1
|
Marciniak B, Bobrowski K. Photo- and Radiation-Induced One-Electron Oxidation of Methionine in Various Structural Environments Studied by Time-Resolved Techniques. Molecules 2022; 27:1028. [PMID: 35164293 PMCID: PMC8915190 DOI: 10.3390/molecules27031028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidation of methionine (Met) is an important reaction that plays a key role in protein modifications during oxidative stress and aging. The first steps of Met oxidation involve the creation of very reactive and short-lived transients. Application of complementary time-resolved radiation and photochemical techniques (pulse radiolysis and laser flash photolysis together with time-resolved CIDNP and ESR techniques) allowed comparing in detail the one-electron oxidation mechanisms initiated either by ●OH radicals and other one-electron oxidants or the excited triplet state of the sensitizers e.g., 4-,3-carboxybenzophenones. The main purpose of this review is to present various factors that influence the character of the forming intermediates. They are divided into two parts: those inextricably related to the structures of molecules containing Met and those related to external factors. The former include (i) the protection of terminal amine and carboxyl groups, (ii) the location of Met in the peptide molecule, (iii) the character of neighboring amino acid other than Met, (iv) the character of the peptide chain (open vs cyclic), (v) the number of Met residues in peptide and protein, and (vi) the optical isomerism of Met residues. External factors include the type of the oxidant, pH, and concentration of Met-containing compounds in the reaction environment. Particular attention is given to the neighboring group participation, which is an essential parameter controlling one-electron oxidation of Met. Mechanistic aspects of oxidation processes by various one-electron oxidants in various structural and pH environments are summarized and discussed. The importance of these studies for understanding oxidation of Met in real biological systems is also addressed.
Collapse
Affiliation(s)
- Bronislaw Marciniak
- Center for Advanced Technology, and Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-712 Poznan, Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
2
|
Gatin A, Billault I, Duchambon P, Van der Rest G, Sicard-Roselli C. Oxidative radicals (HO • or N 3•) induce several di-tyrosine bridge isomers at the protein scale. Free Radic Biol Med 2021; 162:461-470. [PMID: 33217505 DOI: 10.1016/j.freeradbiomed.2020.10.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/27/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
Among protein oxidative damages, di-tyrosine bridges formation has been evidenced in many neuropathological diseases. Combining oxidative radical production by gamma radiolysis with very performant chromatographic separation coupled to mass spectrometry detection, we brought into light new insights of tyrosine dimerization. Hydroxyl and azide radical tyrosine oxidation leading to di-tyrosine bridges formation was studied for different biological compounds: a full-length protein (Δ25-centrin 2), a five amino acid peptide (KTSLY) and free tyrosine. We highlighted that both radicals generate high proportion of dimers even for low doses. Surprisingly, no less than five different di-tyrosine isomers were evidenced for the protein and the peptide. For tyrosine alone, at least four distinct dimers were evidenced. These results raise some questions about their respective role in vivo and hence their relative toxicity. Also, as di-tyrosine is often used as a biomarker, a better knowledge of the type of dimer detected in vivo is now required.
Collapse
Affiliation(s)
- Anouchka Gatin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Isabelle Billault
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Patricia Duchambon
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Guillaume Van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France
| | - Cécile Sicard-Roselli
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay Cedex, France.
| |
Collapse
|
3
|
Baciou L, Masoud R, Souabni H, Serfaty X, Karimi G, Bizouarn T, Houée Levin C. Phagocyte NADPH oxidase, oxidative stress and lipids: Anti- or pro ageing? Mech Ageing Dev 2017; 172:30-34. [PMID: 29103982 DOI: 10.1016/j.mad.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022]
Abstract
The role of NADPH oxidase in ageing is debated because of the dual roles of free radicals, toxic though necessary. In this paper we summarize some results about two aspects linked to the regulation of the activity of phagocyte NADPH oxidase (Nox2), encountered frequently in elderly people: inflammation and hypercholesterolemia. In the presence of a high amount of reactive oxygen species (ROS) created by itself or by any other source, the enzyme activity is mostly lowered. Oxidation of the membrane and/or of one of the cytosolic partners could be responsible for this loss of activity. However using a cell free system, we had also shown that a low amount of ROS could activate this enzyme. Similarly, cholesterol has a similar dual role, either activating or inhibiting. In in vitro cell free system with neutrophil membranes from healthy donors, the addition, as well as the removal of cholesterol, diminishes the Nox2 activity. The activity of Nox2 is lowered in neutrophils of untreated hypercholesterolemic patients. Finally oxysterols (25-hydroxy-cholesterol or 5α, 6α - epoxy-cholesterol) do not induce effects different from that of non-oxidized cholesterol. These findings are in agreement with the Janus role of NADPH oxidase, the main source of non-mitochondrial ROS.
Collapse
Affiliation(s)
- Laura Baciou
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Rawand Masoud
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Hager Souabni
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Chantal Houée Levin
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
4
|
Scuderi D, Bergès J, de Oliveira P, Houée-Levin C. Methionine one-electron oxidation: Coherent contributions from radiolysis, IRMPD spectroscopy, DFT calculations and electrochemistry. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Et Taouil A, Brun E, Duchambon P, Blouquit Y, Gilles M, Maisonhaute E, Sicard-Roselli C. How protein structure affects redox reactivity: example of Human centrin 2. Phys Chem Chem Phys 2014; 16:24493-8. [DOI: 10.1039/c4cp03536d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human centrin 2 is a protein very sensitive to oxidative stress. Protein reactivity is unraveled by gamma radiolysis and electrochemical techniques.
Collapse
Affiliation(s)
- Abdeslam Et Taouil
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8235
- Laboratoire Interfaces et Systèmes Electrochimiques
- Paris, France
| | - Emilie Brun
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| | - Patricia Duchambon
- Plateforme Production Protéines Recombinantes
- Institut Curie-INSERM U759
- Université Paris-Sud
- 91405 Orsay Cedex, France
| | - Yves Blouquit
- Institut Curie-INSERM U759
- Université Paris-Sud
- 91405 Orsay Cedex, France
| | - Manon Gilles
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| | - Emmanuel Maisonhaute
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8235
- Laboratoire Interfaces et Systèmes Electrochimiques
- Paris, France
| | - Cécile Sicard-Roselli
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Université Paris-Sud
- Bât. 350
- 91405 Orsay Cedex, France
| |
Collapse
|
6
|
Zaffagnini M, Michelet L, Sciabolini C, Di Giacinto N, Morisse S, Marchand CH, Trost P, Fermani S, Lemaire SD. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii. MOLECULAR PLANT 2014; 7:101-20. [PMID: 24157611 DOI: 10.1093/mp/sst139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Triosephosphate isomerase (TPI) catalyzes the interconversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. Photosynthetic organisms generally contain two isoforms of TPI located in both cytoplasm and chloroplasts. While the cytoplasmic TPI is involved in the glycolysis, the chloroplastic isoform participates in the Calvin-Benson cycle, a key photosynthetic process responsible for carbon fixation. Compared with its cytoplasmic counterpart, the functional features of chloroplastic TPI have been poorly investigated and its three-dimensional structure has not been solved. Recently, several studies proposed TPI as a potential target of different redox modifications including dithiol/disulfide interchanges, glutathionylation, and nitrosylation. However, neither the effects on protein activity nor the molecular mechanisms underlying these redox modifications have been investigated. Here, we have produced recombinantly and purified TPI from the unicellular green alga Chlamydomonas reinhardtii (Cr). The biochemical properties of the enzyme were delineated and its crystallographic structure was determined at a resolution of 1.1 Å. CrTPI is a homodimer with subunits containing the typical (β/α)8-barrel fold. Although no evidence for TRX regulation was obtained, CrTPI was found to undergo glutathionylation by oxidized glutathione and trans-nitrosylation by nitrosoglutathione, confirming its sensitivity to multiple redox modifications.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Berthelot V, Steinmetz V, Alvarez LA, Houée-Levin C, Merola F, Rusconi F, Erard M. An analytical workflow for the molecular dissection of irreversibly modified fluorescent proteins. Anal Bioanal Chem 2013; 405:8789-98. [PMID: 24026516 DOI: 10.1007/s00216-013-7326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/01/2022]
Abstract
Owing to their ability to be genetically expressed in live cells, fluorescent proteins have become indispensable markers in cellular and biochemical studies. These proteins can undergo a number of covalent chemical modifications that may affect their photophysical properties. Among other mechanisms, such covalent modifications may be induced by reactive oxygen species (ROS), as generated along a variety of biological pathways or through the action of ionizing radiations. In a previous report [1], we showed that the exposure of cyan fluorescent protein (ECFP) to amounts of (•)OH that mimic the conditions of intracellular oxidative bursts (associated with intense ROS production) leads to observable changes in its photophysical properties in the absence of any direct oxidation of the ECFP chromophore. In the present work, we analyzed the associated structural modifications of the protein in depth. Following the quantified production of (•)OH, we devised a complete analytical workflow based on chromatography and mass spectrometry that allowed us to fully characterize the oxidation events. While methionine, tyrosine, and phenylalanine were the only amino acids that were found to be oxidized, semi-quantitative assessment of their oxidation levels showed that the protein is preferentially oxidized at eight residue positions. To account for the preferred oxidation of a few, poorly accessible methionine residues, we propose a multi-step reaction pathway supported by data from pulsed radiolysis experiments. The described experimental workflow is widely generalizable to other fluorescent proteins, and opens the door to the identification of crucial covalent modifications that affect their photophysics.
Collapse
Affiliation(s)
- Vivien Berthelot
- Laboratoire de Chimie Physique, UMR CNRS 8000, Building 350, 91405, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Cauchois O, Segura-Sanchez F, Ponchel G. Molecular weight controls the elongation of oblate-shaped degradable poly(γ-benzyl-l-glutamate)nanoparticles. Int J Pharm 2013; 452:292-9. [DOI: 10.1016/j.ijpharm.2013.04.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/29/2022]
|
9
|
Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost P. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2013; 288:22777-89. [PMID: 23749990 DOI: 10.1074/jbc.m113.475467] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrosylation is a reversible post-translational modification of protein cysteines playing a major role in cellular regulation and signaling in many organisms, including plants where it has been implicated in the regulation of immunity and cell death. The extent of nitrosylation of a given cysteine residue is governed by the equilibrium between nitrosylation and denitrosylation reactions. The mechanisms of these reactions remain poorly studied in plants. In this study, we have employed glycolytic GAPDH from Arabidopsis thaliana as a tool to investigate the molecular mechanisms of nitrosylation and denitrosylation using a combination of approaches, including activity assays, the biotin switch technique, site-directed mutagenesis, and mass spectrometry. Arabidopsis GAPDH activity was reversibly inhibited by nitrosylation of catalytic Cys-149 mediated either chemically with a strong NO donor or by trans-nitrosylation with GSNO. GSNO was found to trigger both GAPDH nitrosylation and glutathionylation, although nitrosylation was widely prominent. Arabidopsis GAPDH was found to be denitrosylated by GSH but not by plant cytoplasmic thioredoxins. GSH fully converted nitrosylated GAPDH to the reduced, active enzyme, without forming any glutathionylated GAPDH. Thus, we found that nitrosylation of GAPDH is not a step toward formation of the more stable glutathionylated enzyme. GSH-dependent denitrosylation of GAPC1 was found to be linked to the [GSH]/[GSNO] ratio and to be independent of the [GSH]/[GSSG] ratio. The possible importance of these biochemical properties for the regulation of Arabidopsis GAPDH functions in vivo is discussed.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mozziconacci O, Mirkowski J, Rusconi F, Kciuk G, Wisniowski PB, Bobrowski K, Houée-Levin C. Methionine Residue Acts as a Prooxidant in the •OH-Induced Oxidation of Enkephalins. J Phys Chem B 2012; 116:12460-72. [DOI: 10.1021/jp307043q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Mozziconacci
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
- Department
of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Jacek Mirkowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Filippo Rusconi
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Muséum National d’Histoire
Naturelle, CNRS, UMR7196 - INSERM, U565 - MNHN USM0503, 57 rue Cuvier, F-75231 Paris Cedex-05, France
| | - Gabriel Kciuk
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Pawel B. Wisniowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Chantal Houée-Levin
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
| |
Collapse
|
11
|
Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 2012; 445:337-47. [PMID: 22607208 DOI: 10.1042/bj20120505] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymatic activity strictly dependent on Cys(149). Catalytic Cys(149) is the only solvent-exposed cysteine of the protein and its thiol is relatively acidic (pK(a)=5.7). This property makes GapC1 sensitive to oxidation by H(2)O(2), which appears to inhibit enzyme activity by converting the thiolate of Cys(149) (-S-) into irreversible oxidized forms (-SO(2)(-) and -SO(3)(-)) via a labile sulfenate intermediate (-SO(-)). GSH (reduced glutathione) prevents this irreversible process by reacting with Cys(149) sulfenates to give rise to a mixed disulfide (Cys(149)-SSG), as demonstrated by both MS and biotinylated GSH. Glutathionylated GapC1 can be fully reactivated either by cytosolic glutaredoxin, via a GSH-dependent monothiol mechanism, or, less efficiently, by cytosolic thioredoxins physiologically reduced by NADPH:thioredoxin reductase. The potential relevance of these findings is discussed in the light of the multiple functions of GAPDH in eukaryotic cells (e.g. glycolysis, control of gene expression and apoptosis) that appear to be influenced by the redox state of the catalytic Cys(149).
Collapse
|
12
|
Bergès J, de Oliveira P, Fourré I, Houée-Levin C. The one-electron reduction potential of methionine-containing peptides depends on the sequence. J Phys Chem B 2012; 116:9352-62. [PMID: 22747412 DOI: 10.1021/jp304741e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protein residue methionine (Met) is one of the main targets of oxidizing free radicals produced in oxidative stress. Despite its biological importance, the mechanism of the oxidation of this residue is still partly unknown. In particular the one-electron redox potentials of the couple Met(•+)/Met have not been measured. In this work, two approaches, experimental as well as theoretical, were applied for three dipeptides L-Met L-Gly, L-Gly L-Met and L-Met L-Met. Measurements by electrochemistry indicated differences in the ease of oxidation. Two DFT methods (BH&HLYP and PBE0) with two basis sets (6-31G(d) and 6-311+G(2d,2p)) were used to determine the redox potentials of Met in these peptides present in different conformations. In agreement with experimental results, we show that they vary with the sequence and the spatial structure of the peptide, most of the values being higher than 1 V (up to 2 V) vs NHE.
Collapse
Affiliation(s)
- Jacqueline Bergès
- Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 5, France.
| | | | | | | |
Collapse
|
13
|
Zaffagnini M, Bedhomme M, Marchand CH, Couturier JRM, Gao XH, Rouhier N, Trost P, Lemaire SPD. Glutaredoxin s12: unique properties for redox signaling. Antioxid Redox Signal 2012; 16:17-32. [PMID: 21707412 DOI: 10.1089/ars.2011.3933] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Cysteines (Cys) made acidic by the protein environment are generally sensitive to pro-oxidant molecules. Glutathionylation is a post-translational modification that can occur by spontaneous reaction of reduced glutathione (GSH) with oxidized Cys as sulfenic acids (-SOH). The reverse reaction (deglutathionylation) is strongly stimulated by glutaredoxins (Grx) and requires a reductant, often GSH. RESULTS Here, we show that chloroplast GrxS12 from poplar efficiently reacts with glutathionylated substrates in a GSH-dependent ping pong mechanism. The pK(a) of GrxS12 catalytic Cys is very low (3.9) and makes GrxS12 itself sensitive to oxidation by H(2)O(2) and to direct glutathionylation by nitrosoglutathione. Glutathionylated-GrxS12 (GrxS12-SSG) is temporarily inactive until it is deglutathionylated by GSH. The equilibrium between GrxS12 and glutathione (E(m(GrxS12-SSG))= -315 mV, pH 7.0) is characterized by K(ox) values of 310 at pH 7.0, as in darkened chloroplasts, and 69 at pH 7.9, as in illuminated chloroplasts. INNOVATION Based on thermodynamic data, GrxS12-SSG is predicted to accumulate in vivo under conditions of mild oxidation of the GSH pool that may occur under stress. Moreover, GrxS12-SSG is predicted to be more stable in chloroplasts in the dark than in the light. CONCLUSION These peculiar catalytic and thermodynamic properties could allow GrxS12 to act as a stress-related redox sensor, thus allowing glutathione to play a signaling role through glutathionylation of GrxS12 target proteins.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curies, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ostuni MA, Bizouarn T, Baciou L, Houée-Levin C. Modulation of the activity of the NADPH oxidase system by reactive oxygen species: influence of catalase. RADIATION PROTECTION DOSIMETRY 2011; 143:166-171. [PMID: 21183538 DOI: 10.1093/rpd/ncq518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The nicotinamide adenine dinucleotide phosphate oxidase complex (Nox) is a major source of non-mitochondrial reactive oxygen species in cells. Nox contains both membrane (Cytb(558)) and cytosolic (p40(phox), p47(phox), p67(phox) and Rac) components. Nox has been submitted to a combination of oxygen free radicals produced by irradiation and to hydrogen peroxide. Irradiation of a single component with high doses led to partial inactivation; however, the irradiation of the whole system during its assembly phase with lower doses (2-10 Gy) led either to activation (2.7 Gy) or to strong inactivation if irradiation took place during the first minute of the assembly. Incubation of the membrane fractions or of p67(phox) with H(2)O(2) led to fast inactivation. Catalase protected weakly p67(phox) from H(2)O(2). Conversely, incubation of the membrane fractions with catalase led to over-activation of the system.
Collapse
Affiliation(s)
- Mariano A Ostuni
- Laboratoire de Chimie Physique, UMR8000, Université Paris-Sud 11, Bât 350, F-91405 Orsay, France.
| | | | | | | |
Collapse
|
15
|
Bergès J, Trouillas P, Houée-Levin C. Oxidation of protein tyrosine or methionine residues:From the amino acid to the peptide. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/261/1/012003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Joshi R, Mukherjee T. Effect of ionic micellar medium on kinetics and mechanism of oxidation of bovine serum albumin: A pulse radiolysis study. Radiat Phys Chem Oxf Engl 1993 2010. [DOI: 10.1016/j.radphyschem.2010.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Brun E, Blouquit Y, Duchambon P, Malosse C, Chamot-Rooke J, Sicard-Roselli C. Oxidative stress induces mainly human centrin 2 polymerisation. Int J Radiat Biol 2010; 86:657-68. [PMID: 20586543 DOI: 10.3109/09553001003734584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine the human centrin 2 (Hscen 2) protein response to oxidising radicals in vitro and to evaluate the consequences on its biological functions. MATERIALS AND METHODS Hscen 2 was submitted to hydroxyl and azide radicals produced by radiolysis in the absence of oxygen. The resulting products were characterised by biochemical, spectroscopic and mass spectrometry techniques. Their thermodynamics parameters of complexation with C-terminal fragment of Xeroderma pigmentosum C protein (C-XPC), one of the Hscen 2 cellular partners, were quantified by isothermal titration calorimetry (ITC). RESULTS Both hydroxyl and azide radicals induce centrin 2 polymerisation as we characterised several intermolecular cross-links generating dimers, trimers, tetramers and higher molecular mass species. These cross-links result from the formation of a covalent bond between the only tyrosine residue (Tyr 172) located in the C-terminal region of each monomer. Remarkably, dimerisation occurs for doses as low as a few grays. Moreover, this Hscen2 dimer has a lower affinity and stoechiometry binding to C-XPC. CONCLUSIONS These results show that as oxidative radicals induce high proportions of irreversible damages (polymerisation) centrin 2 is highly sensitive to ionising radiation. This could have important consequences on its biological functions.
Collapse
Affiliation(s)
- Emilie Brun
- Laboratoire de Chimie Physique, CNRS UMR 8000, Université Paris-Sud 11, Bât. 350, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Bedhomme M, Zaffagnini M, Marchand CH, Gao XH, Moslonka-Lefebvre M, Michelet L, Decottignies P, Lemaire SD. Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii. J Biol Chem 2009; 284:36282-36291. [PMID: 19847013 DOI: 10.1074/jbc.m109.064428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.
Collapse
Affiliation(s)
- Mariette Bedhomme
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mirko Zaffagnini
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Christophe H Marchand
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Xing-Huang Gao
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mathieu Moslonka-Lefebvre
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Laure Michelet
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Paulette Decottignies
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France.
| |
Collapse
|