1
|
|
2
|
Sefidbakht Y, Nazari K, Farivar F, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-011-0040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Yarman A, Badalyan A, Gajovic-Eichelmann N, Wollenberger U, Scheller FW. Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11. Biosens Bioelectron 2011; 30:320-3. [DOI: 10.1016/j.bios.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/29/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
4
|
Yarman A, Peng L, Wu Y, Bandodkar A, Gajovic-Eichelmann N, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW. Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0023-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
O'Reilly NJ, Magner E. The effect of solvent on the catalytic properties of microperoxidase-11. Phys Chem Chem Phys 2011; 13:5304-13. [DOI: 10.1039/c0cp02321c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Marques HM. Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 2007:4371-85. [PMID: 17909648 DOI: 10.1039/b710940g] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water-soluble haem-containing peptides obtained by proteolytic digestion of cytochrome c, the microperoxidases, have been used to explore aspects of the chemistry of iron porphyrins, and as mimics for some reactions catalysed by the haemoproteins, including the reactions catalysed by the peroxidases and the cytochromes P450. The preparation of the microperoxidases, their physical and chemical properties including their electronic structure, the kinetics and thermodynamics of their reactions with ligands, electrochemical studies and examples of their uses as haemoproteins mimics, is reviewed.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
7
|
Vladimirov YA, Proskurnina EV, Izmailov DY, Novikov AA, Brusnichkin AV, Osipov AN, Kagan VE. Cardiolipin activates cytochrome c peroxidase activity since it facilitates H(2)O(2) access to heme. BIOCHEMISTRY (MOSCOW) 2006; 71:998-1005. [PMID: 17009954 DOI: 10.1134/s0006297906090082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, the effect of liposomes consisting of tetraoleyl cardiolipin and dioleyl phosphatidylcholine (1 : 1, mol/mol) on the rate of three more reactions of Cyt c heme with H2O2 was studied: (i) Cyt c (Fe2+) oxidation to Cyt c (Fe3+), (ii) Fe...S(Met80) bond breaking, and (iii) heme porphyrin ring decomposition. It was revealed that the rates of all those reactions increased greatly in the presence of liposomes containing cardiolipin and not of those consisting of only phosphatidylcholine, and approximately to the same extent as peroxidase activity. These data suggest that cardiolipin activates specifically Cyt c peroxidase activity not only because it promotes Fe...S(Met80) bond breaking but also facilitates H2O2 penetration to the reaction center.
Collapse
Affiliation(s)
- Yu A Vladimirov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow 117192, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The pH dependence of the peroxidase activity (guaiacol assay) of the ferric hemeoctapeptide N-acetylmicroperoxidase-8 (N-AcMP8) was studied under conditions where formation of the Compound I analogue of the peroxidase enzymes is rate limiting. The pH profile of the reaction rate is consistent with a mechanism where both H2O2 and HO2- can displace H2O coordinated trans to neutral His but where the hydroxo complex of the hemepeptide (OH- trans to His) is kinetically inert. At pH > 11, where the proximal His ligand of Fe(III) ionizes to form a histidinate, the hydroxo complex (OH- trans to His-) becomes kinetically labile. A comparison of DeltaH(double dagger) and DeltaS(double dagger) values for the reaction of H2O2 and HO2-, obtained from the temperature dependence of the rate constants, with values for CN- and cysteine reported previously, shows that the activation parameters depend on the identity of the incoming ligand. This suggests that ligand substitution at Fe(III) in N-AcMP8 proceeds through an interchange mechanism.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa.
| |
Collapse
|
9
|
Hempen C, Liesener A, Karst U. Fluorescence and mass spectrometric detection schemes for simultaneous enzymatic conversions: Method development and comparison. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Okazaki SY, Nagasawa SI, Goto M, Furusaki S, Wariishi H, Tanaka H. Decolorization of azo and anthraquinone dyes in hydrophobic organic media using microperoxidase-11 entrapped in reversed micelles. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(02)00074-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Veeger C. Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase. J Inorg Biochem 2002; 91:35-45. [PMID: 12121760 DOI: 10.1016/s0162-0134(02)00393-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent stopped-flow kinetics demonstrated the existence of an intermediate before the occurrence of the final product of the reaction of both iron-containing microperoxidase-8 (Fe(III)MP-8) and manganese-containing microperoxidase-8 (Mn(III)MP-8) with H(2)O(2). The intermediate was assigned to be (hydro)peroxo-iron. With both mini-catalysts the final state obtained after 30-40 ms showed a resemblance to PorM(IV)MP-8[double bond]O(R(+)*); (R(+)*) is a radical located at the peptide. Quantum mechanical calculations indicate that hydroperoxo-iron is inactive as a catalytic intermediate in cytochrome P450 (P450)-type catalysis. Instead, the calculations suggest that peroxo-iron acts as the catalytic intermediate in P450-type catalysis. In addition, the calculations demonstrate that, although less likely, the possibility that oxenoid-iron acts as a catalytic intermediate in P450 catalysis cannot be fully excluded. An interesting aspect of the reactions catalysed by MP-8 is the possibility that, in view of the reversibility of the reactions between (hydro)peroxo-iron and oxenoid-iron, H(2)O plays a decisive role, at least in some cytochromes P450, in the removal of halogens, avoiding the production of compounds hazardous to the organism.
Collapse
Affiliation(s)
- Cees Veeger
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
12
|
Lemańska K, Szymusiak H, Tyrakowska B, Zieliński R, Soffers AE, Rietjens IM. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 2001; 31:869-81. [PMID: 11585705 DOI: 10.1016/s0891-5849(01)00638-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of the pH on antioxidant properties of a series of hydroxyflavones was investigated. The pKa of the individual hydroxyl moieties in the hydroxyflavones was compared to computer-calculated deprotonation energies. This resulted in a quantitative structure activity relationship (QSAR), which enables the estimation of pKa values of individual hydroxyl moieties, also in hydroxyflavones for which these pKa values are not available. Comparison of the pKa values to the pH-dependent antioxidant profiles, determined by the TEAC assay, reveals that for various hydroxyflavones the pH-dependent behavior is related to hydroxyl moiety deprotonation, resulting in an increase of the antioxidant potential upon formation of the deprotonated forms. Comparison of these experimental results to computer calculated O-H bond dissociation energies (BDE) and ionization potentials (IP) of the nondeprotonated and the deprotonated forms of the various hydroxyflavones indicates that especially the parameter reflecting the ease of electron donation, i.e., the IP, and not the BDE, is greatly influenced by the deprotonation. Based on these results it is concluded that upon deprotonation the TEAC value increases (radical scavenging capacity increases) because electron-, not H*-, donation becomes easier. Taking into account that the mechanism of radical scavenging antioxidant activity of the neutral form of the hydroxyflavones is generally considered to be hydrogen atom donation, this implies than not only the ease of radical scavenging, but also the mechanism of antioxidant action changes upon hydroxyflavone deprotonation.
Collapse
Affiliation(s)
- K Lemańska
- Faculty of Commodity Science, Poznan University of Economics, al. Niepodleglości 10, 60-967 Poznań, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- A Lombardi
- Department of Chemistry, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cynthia 45, I-80126 Napoli, Italy.
| | | | | |
Collapse
|
14
|
Yeh HC, Lin WY. Intense chemiluminescence from the oxidation of luminol with m-chloroperoxybenzoic acid catalyzed by Mn(III)-microperoxidase. Anal Chim Acta 2001. [DOI: 10.1016/s0003-2670(01)01139-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Diederix RE, Ubbink M, Canters GW. The peroxidase activity of cytochrome c-550 from Paracoccus versutus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4207-16. [PMID: 11488914 DOI: 10.1046/j.1432-1327.2001.02335.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Next to their natural electron transport capacities, c-type cytochromes possess low peroxidase and cytochrome P-450 activities in the presence of hydrogen peroxide. These catalytic properties, in combination with their structural robustness and covalently bound cofactor make cytochromes c potentially useful peroxidase mimics. This study reports on the peroxidase activity of cytochrome c-550 from Paracoccus versutus and the loss of this activity in presence of H2O2. The rate-determining step in the peroxidase reaction of cytochrome c-550 is the formation of a reactive intermediate, following binding of peroxide to the haem iron. The reaction rate is very low compared to horseradish peroxidase (approximately one millionth), because of the poor accessibility of the haem iron for H2O2, and the lack of a base catalyst such as the distal His of the peroxidases. This is corroborated by the linear dependence of the reaction rate on the peroxide concentration up to at least 1 M H2O2. Steady-state conversion of a reducing substrate, guaiacol, is preceded by an activation phase, which is ascribed to the build-up of amino-acid radicals on the protein. The inactivation kinetics in the absence of reducing substrate are mono-exponential and shown to be concurrent with haem degradation up to 25 mM H2O2 (pH 8.0). At still higher peroxide concentrations, inactivation kinetics are biphasic, as a result of a remarkable protective effect of H2O2, involving the formation of superoxide and ferrocytochrome c-550.
Collapse
Affiliation(s)
- R E Diederix
- Gorlaeus Laboratories, Institute of Chemistry, Leiden University, the Netherlands
| | | | | |
Collapse
|
16
|
Abstract
The present paper highlights and reviews current research in the field of hemoprotein models. Hemoproteins have been extensively studied in order to understand structure-function relationships, and to design new molecules with desired functions. A wide number of synthetic analogues have been developed, using quite different approaches. They differ in molecular structures, ranging from simple meso-substituted tetraaryl-metalloporphyrins and peptide-porphyrin conjugates. In this paper we summarize the state of the art on peptide based hemoprotein models. We also report here the approach used by us to develop a new class of molecules, named mimochromes. They can be regarded as miniaturized hemoproteins, because mimochromes are low molecular weight compounds with some structural and functional properties common to those of the parent high molecular weight protein. The basic structure of mimochromes is a deuteroporphyrin ring covalently linked to two helical peptide chains. Two molecules of this series have been fully characterized. All the information derived from their structural analysis has been applied to the design of new analogues with additional functions.
Collapse
Affiliation(s)
- F Nastri
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Reversible formation of high-valent-iron-oxo porphyrin intermediates in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06111-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Lombardi A, Nastri F, Sanseverino M, Maglio O, Pedone C, Pavone V. Miniaturized hemoproteins: design, synthesis and characterization of mimochrome II. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06180-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Osman AM, Boeren S, Boersma MG, Veeger C, Rietjens IM. Microperoxidase/H2O2-mediated alkoxylating dehalogenation of halophenol derivatives in alcoholic media. Proc Natl Acad Sci U S A 1997; 94:4295-9. [PMID: 9113983 PMCID: PMC20716 DOI: 10.1073/pnas.94.9.4295] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The results of this study report the H2O2-driven microperoxidase-8 (MP8)-catalyzed dehalogenation of halophenols such as 4-fluorophenol, 4-chlorophenol, 4-bromophenol, and 2-fluorophenol in alcoholic solvents. In methanol, the conversion of the para-halophenols and 2-fluorophenol to, respectively, 4-methoxyphenol and 2-methoxyphenol, as the major dehalogenated products is observed. In ethanol, 4-ethoxyphenol is the principal dehalogenated product formed from 4-fluorophenol. Two mechanisms are suggested for this MP8-dependent alkoxylating dehalogenation reaction. In one of these mechanisms the oxene resonant form of compound I of MP8 is suggested to react with methanol forming a cofactor-peroxide-alkyl intermediate. This intermediate reacts with the reactive pi-electrons of the substrate, leading to the formation of the alkoxyphenols and the release of the fluorine substituent as fluoride anion.
Collapse
Affiliation(s)
- A M Osman
- Department of Biochemistry, Agricultural University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|