1
|
Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, Dumée LF, Baroutian S, Razmjou A. Molecular mechanisms of microplastics degradation: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Pham TH, Do HT, Phan Thi LA, Singh P, Raizada P, Chi-Sheng Wu J, Nguyen VH. Global challenges in microplastics: From fundamental understanding to advanced degradations toward sustainable strategies. CHEMOSPHERE 2021; 267:129275. [PMID: 33338716 DOI: 10.1016/j.chemosphere.2020.129275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Currently, the global production and usage of plastics have increased rapidly with the expansion of synthetic polymers. Since plastics' degradation processes are prolonged and thus microplastics (MPs) potentially persist for very long periods in the environment. To date, there is a need for knowledge on the relevance of different potential entry pathways and the number of MPs entering the environment via different routes. Despite the vast quantity of studies that have been undertaken, many unanswered issues remain about the environmental impacts of MPs. The real impacts on a population subjected to many MPs of different structure, dimensions, and shapes over a lifetime are still hard to elucidate. Significantly, MPs can accumulate toxic substances, such as persistent organic pollutants, on their material surface. Hence, it represents a potential concentrated source of environmental pollution or acts as a vector of toxic pollutants in the food chain's interconnection with some severe health implications. Herein, we mainly discussed the global challenges in MPs, including the current production and use status of plastics and their impact on the environment. Additionally, finding the degradation of tiny fragment plastics (MPs level) is essential to remove plastics altogether. Some of the approaches to methods, including biodegradation, physical degradation, physicochemical degradation, have been successfully reviewed. More importantly, the sustainable concepts of using microorganisms and photocatalysis for MPs' degradation have been successfully proposed and demonstrated.
Collapse
Affiliation(s)
- Thuy-Hanh Pham
- Faculty of Environmental Science, VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Huu-Tuan Do
- Faculty of Environmental Science, VNU University of Science, Vietnam National University, Hanoi, Viet Nam.
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan (Himachal Pradesh)-173212, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan (Himachal Pradesh)-173212, India
| | - Jeffrey Chi-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Van-Huy Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam.
| |
Collapse
|
4
|
A GK, K A, M H, K S, G D. Review on plastic wastes in marine environment - Biodegradation and biotechnological solutions. MARINE POLLUTION BULLETIN 2020; 150:110733. [PMID: 31767203 DOI: 10.1016/j.marpolbul.2019.110733] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/23/2023]
Abstract
The marine plastic pollution has drastic effect on marine species. The importance in environmental issues increases the demand to develop a significant technology which does not burden the marine environment or marine life forms. To mitigate the foreseen problems of micro and nanoplastic contamination, different biotechnological solutions has to be considered. Microbial communities exposed to plastic contaminated sites can adapt and form dense biofilms on the plastic surface and produce active catalytic enzymes. These enzymes can be able to degrade the synthetic polymers. In view of their high catalytic activity, microbial enzymes can be applicable for the degradation of synthetic polymers. This review highlights the toxicity of micro and nanoplastics on marine organisms, biodegradation of plastics and futuristic research needs to solve the issues of plastic pollution in marine environment.
Collapse
Affiliation(s)
- Ganesh Kumar A
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India.
| | - Anjana K
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Hinduja M
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Sujitha K
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Dharani G
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
5
|
Shen F, Luo Z, Liu H, Wang R, Zhang S, Gan J, Sheng J. Structural insights into RNA duplexes with multiple 2΄-5΄-linkages. Nucleic Acids Res 2017; 45:3537-3546. [PMID: 28034958 PMCID: PMC5389462 DOI: 10.1093/nar/gkw1307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
2΄-5΄-linked RNAs play important roles in many biological systems. In addition, the mixture of 2΄-5΄ and 3΄-5΄ phosphodiester bonds have emerged as a plausible structural element in prebiotic RNAs. Toward our mechanistic studies of RNA folding and structures with heterogeneous backbones, we recently reported two crystal structures of a decamer RNA duplex containing two and six 2΄-5΄-linkages, showing how RNA duplexes adjust the structures to accommodate these non-canonical linkages (Proc. Natl. Acad. Sci. USA, 2014, 111, 3050-3055). Herein, we present two additional high-resolution crystal structures of the same RNA duplex containing four and eight 2΄-5΄-linkages at different positions, providing new insights into the effects of these modifications and a dynamic view of RNA structure changes with increased numbers of 2΄-5΄-linkages in the same duplex. Our results show that the local structural perturbations caused by 2΄-5΄ linkages can be distributed to nearly all the nucleotides with big ranges of changes in different geometry parameters. In addition, hydration pattern and solvation energy analysis indicate less favorable solvent interactions of 2΄-5΄-linkages comparing to the native 3΄-5΄-linkages. This study not only promotes our understanding of RNA backbone flexibility, but also provides a knowledge base for studying the biochemical and prebiotic significance of RNA 2΄-5΄-linkages.
Collapse
Affiliation(s)
- Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipu Luo
- Synchrotron Radiation Research Section, MCL National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shenglong Zhang
- Department of Life Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
6
|
Aher MN, Erande ND, Fernandes M, Kumar VA. Unimolecular antiparallel G-quadruplex folding topology of 2′–5′-isoTBA sequences remains unaltered by loop composition. Org Biomol Chem 2015; 13:11696-703. [DOI: 10.1039/c5ob01923k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike 3′–5′-linked TBA, the 2′–5′-linked isoTBA formed only unimolecular antiparallel G-quadruplexes independent of loop length.
Collapse
Affiliation(s)
- Manisha N. Aher
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Namrata D. Erande
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Moneesha Fernandes
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | | |
Collapse
|
7
|
Structural insights into the effects of 2'-5' linkages on the RNA duplex. Proc Natl Acad Sci U S A 2014; 111:3050-5. [PMID: 24516151 DOI: 10.1073/pnas.1317799111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mixture of 2'-5' and 3'-5' linkages generated during the nonenzymatic replication of RNA has long been regarded as a central problem for the origin of the RNA world. However, we recently observed that both a ribozyme and an RNA aptamer retain considerable functionality in the presence of prebiotically plausible levels of linkage heterogeneity. To better understand the RNA structure and function in the presence of backbone linkage heterogeneity, we obtained high-resolution X-ray crystal structures of a native 10-mer RNA duplex (1.32 Å) and two variants: one containing one 2'-5' linkage per strand (1.55 Å) and one containing three such linkages per strand (1.20 Å). We found that RNA duplexes adjust their local structures to accommodate the perturbation caused by 2'-5' linkages, with the flanking nucleotides buffering the disruptive effects of the isomeric linkage and resulting in a minimally altered global structure. Although most 2'-linked sugars were in the expected 2'-endo conformation, some were partially or fully in the 3'-endo conformation, suggesting that the energy difference between these conformations was relatively small. Our structural and molecular dynamic studies also provide insight into the diminished thermal and chemical stability of the duplex state associated with the presence of 2'-5' linkages. Our results contribute to the view that a low level of 2'-5' substitution would not have been fatal in an early RNA world and may in contrast have been helpful for both the emergence of nonenzymatic RNA replication and the early evolution of functional RNAs.
Collapse
|
8
|
Gunjal AD, Fernandes M, Erande N, Rajamohanan PR, Kumar VA. Functional isoDNA aptamers: modified thrombin binding aptamers with a 2'-5'-linked sugar-phosphate backbone (isoTBA). Chem Commun (Camb) 2013; 50:605-7. [PMID: 24281045 DOI: 10.1039/c3cc47569g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioisomeric 3'-deoxy-2'-5'-linked thrombin binding DNA aptamers (isoTBAs) were chemically synthesized and their ability to form unimolecular anti-parallel G-quadruplexes in the presence of K(+) ions was evaluated. These modified sequences retain the function of the native thrombin binding aptamer (TBA), exhibit better stability against exonuclease and are capable of slowing down the process of blood clotting.
Collapse
Affiliation(s)
- Anita D Gunjal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | | | | | | | | |
Collapse
|
9
|
Erande N, Gunjal AD, Fernandes M, Gonnade R, Kumar VA. Synthesis and structural studies of S-type/N-type-locked/frozen nucleoside analogues and their incorporation in RNA-selective, nuclease resistant 2'-5' linked oligonucleotides. Org Biomol Chem 2012; 11:746-57. [PMID: 23223853 DOI: 10.1039/c2ob26762d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2'-endo locked or frozen (S-type)/3'-endo locked or frozen (N-type) nucleoside analogues were synthesized. Conformational analysis based on (3)J(HH) and NOE measurements is presented which is further confirmed by X-ray crystal structural studies. 2'-5'isoDNA oligonucleotides (ON) were synthesized using these modified nucleoside analogues and UV-T(m) studies of the resultant 2'-5'isoDNA : RNA duplexes reflect the site- and sequence-dependent effects and confirm that the S-type sugar conformations were preferred over the N-type sugar geometry in such duplexes.
Collapse
Affiliation(s)
- Namrata Erande
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
| | | | | | | | | |
Collapse
|
10
|
Eschenmoser A. Ätiologie potentiell primordialer Biomolekül-Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens - ein Rückblick. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Eschenmoser A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew Chem Int Ed Engl 2011; 50:12412-72. [PMID: 22162284 DOI: 10.1002/anie.201103672] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 11/10/2022]
Abstract
"We'll never be able to know" is a truism that leads to resignation with respect to any experimental effort to search for the chemistry of life's origin. But such resignation runs radically counter to the challenge imposed upon chemistry as a natural science. Notwithstanding the prognosis according to which the shortest path to understanding the metamorphosis of the chemical into the biological is by way of experimental modeling of "artificial chemical life", the scientific search for the route nature adopted in creating the life we know will arguably never truly end. It is, after all, part of the search for our own origin.
Collapse
Affiliation(s)
- Albert Eschenmoser
- Organisch-chemisches Laboratorium der ETH Zürich, Hönggerberg, Wolfgang-Pauli-Str. 10, CHI H309, CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Erande N, Gunjal AD, Fernandes M, Kumar VA. Probing the furanose conformation in the 2′–5′strand of isoDNA : RNA duplexes by freezing the nucleoside conformations. Chem Commun (Camb) 2011; 47:4007-9. [DOI: 10.1039/c0cc05402j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Borkar A, Ghosh I, Bhattacharyya D. Structure and Dynamics of Double Helical DNA in Torsion Angle Hyperspace: A Molecular Mechanics Approach. J Biomol Struct Dyn 2010; 27:695-712. [DOI: 10.1080/07391102.2010.10508582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Horowitz ED, Lilavivat S, Holladay BW, Germann MW, Hud NV. Solution structure and thermodynamics of 2',5' RNA intercalation. J Am Chem Soc 2009; 131:5831-8. [PMID: 19309071 DOI: 10.1021/ja810068e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a means to explore the influence of the nucleic acid backbone on the intercalative binding of ligands to DNA and RNA, we have determined the solution structure of a proflavine-bound 2',5'-linked octamer duplex with the sequence GCCGCGGC. This structure represents the first NMR structure of an intercalated RNA duplex, of either backbone structural isomer. By comparison with X-ray crystal structures, we have identified similarities and differences between intercalated 3',5' and 2',5'-linked RNA duplexes. First, the two forms of RNA have different sugar pucker geometries at the intercalated nucleotide steps, yet have the same interphosphate distances. Second, as in intercalated 3',5' RNA, the phosphate backbone angle zeta at the 2',5' RNA intercalation site prefers to be in the trans conformation, whereas unintercalated 2',5' and 3',5' RNA prefer the -gauche conformation. These observations provide new insights regarding the transitions required for intercalation of a phosphodiester-ribose backbone and suggest a possible contribution of the backbone to the origin of the nearest-neighbor exclusion principle. Thermodynamic studies presented for intercalation of both structural RNA isomers also reveal a surprising sensitivity of intercalator binding enthalpy and entropy to the details of RNA backbone structure.
Collapse
Affiliation(s)
- Eric D Horowitz
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|