1
|
Ge YD, Guo YT, Jiang LL, Wang HH, Hou SL, Su FZ. Enzymatic Characterization and Coenzyme Specificity Conversion of a Novel Dimeric Malate Dehydrogenase from Bacillus subtilis. Protein J 2023; 42:14-23. [PMID: 36534341 PMCID: PMC9761052 DOI: 10.1007/s10930-022-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Malate is an important material to various industrials and clinical applications. Bacillus subtilis is a widely used biocatalyst tool for chemical production. However, the specific enzymatic properties of malate dehydrogenase from Bacillus subtilis (BsMDH) remain largely unknown. In the present study, BsMDH was cloned, recombinantly expressed and purified to test its enzymatic properties. The molecular weight of single unit of BsMDH was 34,869.7 Da. Matrix-Assisted Laser-Desorption Ionization-Time-of-Flight Mass Spectrometry and gel filtration analysis indicated that the recombinant BsMDH could form dimers. The kcat/Km values of oxaloacetate and NADH were higher than those of malate and NAD+, respectively, indicating a better catalysis in the direction of malate synthesis than the reverse. Furthermore, six BsMDH mutants were constructed with the substitution of amino acids at the coenzyme binding site. Among them, BsMDH-T7 showed a greatly higher affinity and catalysis efficiency to NADPH than NADH with the degree of alteration of 2039, suggesting the shift of the coenzyme dependence from NADH to NADPH. In addition, BsMDH-T7 showed a relatively lower Km value, but a higher kcat and kcat/Km than NADPH-dependent MDHs from Thermus flavus and Corynebacterium glutamicum. Overall, these results indicated that BsMDH and BsMDH-T7 mutant might be promising enzymes for malate production.
Collapse
Affiliation(s)
- Ya-Dong Ge
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| | - Yi-Tian Guo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Lu-Lu Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Hui-Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Shao-Lin Hou
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Feng-Zhi Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
2
|
Kieliszek M, Waśko A, Michalak K, Kot AM, Piwowarek K, Winiarczyk S. Effect of selenium and methods of protein extraction on the proteomic profile of Saccharomyces yeast. Open Life Sci 2022; 17:1117-1128. [PMID: 36133425 PMCID: PMC9462545 DOI: 10.1515/biol-2022-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Selenium may influence the biosynthesis of individual proteins in the yeast cell cytosol. In this study, we used two-dimensional (2D) electrophoresis to identify proteins that are differentially expressed by the enrichment of selenium in Saccharomyces cerevisiae yeast cells. We chose eight protein fractions for further proteomic analysis. A detailed analysis was performed using the Ultraflextreme matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometer, which enables fast and accurate measurement of the molecular weight of the analysed proteins. This study, for the first time, provides evidence that selenium-enriched yeast contains higher levels of mitochondria malate dehydrogenase, adenosine-5'-triphosphate (ATP)-dependent RNA helicase dbp3, and tryptophan dimethylallyltransferase, and alanyl-tRNA editing protein AlaX than yeast without the addition of selenium. It should be emphasised that the proteomic variability obtained reflects the high biological and complexity of yeast metabolism under control and selenium-enriched conditions and can be properly used in the future as a model for further research aimed at determining the expression of appropriate metabolic genes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology, and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
3
|
Nian HJ, Li S, Wang J, Yang XX, Ji XL, Lin LB, Wei YL, Zhang Q. Expression, Purification and Functional Characterization of Two Recombinant Malate Dehydrogenases from Mortierella isabellina. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase. Appl Environ Microbiol 2015; 81:2423-32. [PMID: 25616802 DOI: 10.1128/aem.03360-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clostridium thermocellum produces ethanol as one of its major end products from direct fermentation of cellulosic biomass. Therefore, it is viewed as an attractive model for the production of biofuels via consolidated bioprocessing. However, a better understanding of the metabolic pathways, along with their putative regulation, could lead to improved strategies for increasing the production of ethanol. In the absence of an annotated pyruvate kinase in the genome, alternate means of generating pyruvate have been sought. Previous proteomic and transcriptomic work detected high levels of a malate dehydrogenase and malic enzyme, which may be used as part of a malate shunt for the generation of pyruvate from phosphoenolpyruvate. The purification and characterization of the malate dehydrogenase and malic enzyme are described in order to elucidate their putative roles in malate shunt and their potential role in C. thermocellum metabolism. The malate dehydrogenase catalyzed the reduction of oxaloacetate to malate utilizing NADH or NADPH with a kcat of 45.8 s(-1) or 14.9 s(-1), respectively, resulting in a 12-fold increase in catalytic efficiency when using NADH over NADPH. The malic enzyme displayed reversible malate decarboxylation activity with a kcat of 520.8 s(-1). The malic enzyme used NADP(+) as a cofactor along with NH4 (+) and Mn(2+) as activators. Pyrophosphate was found to be a potent inhibitor of malic enzyme activity, with a Ki of 0.036 mM. We propose a putative regulatory mechanism of the malate shunt by pyrophosphate and NH4 (+) based on the characterization of the malate dehydrogenase and malic enzyme.
Collapse
|
5
|
Expression of mitochondrial malate dehydrogenase in Escherichia coli improves phosphate solubilization. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0297-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 2010; 74:2194-201. [PMID: 21071865 DOI: 10.1271/bbb.100357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD(+)-specific and displayed about 400-fold (k(cat)) and 1,050-fold (k(cat)/K(m)) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K(i)=5.8 mM) and excess L-malate (K(i)=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe(2+) and Zn(2+). Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.
Collapse
|
7
|
Wang ZD, Wang BJ, Ge YD, Pan W, Wang J, Xu L, Liu AM, Zhu GP. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010; 38:1629-36. [DOI: 10.1007/s11033-010-0273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/02/2010] [Indexed: 01/18/2023]
|
8
|
López-Calcagno PE, Moreno J, Cedeño L, Labrador L, Concepción JL, Avilán L. Cloning, expression and biochemical characterization of mitochondrial and cytosolic malate dehydrogenase from Phytophthora infestans. ACTA ACUST UNITED AC 2009; 113:771-81. [PMID: 19249364 DOI: 10.1016/j.mycres.2009.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 01/26/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
The genes of the mitochondrial and cytosolic malate dehydrogenase (mMDH and cMDH) of Phytophthora infestans were cloned and overexpressed in Escherichia coli as active enzymes. The catalytic properties of these proteins were determined: both enzymes have a similar specific activity. In addition, the natural mitochondrial isoenzyme was semi-purified from mycelia and its catalytic properties determined: the recombinant mitochondrial isoform behaved as the natural enzyme. A phylogenetic analysis indicated that mMDH, present in all stramenopiles studied, can be useful to study the relationships between these organisms. MDH with the conserved domain MDH_cytoplasmic_cytosolic is absent in some stramenopiles as well as in fungi. This enzyme seems to be less related within the stramenopile group. The Phytophthora cMDHs have an insertion of six amino acids that is also present in the stramenopile cMDHs studied, with the exception of Thalassiosira pseudonana cMDH, and is absent in other known eukaryotic cMDHs.
Collapse
|
9
|
Eprintsev AT, Klimova MA, Shikhalieva KD, Kompantseva EI. Isolation and purification of malate dehydrogenase isoforms from phototrophic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008060046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ruinatscha R, Höllrigl V, Otto K, Schmid A. Productivity of Selective Electroenzymatic Reduction and Oxidation Reactions: Theoretical and Practical Considerations. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200600257] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, López JA, Cantoral JM, Jorrín J. Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 2006; 6 Suppl 1:S88-96. [PMID: 16544282 DOI: 10.1002/pmic.200500436] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Botrytis cinerea is a phytopathogenic fungi causing disease in a number of important crops. It is considered a very complex species in which different populations seem to be adapted to different hosts. In order to characterize fungal virulence factors, a proteomic research was started. A protocol for protein extraction from mycelium tissue, with protein separation by 2-DE and MS analysis, was optimised as a first approach to defining the B. cinerea proteome. Around 400 spots were detected in 2-DE CBB-stained gels, covering the 5.4-7.7 pH and 14-85 kDa ranges. The averages of analytical and biological coefficients of variance for 64 independent spots were 16.1% and 37.5%, respectively. Twenty-two protein spots were identified by MALDI-TOF or ESI IT MS/MS, with some of them corresponding to forms of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. Two more spots matched a cyclophilin and a protein with an unknown function.
Collapse
|
12
|
Ventura S. Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 2005; 4:11. [PMID: 15847694 PMCID: PMC1087874 DOI: 10.1186/1475-2859-4-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/22/2005] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes.
Collapse
Affiliation(s)
- Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|