 106 M-1.s-1. The last step occurs in the thousand second range. Iron release by ovotransferrin is similar but not identical to that of serum-transferrin. It is slower and occurs at lower pH values. However, as seen for serum-transferrin, it seems to involve the protonation of the amino acid side-chains involved in iron co-ordination and perhaps those implicated in interdomain H-bonds. The observed proton transfers are, then, probably controlled by the change in conformation of the binding lobes from closed when iron-loaded to open in the apo-form.
Collapse
Affiliation(s)
- F B Abdallah
- Institut de Topologie et de Dynamique des Systèmes, l'Université Denis Diderot Paris 7 associé au CNRS, Paris, France
| | | |
Collapse
|
22
|
Pakdaman R, El Hage Chahine JM. Transferrin--interactions of lactoferrin with hydrogen carbonate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:149-55. [PMID: 9363766 DOI: 10.1111/j.1432-1033.1997.t01-1-00149.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of apolactoferrin with hydrogen carbonate (bicarbonate) has been investigated in the pH range 6.5-9.2. In the absence of bicarbonate apolactoferrin loses a single proton with pK1a of 8.10. This proton loss is independent of the interaction with the synergistic anion. The C-site of apolactoferrin interacts with bicarbonate with a very low affinity (K(-1)C = 3.2 M(-1)). This process is accompanied by a proton loss, which is probably provided by the bicarbonate in interaction with the protein. This proton loss can possibly be the result of a shift in the proton dissociation constant, pKa, of the bicarbonate/carbonate acid/base equilibrium, which would decrease from pKa 10.35 to pK2a 6.90 in the bicarbonate-lactoferrin adduct. The N-site of the protein interacts with bicarbonate with an extremely low affinity, which excludes the presence of the N-site-synergistic anion adduct in neutral physiological media. Contrary to serum transferrin, the concentration of the apolactoferrin in interaction with bicarbonate is pH dependent. Between pH 7.4 and pH 9 with [HCO3-] about 20 mM, the concentration of the serum transferrin-bicarbonate adduct is always about 30%, whereas that of the apolactoferrin-synergistic anion adduct varies from 25% at pH 7.5 to 90% at pH 9. This implies that, despite an affinity for bicarbonate two orders of magnitude lower than that of serum transferrin, lactoferrin interacts better with the synergistic anion. This can be explained by the possible interaction of lactoferrin with carbonate in neutral media, whereas transferrin only interacts with bicarbonate.
Collapse
Affiliation(s)
- R Pakdaman
- Institut de Topologie et de Dynamique des Systèmes de l'Université Paris 7, France
| | | |
Collapse
|