1
|
Phillips R, Jones B, Nash S. M379A Mutant Tyrosine Phenol-lyase from Citrobacter freundii Has Altered Conformational Dynamics. Chembiochem 2022; 23:e202200028. [PMID: 35577764 PMCID: PMC9262865 DOI: 10.1002/cbic.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/12/2022] [Indexed: 12/03/2022]
Abstract
The M379A mutant of Citrobacter freundii tyrosine phenol‐lyase (TPL) has been prepared. M379A TPL is a robust catalyst to prepare a number of tyrosines substituted at the 3‐position with bulky groups that cannot be made with wild type TPL. The three dimensional structures of M379A TPL complexed with L‐methionine and 3‐bromo‐dl‐phenylalanine have been determined by X‐ray crystallography. Methionine is bound as a quinonoid complex in a closed active site in 3 of 4 chains of homotetrameric M379A TPL. M379A TPL reacts with l‐methionine about 8‐fold slower than wild type TPL. The temperature dependence shows that the slower reaction is due to less positive activation entropy. The structure of the M379A TPL complex of 3‐bromo‐DL‐phenylalanine has a quinonoid complex in two subunits, with an open active site conformation. The effects of the M379A mutation on TPL suggest that the mutant enzyme has altered the conformational dynamics of the active site.
Collapse
Affiliation(s)
- Robert Phillips
- University of Georgia Franklin College of Arts and Sciences, Chemistry, UNITED STATES
| | - Benjamin Jones
- University of Georgia, Biological Engineering, UNITED STATES
| | - Sarah Nash
- University of Georgia Franklin College of Arts and Sciences, Biology, UNITED STATES
| |
Collapse
|
2
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Purification and Biochemical Characterization of a Tyrosine Phenol-lyase from Morganella morganii. Appl Biochem Biotechnol 2020; 192:71-84. [PMID: 32236865 DOI: 10.1007/s12010-020-03301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine phenol-lyase (TPL) is a valuable and cost-effective biocatalyst for the biosynthesis of L-tyrosine and its derivatives, which are valuable intermediates in the pharmaceutical industry. A TPL from Morganella morganii (Mm-TPL) was overexpressed in Escherichia coli and characterized. Mm-TPL was determined as a homotetramer with molecular weight of 52 kDa per subunit. Its optimal temperature and pH for β-elimination of L-tyrosine were 45 °C and pH 8.5, respectively. Mm-TPL manifested strict substrate specificity for the reverse reaction of β-elimination and ortho- and meta-substituted phenols with small steric size were preferred substrates. The enzyme showed excellent catalytic performance for synthesis of L-tyrosine, 3-fluoro-L-tyrosine, and L-DOPA with a yield of 98.1%, 95.1%, and 87.2%, respectively. Furthermore, the fed-batch bioprocess displayed space-time yields of 9.6 g L-1 h-1 for L-tyrosine and 4.2 g L-1 h-1 for 3-fluoro-L-tyrosine with a yield of 67.4 g L-1 and 29.5 g L-1, respectively. These results demonstrated the great potential of Mm-TPL for industrial application.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Sigala PA, Kraut DA, Caaveiro JMM, Pybus B, Ruben EA, Ringe D, Petsko GA, Herschlag D. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. J Am Chem Soc 2008; 130:13696-708. [PMID: 18808119 DOI: 10.1021/ja803928m] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes are classically proposed to accelerate reactions by binding substrates within active-site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1-1 A scale of most substrate rearrangements. The flexibility of active-site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together 1.2-1.5 A resolution X-ray crystallography, (1)H and (19)F NMR spectroscopy, quantum mechanical calculations, and transition-state analogue binding measurements to test the distance scale on which noncovalent forces can constrain the structural relaxation or translation of side chains and ligands along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side-chain reorientation and prevent hydrogen bond shortening by 0.1 A or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function.
Collapse
Affiliation(s)
- Paul A Sigala
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gopishetty B, Ren L, Waller TM, Wavreille AS, Lopez M, Thakkar A, Zhu J, Pei D. Synthesis of 3,5-difluorotyrosine-containing peptides: application in substrate profiling of protein tyrosine phosphatases. Org Lett 2008; 10:4605-8. [PMID: 18798640 DOI: 10.1021/ol801868a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fully protected 3,5-difluorotyrosine (F2Y), Fmoc-F2Y(tBu)-OH, is efficiently prepared by a chemoenzymatic process and incorporated into individual peptides and combinatorial peptide libraries. The F2Y-containing peptides display kinetic properties toward protein tyrosine phosphatases (PTPs) similar to their corresponding tyrosine-containing counterparts but are resistant to tyrosinase action. These properties make F2Y a useful tyrosine surrogate during peptide library screening for optimal PTP substrates.
Collapse
Affiliation(s)
- Bhaskar Gopishetty
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Phillips RS, Chen HY, Faleev NG. Aminoacrylate intermediates in the reaction of Citrobacter freundii tyrosine phenol-lyase. Biochemistry 2006; 45:9575-83. [PMID: 16878992 DOI: 10.1021/bi060561o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate. Previous stopped-flow kinetic experiments have provided direct spectroscopic evidence for the formation of the external aldimine and quinonoid intermediates in the reactions of substrates and inhibitors; however, the predicted alpha-aminoacrylate intermediate has not been previously observed. We have found that 4-hydroxypyridine, a non-nucleophilic analogue of phenol, selectively binds and stabilizes aminoacrylate intermediates in reactions of TPL with S-alkyl-l-cysteines, l-tyrosine, and 3-fluoro-l-tyrosine. In the presence of 4-hydroxypyridine, a new absorption band at 338 nm, assigned to the alpha-aminoacrylate, is observed with these substrates. Formation of the 338 nm peaks is concomitant with the decay of the quinonoid intermediates, with good isosbestic points at approximately 365 nm. The value of the rate constant for aminoacrylate formation is similar to k(cat), suggesting that leaving group elimination is at least partially rate limiting in TPL reactions. In the reaction of S-ethyl-l-cysteine in the presence of 4-hydroxypyridine, a subsequent slow reaction of the alpha-aminoacrylate is observed, which may be due to iminopyruvate formation. Both l-tyrosine and 3-fluoro-l-tyrosine exhibit kinetic isotope effects of approximately 2-3 on alpha-aminoacrylate formation when the alpha-(2)H-labeled substrates are used, consistent with the previously reported internal return of the alpha-proton to the phenol product. These results are the first direct spectroscopic observation of alpha-aminoacrylate intermediates in the reactions of TPL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | |
Collapse
|
7
|
Faleev NG, Axenova OV, Demidkina TV, Phillips RS. The role of acidic dissociation of substrate's phenol group in the mechanism of tyrosine phenol-lyase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:260-5. [PMID: 12686143 DOI: 10.1016/s1570-9639(03)00063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
pH dependencies of the main kinetic parameters for the reaction of tyrosine phenol-lyase (TPL) with L-tyrosine were studied earlier at pH from 6.0 to 9.5. At this range, L-tyrosine, whose pK(a) for the phenol hydroxyl is 10.5, exists as the zwitterion. It was concluded that zwitterion is the only "active" form for any tyrosine-like substrate. In the present work, we examined pH dependencies for 2-fluorotyrosine, 3-fluorotyrosine, 3,5-difluorotyrosine, 2,5-difluorotyrosine, 2,6-difluorotyrosine, and 3-chlorotyrosine which are more acidic than tyrosine. Respective pK(a)'s are 9.2, 8.7, 7.3, 7.9, 8,35, and 8.3. At higher pH, most of these substrates exist predominantly as anions, having two negative charges at the carboxylic and phenol groups, and one positive charge at the amino group. No decrease of k(cat)/K(m) values attributable to acidic dissociation of the phenol group was found. From comparison of theoretical curves with the experimental data, we conclude that most likely, both zwitterion and anion forms of 3-fluorotyrosine, 3,5-difluorotyrosine, 2,5-difluorotyrosine, 2,6-difluorotyrosine, and 3-chlorotyrosine may be bound and subsequently catalytically transformed by TPL. The reactivities of the two forms are quite comparable. The roles of catalytic groups in the active site, especially Arg381 and Thr-124, are discussed.
Collapse
Affiliation(s)
- Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia.
| | | | | | | |
Collapse
|
8
|
Sundararaju B, Chen H, Shilcutt S, Phillips RS. The role of glutamic acid-69 in the activation of Citrobacter freundii tyrosine phenol-lyase by monovalent cations. Biochemistry 2000; 39:8546-55. [PMID: 10913261 DOI: 10.1021/bi000063u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is activated about 30-fold by monovalent cations, the most effective being K(+), NH(4)(+), and Rb(+). Previous X-ray crystal structure analysis has demonstrated that the monovalent cation binding site is located at the interface between subunits, with ligands contributed by the carbonyl oxygens of Gly52 and Asn262 from one chain and monodentate ligation by one of the epsilon-oxygens of Glu69 from another chain [Antson, A. A., Demidkina, T. V., Gollnick, P., Dauter, Z., Von Tersch, R. L., Long, J., Berezhnoy, S. N., Phillips, R. S., Harutyunyan, E. H., and Wilson, K. S. (1993) Biochemistry 32, 4195]. We have studied the effect of mutation of Glu69 to glutamine (E69Q) and aspartate (E69D) to determine the role of Glu69 in the activation of TPL. E69Q TPL is activated by K(+), NH(4)(+), and Rb(+), with K(D) values similar to wild-type TPL, indicating that the negative charge on Glu69 is not necessary for cation binding and activation. In contrast, E69D TPL exhibits very low basal activity and only weak activation by monovalent cations, even though monovalent cations are capable of binding, indicating that the geometry of the monovalent cation binding site is critical for activation. Rapid-scanning stopped-flow kinetic studies of wild-type TPL show that the activating effect of the cation is seen in an acceleration of rates of quinonoid intermediate formation (30-50-fold) and of phenol elimination. Similar rapid-scanning stopped-flow results were obtained with E69Q TPL; however, E69D TPL shows only a 4-fold increase in the rate of quinonoid intermediate formation with K(+). Preincubation of TPL with monovalent cations is necessary to observe the rate acceleration in stopped flow kinetic experiments, suggesting that the activation of TPL by monovalent cations is a slow process. In agreement with this conclusion, a slow increase (k < 0.5 s(-)(1)) in fluorescence intensity (lambda(ex) = 420 nm, lambda(em) = 505 nm) is observed when wild-type and E69Q TPL are mixed with K(+), Rb(+), and NH(4)(+) but not Li(+) or Na(+). E69D TPL shows no change in fluorescence under these conditions. High concentrations (>100 mM) of all monovalent cations result in inhibition of wild-type TPL. This inhibition is probably due to cation binding to the ES complex to form a complex that releases pyruvate slowly.
Collapse
Affiliation(s)
- B Sundararaju
- Department of Chemistry, University of Georgia, Athens 30602-2556, USA
| | | | | | | |
Collapse
|
9
|
Barbolina MV, Phillips RS, Gollnick PD, Faleev NG, Demidkina TV. Citrobacter freundii tyrosine phenol-lyase: the role of asparagine 185 in modulating enzyme function through stabilization of a quinonoid intermediate. PROTEIN ENGINEERING 2000; 13:207-15. [PMID: 10775663 DOI: 10.1093/protein/13.3.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Asn185 is an invariant residue in all known sequences of TPL and of closely related tryptophanase and it may be aligned with the Asn194 in aspartate aminotransferase. According to X-ray data, in the holoenzyme and in the Michaelis complex Asn185 does not interact with the cofactor pyridoxal 5'-phosphate, but in the external aldimine a conformational change occurs which is accompanied by formation of a hydrogen bond between Asn185 and the oxygen atom in position 3 of the cofactor. The substitution of Asn185 in TPL by alanine results in a mutant N185A TPL of moderate residual activity (2%) with respect to adequate substrates, L-tyrosine and 3-fluoro-L-tyrosine. The affinities of the mutant enzyme for various amino acid substrates and inhibitors, studied by both steady-state and rapid kinetic techniques, were lower than for the wild-type TPL. This effect mainly results from destabilization of the quinonoid intermediate, and it is therefore concluded that the hydrogen bond between Asn185 and the oxygen at the C-3 position of the cofactor is maintained in the quinonoid intermediate. The relative destabilization of the quinonoid intermediate and external aldimine leads to the formation of large amounts of gem-diamine in reactions of N185A TPL with 3-fluoro-L-tyrosine and L-phenylalanine. For the reaction with 3-fluoro-L-tyrosine it was first possible to determine kinetic parameters of gem-diamine formation by the stopped-flow method. For the reactions of N185A TPL with substrates bearing good leaving groups the observed values of k(cat) could be accounted for by taking into consideration two effects: the decrease in the quinonoid content under steady-state conditions and the increase in the quinonoid reactivity in a beta-elimination reaction. Both effects are due to destabilization of the quinonoid and they counterbalance each other. Multiple kinetic isotope effect studies on the reactions of N185A TPL with suitable substrates, L-tyrosine and 3-fluoro-L-tyrosine, show that the principal mechanism of catalysis, suggested previously for the wild-type enzyme, does not change. In the framework of this mechanism the observed considerable decrease in k(cat) values for reactions of N185A TPL with L-tyrosine and 3-fluoro-L-tyrosine may be ascribed to participation of Asn185 in additional stabilization of the keto quinonoid intermediate.
Collapse
Affiliation(s)
- M V Barbolina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 117984, Russia
| | | | | | | | | |
Collapse
|
10
|
Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN. Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 1999; 291:941-53. [PMID: 10452898 DOI: 10.1006/jmbi.1999.3002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent binding of L-methionine as an external aldimine to the pyridoxal 5'-phosphate-cofactor in the K41A mutant of O-acetylserine sulfhydrylase from Salmonella typhimurium induces a large conformational change in the protein. Methionine mimics the action of the substrate O-acetyl-L-serine during catalysis. The alpha-carboxylate moiety of L-methionine in external aldimine linkage with the active site pyridoxal 5'-phosphate forms a hydrogen bonding network to the "asparagine-loop" P67-T68-N69-G70 which adopts a different conformation than in the native protein. The side-chain nitrogen of Asn69 moves more than 7 A to make a hydrogen bond to the alpha-carboxylate group of the inhibitor. As the external aldimine is formed, the PLP tilts by 13 degrees along its longitudinal axis such that C4' moves toward the entrance to the active site and the side-chain of the methionine is directed toward the active site entrance. The local rearrangement acts as a trigger to induce a large global conformational change in the protein. A subdomain comprised of beta-strand 4, alpha-helix 3, beta-strand 5 and alpha-helix 4 moves towards the active site by a rotation of 7 degrees. This subdomain movement results in a reduction of the severe twist of its central beta-sheet and reduces the active site entrance to a small hole, giving access only to small molecules like sulfide, the second substrate, or acetate, the first product.
Collapse
Affiliation(s)
- P Burkhard
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Brooks B, Phillips RS, Benisek WF. High-efficiency incorporation in vivo of tyrosine analogues with altered hydroxyl acidity in place of the catalytic tyrosine-14 of Delta 5-3-ketosteroid isomerase of Comamonas (Pseudomonas) testosteroni: effects of the modifications on isomerase kinetics. Biochemistry 1998; 37:9738-42. [PMID: 9657686 DOI: 10.1021/bi980454x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Versions of the Y55F/Y88F modified form of Delta 5-3-ketosteroid isomerase in which the active-site tyrosine-14 is replaced by 2-fluorotyrosine, 3-fluorotyrosine, and 2,3-difluorotyrosine, amino acids having progressively greater acidity of their phenolic hydroxyls, have been expressed in an Escherichia coli host and purified to high homogeneity. The steady-state kinetic properties of Y55F/Y88F KSI and its fluorotyrosine modified forms have been determined. The mechanistic implications of the results are presented and discussed.
Collapse
Affiliation(s)
- B Brooks
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616, USA
| | | | | |
Collapse
|