1
|
Ichigaya N, Kawanishi N, Adachi T, Sugimoto M, Kimoto K, Hoshi N. Effects of Denture Treatment on Salivary Metabolites: A Pilot Study. Int J Mol Sci 2023; 24:13959. [PMID: 37762262 PMCID: PMC10531179 DOI: 10.3390/ijms241813959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Symptoms of oral discomfort such as dry mouth are common in older people wearing dentures. Such symptoms are mainly treated symptomatically. Many of these symptoms are related to saliva, and associations with salivary volume have been reported. Although denture treatment improves symptoms by increasing the amount of saliva, the effects on salivary components remain unclear. This study aimed to investigate the effects of denture treatment on salivary metabolite changes based on salivary metabolome analyses. We enrolled 21 patients requiring denture treatment. At the first visit, and after completion of denture treatment, saliva outflow was measured under resting and stimulated conditions, samples for salivary metabolite analysis were collected, and masticatory efficiency was tested. In all participants, masticatory efficiency increased after denture treatment. Moreover, the amounts of resting and stimulated saliva were increased. Using salivary metabolome analysis, 61 salivary metabolites were detected. Substantial concentration changes were observed for 4 and 21 metabolites in resting and stimulated saliva, respectively. The four metabolites common to both saliva tests had significantly lower concentrations after treatment. These results suggest that the improvement in masticatory function by dentures is related not only to salivary secretion volume, but also to salivary metabolite composition.
Collapse
Affiliation(s)
- Narumi Ichigaya
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Norishige Kawanishi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Takuya Adachi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Masahiro Sugimoto
- Institute of Medical Sciences, Tokyo Medical University, Shinjuku 160-8402, Japan;
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Katsuhiko Kimoto
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Noriyuki Hoshi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
- Department of Education Planning, Kanagawa Dental University, Yokosuka 238-8580, Japan
| |
Collapse
|
2
|
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 2008; 191:873-81. [PMID: 19047348 DOI: 10.1128/jb.01114-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.
Collapse
|
3
|
The Caenorhabditis elegans Protein CTBP-1 Defines a New Group of THAP Domain-Containing CtBP Corepressors. J Mol Biol 2008; 375:1-11. [DOI: 10.1016/j.jmb.2007.10.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/09/2007] [Accepted: 10/16/2007] [Indexed: 11/20/2022]
|
4
|
Booth MPS, Conners R, Rumsby G, Brady RL. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol 2006; 360:178-89. [PMID: 16756993 DOI: 10.1016/j.jmb.2006.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 11/18/2022]
Abstract
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2.
Collapse
Affiliation(s)
- Michael P S Booth
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
5
|
Flick MJ, Konieczny SF. Identification of putative mammalian D-lactate dehydrogenase enzymes. Biochem Biophys Res Commun 2002; 295:910-6. [PMID: 12127981 DOI: 10.1016/s0006-291x(02)00768-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian L-isomer dehydrogenases represent an expansive and well characterized class of metabolic enzymes. Surprisingly, little is known regarding their evolutionarily distinct counterparts, D-isomer dehydrogenases, since few mammalian D-isomer 2-hydroxy acid enzymes have been isolated. Here we present the identification and initial characterization of putative human and murine D-lactate dehydrogenases (DLD) that can interact with the muscle-specific cysteine-rich protein CRP3/MLP. Sequence analysis reveals that the human and mouse transcripts encode novel proteins that display strong similarities to the yeast D-lactate dehydrogenase proteins DLD1, AIP2, and YEL071W. Expression analysis of the mammalian proteins indicates widespread distribution with transcripts present in striated muscle tissues and a variety of other tissue types. Immunofluorescence subcellular localization of the mouse DLD protein indicates that it resides within mitochondria, a feature shared by many dehydrogenases. The identification of the human and mouse DLD clones provides new insight regarding the activity of D-isomer-specific enzymes in mammalian cells.
Collapse
Affiliation(s)
- Matthew J Flick
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
6
|
Folkers U, Kirik V, Schöbinger U, Falk S, Krishnakumar S, Pollock M, Oppenheimer D, Day I, Reddy A, Jürgens G, Hülskamp M. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J 2002; 21:1280-8. [PMID: 11889034 PMCID: PMC125931 DOI: 10.1093/emboj/21.6.1280] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ANGUSTIFOLIA (AN) gene is required for leaf hair (trichome) branching and is also involved in polarized expansion underlying organ shape. Here we show that the AN gene encodes a C-terminal binding proteins/brefeldin A ADP-ribosylated substrates (CtBP/BARS) related protein. AN is expressed at low levels in all organs and the AN protein is localized in the cytoplasm. In an mutant trichomes, the organization of the actin cytoskeleton is normal but the distribution of microtubules is aberrant. A role of AN in the control of the microtubule cytoskeleton is further supported by the finding that AN genetically and physically interacts with ZWICHEL, a kinesin motor molecule involved in trichome branching. Our data suggest that CtBP/BARS-like protein function in plants is directly associated with the microtubule cytoskeleton.
Collapse
Affiliation(s)
| | - V. Kirik
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | | | - S. Falk
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | - S. Krishnakumar
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | - M.A. Pollock
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | - D.G. Oppenheimer
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | - I. Day
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | - A.R. Reddy
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| | | | - M. Hülskamp
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen,
University of Köln, Botanical Institute III, Gyrhofstrasse 15, D-50931 Köln, Germany, Department of Biological Sciences, University of Alabama, 301 Biology, Tuscaloosa, AL 35487-0344 and Department of Biology, Colorado State University, Fort Collins, CO 80526, USA Corresponding author e-mail:
| |
Collapse
|
7
|
Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 2002; 21:1267-79. [PMID: 11889033 PMCID: PMC125914 DOI: 10.1093/emboj/21.6.1267] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 12/03/2001] [Accepted: 12/20/2001] [Indexed: 11/14/2022] Open
Abstract
We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map-based strategy and identified it as the first member of the CtBP family to be found in plants. Wild-type AN cDNA reversed the narrow-leaved phenotype and the abnormal arrangement of cortical MTs of the an-1 mutation. In the animal kingdom, CtBPs self-associate and act as co-repressors of transcription. The AN protein can also self-associate in the yeast two-hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.
Collapse
Affiliation(s)
- Gyung-Tae Kim
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Keiko Shoda
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Tomohiko Tsuge
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Kiu-Hyung Cho
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Hirofumi Uchimiya
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Ryusuke Yokoyama
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Kazuhiko Nishitani
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| | - Hirokazu Tsukaya
- National Institute for Basic Biology/Center for Integrative Bioscience, 38 Nishigounaka, Myodaiji-cho, Okazaki 444-8585, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-77 and Form and Function, PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 and School of Advanced Sciences, the Graduate University for Advanced Studies, Shonan Villege, Hayama, Kanagawa 240-0193, Japan Present address: Molecular Membrane Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Present address: Osborn Memorial Laboratory, Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 6520-8104, USA Corresponding author e-mail:
| |
Collapse
|
8
|
Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ. Glutamate 170 of human l-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 2001; 276:36718-26. [PMID: 11451959 DOI: 10.1074/jbc.m104839200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
l-3-Hydroxyacyl-CoA dehydrogenase (HAD), the penultimate enzyme in the beta-oxidation spiral, reversibly catalyzes the conversion of l-3-hydroxyacyl-CoA to the corresponding 3-ketoacyl-CoA. Similar to other dehydrogenases, HAD contains a general acid/base, His(158), which is within hydrogen bond distance of a carboxylate, Glu(170). To investigate its function in this catalytic dyad, Glu(170) was replaced with glutamine (E170Q), and the mutant enzyme was characterized. Whereas substrate and cofactor binding were unaffected by the mutation, E170Q exhibited diminished catalytic activity. Protonation of the catalytic histidine did not restore wild-type activity, indicating that modulation of the pK(a) of His(158) is not the sole function of Glu(170). The pH profile of charge transfer complex formation, an independent indicator of active site integrity, was unaltered by the amino acid substitution, but the intensity of the charge transfer band was diminished. This observation, coupled with significantly reduced enzymatic stability of the E170Q mutant, implicates Glu(170) in maintenance of active site architecture. Examination of the crystal structure of E170Q in complex with NAD(+) and acetoacetyl-CoA (R = 21.9%, R(free) = 27.6%, 2.2 A) reveals that Gln(170) no longer hydrogen bonds to the side chain of His(158). Instead, the imidazole ring is nearly perpendicular to its placement in the comparable native complex and no longer positioned for efficient catalysis.
Collapse
Affiliation(s)
- J J Barycki
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
9
|
Costas AM, White AK, Metcalf WW. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 2001; 276:17429-36. [PMID: 11278981 DOI: 10.1074/jbc.m011764200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ptxD gene from Pseudomonas stutzeri WM88 encoding the novel phosphorus oxidizing enzyme NAD:phosphite oxidoreductase (trivial name phosphite dehydrogenase, PtxD) was cloned into an expression vector and overproduced in Escherichia coli. The heterologously produced enzyme is indistinguishable from the native enzyme based on mass spectrometry, amino-terminal sequencing, and specific activity analyses. Recombinant PtxD was purified to homogeneity via a two-step affinity protocol and characterized. The enzyme stoichiometrically produces NADH and phosphate from NAD and phosphite. The reverse reaction was not observed. Gel filtration analysis of the purified protein is consistent with PtxD acting as a homodimer. PtxD has a high affinity for its substrates with Km values of 53.1 +/- 6.7 microm and 54.6 +/- 6.7 microm, for phosphite and NAD, respectively. Vmax and kcat were determined to be 12.2 +/- 0.3 micromol x min(-1) x mg(-1) and 440 min(-1). NADP can substitute poorly for NAD; however, none of the numerous compounds examined were able to substitute for phosphite. Initial rate studies in the absence or presence of products and in the presence of the dead end inhibitor sulfite are most consistent with a sequential ordered mechanism for the PtxD reaction, with NAD binding first and NADH being released last. Amino acid sequence comparisons place PtxD as a new member of the d-2-hydroxyacid NAD-dependent dehydrogenases, the only one to have an inorganic substrate. To our knowledge, this is the first detailed biochemical study on an enzyme capable of direct oxidation of a reduced phosphorus compound.
Collapse
Affiliation(s)
- A M Costas
- Department of Microbiology, University of Illinois, Chemical and Life Sciences Laboratory, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
10
|
Kochhar S, Lamzin VS, Razeto A, Delley M, Hottinger H, Germond JE. Roles of his205, his296, his303 and Asp259 in catalysis by NAD+-specific D-lactate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1633-9. [PMID: 10712593 DOI: 10.1046/j.1432-1327.2000.01155.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of three histidine residues (His205, His296 and His303) and Asp259, important for the catalysis of NAD+-specific D-lactate dehydrogenase, was investigated using site-directed mutagenesis. None of these residues is presumed to be involved in coenzyme binding because Km for NADH remained essentially unchanged for all the mutant enzymes. Replacement of His205 with lysine resulted in a 125-fold reduction in kcat and a slight lowering of the Km value for pyruvate. D259N mutant showed a 56-fold reduction in kcat and a fivefold lowering of Km. The enzymatic activity profile shifted towards acidic pH by approximately 2 units. The H303K mutation produced no significant change in kcat values, although Km for pyruvate increased fourfold. Substitution of His296 with lysine produced no significant change in kcat values or in Km for substrate. The results obtained suggest that His205 and Asp259 play an important role in catalysis, whereas His303 does not. This corroborates structural information available for some members of the D-specific dehydrogenases family. The catalytic His296, proposed from structural studies to be the active site acid/base catalyst, is not invariant. Its function can be accomplished by lysine and this has significant implications for the enzymatic mechanism.
Collapse
Affiliation(s)
- S Kochhar
- Nestlé Research Centre, Lausanne, Switzerland; European Molecular Biology Laboratory, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Huang T, Yang W, Pereira AC, Craigen WJ, Shih VE. Cloning and characterization of a putative human d-2-hydroxyacid dehydrogenase in chromosome 9q. Biochem Biophys Res Commun 2000; 268:298-301. [PMID: 10679197 DOI: 10.1006/bbrc.2000.2122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is little information on d-isomer-specific dehydrogenases in humans. Identification of d-2-hydroxyglutaric aciduria, an inherited metabolic disorder associated with severe neurological dysfunction, highlights the role of d-isomers in human metabolism. The possibility of a defect in d-2-hydroxyglutarate dehydrogenation prompted us to employ E. coli d-2-hydroxyacid dehydrogenase cDNA to search the human expressed sequence tags database. Two human EST homologues were retrieved and sequenced. Analysis showed the two clones were identical with 1258 nucleotides encoding 248 amino acids of the putative human d-2-hydroxyacid dehydrogenase. It was highly homologous to bacterial d-2-hydroxyacid dehydrogenases (46%), d-phosphoglycerate dehydrogenase (38%), and formate dehydrogenase (36%) at the amino acid level. The gene is expressed ubiquitously in tissue, most abundantly in liver, and was mapped to chromosome 9q between markers WI-3028 and WI-93330. To our knowledge this is the first cloning and characterization of the cDNA for a human d-isomer specific NAD(+)-dependent 2-hydroxyacid dehydrogenase.
Collapse
Affiliation(s)
- T Huang
- Division of Genetics and Metabolism, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
12
|
Sutherland A, Willis CL. Chemoenzymatic Synthesis of 4-Amino-2-hydroxy Acids: A Comparison of Mutant and Wild-Type Oxidoreductases. J Org Chem 1998. [DOI: 10.1021/jo980821a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Sutherland
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Christine L. Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
13
|
|
14
|
Alvarez JA, Gelpí JL, Johnsen K, Bernard N, Delcour J, Clarke AR, Holbrook JJ, Cortés A. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:203-12. [PMID: 9063465 DOI: 10.1111/j.1432-1033.1997.00203.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The steady-state kinetics of D-2-hydroxy-4-methylvalerate dehydrogenase have been studied at pH 8.0 by initial velocity, product inhibition, and dead-end inhibition techniques. The mechanism is rapid-equilibrium ordered in the NAD+ plus D-2-hydroxy-4-methylvalerate direction, and steady-state ordered in the other direction. In both cases coenzyme is the first substrate added and both the E-NADH-D-2-hydroxy-4-methylvalerate and E-NAD+-2-oxo-4-methylvalerate give rise to abortive complexes which cause excess substrate inhibition. Steady-state measurements show that the rate-limiting step in both directions at pH 8.0 is between formation of the enzyme-coenzyme-substrate ternary complex and the release of the first product of the reaction. Transient kinetics combined with primary kinetic deuterium isotope effects show that in the NADH-->NAD+ direction there is a slow, rate-limiting rearrangement of the E-NADH-oxoacid complex while hydride transfer is very fast. The release of NAD+ at pH 8.0 is 200-times faster than Kcat (NADH-->NAD+) whereas the release of NADH is only 5-times faster than Kcat (NAD+-->NADH). The pH dependence of NADH binding depends upon the presence of two ionizable residues with a pKa of about 5.9. The pH dependence of kinetic parameters is explained by a third ionizable residue with pKa values 7.2 (in the E-NADH complex) and < or = 6.4 (in the E-NAD+ complex) which may be the proton donor and acceptor for the chemical reaction. At pH 6.5 the mechanism changes in the NADH-->NAD+ direction to be partly limited by the chemical step with a measured primary kinetic isotope effect of 5.7 and partly by an only slightly faster dissociation of NAD+. In addition the inhibition by excess oxo-4-methylvalerate is more pronounced. The mechanism implies that removing the positive charges created by the two groups which control coenzyme affinity could both enhance the catalytic rate at pH 6.5 and diminish excess substrate inhibition to provide an enzyme better suited to the bulk synthesis of D-2-hydroxyacids.
Collapse
Affiliation(s)
- J A Alvarez
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|