1
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Chandak P, Phillips BL, Uwechue R, Thompson E, Bates L, Ibrahim I, Sewpaul A, Figueiredo R, Olsburgh J, Hosgood S, Nicholson ML, Wilson C, Callaghan CJ. Dissemination of a novel organ perfusion technique: ex vivo normothermic perfusion of deceased donor kidneys. Artif Organs 2019; 43:E308-E319. [PMID: 31087667 DOI: 10.1111/aor.13499] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Ex vivo normothermic perfusion (EVNP) technology is a promising means of organ preservation, assessment, and preconditioning prior to kidney transplantation, which has been pioneered by a single group. We describe the challenges of setting up clinical EVNP programs in 2 new centers, as well as early patient outcomes. Governance, training, and logistical pathways are described. In order to demonstrate safety and proficiency in this new technique, early patient outcomes are also described. Patient outcomes included the incidence of primary nonfunction, delayed graft function, graft and patient survival at 1 year. Contralateral kidneys undergoing static cold storage alone were used as a comparator group. Between March 2016 and July 2017, EVNP was performed on 14 kidneys from 12 donors (11 kidneys in center 1, 3 kidneys in center 2). Of the 14 kidneys that underwent EVNP, 12 organs were implanted into 10 recipients. Two pairs of kidneys were implanted as dual grafts and 1 kidney was implanted simultaneously with a pancreas. The remaining 7 kidneys were transplanted as single allografts. Seven pairs of kidneys were available for paired analysis comparing EVNP versus static cold storage. Graft and patient outcomes were comparable between the 2 preservation techniques. The introduction of a clinical EVNP service requires a careful multimodal approach, drawing on the expertise of specialists in transplantation, hematology, and microbiology. Both new clinical EVNP programs demonstrated proficiency and safety when a structured dissemination process was followed.
Collapse
Affiliation(s)
- Pankaj Chandak
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Benedict L Phillips
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Raphael Uwechue
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Emily Thompson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Lucy Bates
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Ibrahim Ibrahim
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Avinash Sewpaul
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Figueiredo
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonathon Olsburgh
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin Wilson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Chris J Callaghan
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| |
Collapse
|
3
|
Cyclic Helix B Peptide in Preservation Solution and Autologous Blood Perfusate Ameliorates Ischemia-Reperfusion Injury in Isolated Porcine Kidneys. Transplant Direct 2015; 1:e6. [PMID: 27500213 DOI: 10.1097/txd.0000000000000515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/04/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED There is a critical need to better preserve isolated organs before transplantation. We developed a novel nonerythropoiesis cyclic helix B peptide (CHBP) derived from erythropoietin, which has potent tissue protection and prolonged serum stability. The renoprotection and potential mechanism of CHBP were evaluated in a kidney preservation model. MATERIALS AND METHODS Porcine kidneys (n = 5) subjected to 20-minute warm ischemia were retrieved and flushed with hyperosmolar citrate to mimic deceased donation. The kidneys and autologous blood ± 10.56 nmol/L CHBP were placed in cold storage (CS) for 18 hours. These kidneys were then normothermically hemoreperfused for 3 hours using an isolated organ perfusion system. The renal function and structure, apoptosis, inflammation, and expression of caspase-3 and heat shock protein 70 (HSP70) were assessed. RESULTS Cyclic helix B peptide significantly increased the renal blood flow, oxygen consumption, and urine output during reperfusion, but decreased serum potassium and renal tissue damage. Apoptotic cells were significantly decreased in the tubular areas, but increased in the lumens and interstitial areas in the post-CS and postreperfused kidneys, whereas myeloperoxidase+ cells were reduced. In addition, the expression of both caspase-3 precursor and active subunits was downregulated by CHBP in reperfused kidneys. However, HSP70 was upregulated in the post-CS and postreperfused kidneys treated with CHBP. CONCLUSIONS Cyclic helix B peptide administered into preservation and reperfusion solutions ameliorated renal ischemia-reperfusion injury, which might be associated with decreased apoptosis, inflammation and caspase-3, but increased HSP70. This novel preservation approach using CHBP may be applied in a porcine kidney transplant model and potential human donor kidney preservation.
Collapse
|
4
|
Hosgood SA, Barlow AD, Yates PJ, Snoeijs MG, van Heurn EL, Nicholson ML. A Pilot Study Assessing the Feasibility of a Short Period of Normothermic Preservation in an Experimental Model of Non Heart Beating Donor Kidneys. J Surg Res 2011; 171:283-90. [DOI: 10.1016/j.jss.2010.01.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 12/30/2022]
|
5
|
Yang B, Hosgood SA, Bagul A, Waller HL, Nicholson ML. Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1β in isolated hemoperfused kidneys. Eur J Pharmacol 2011; 660:420-30. [DOI: 10.1016/j.ejphar.2011.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
6
|
Erythropoietin preserves the integrity and quality of organs for transplantation after cardiac death. Shock 2011; 35:126-33. [PMID: 20523268 DOI: 10.1097/shk.0b013e3181e83236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that treatment with erythropoietin (EPO) exerts important cytoprotective and antiapoptotic effects. Donor organs recovered after cardiac death (DCD) can alleviate the shortage of organs required for transplantation. However, organs obtained subsequent to cardiac death demonstrate an increased incidence of delayed graft function and primary nonfunction. The aim of this study was to determine the effects of EPO administration to the donor in a porcine model of kidney transplantation under DCD conditions. Landrace pigs received 1,000 IU/kg i.v. EPO 30 min before cardiac arrest. Kidneys were then subjected to 30 min of warm ischemia and were transplanted after 24 h of cold storage. Renal dysfunction, injury, and inflammation were evaluated 4 h after transplantation. Transplantation of kidneys from DCD resulted in significant renal dysfunction, injury, and inflammation. This study provides the first evidence that pretreatment of the donor with a single pharmacologically relevant dose of EPO causes substantial attenuation of the dysfunction and injury associated with the transplantation of kidneys recovered after cardiac death.
Collapse
|
7
|
Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011; 2011:532127. [PMID: 21403881 PMCID: PMC3051176 DOI: 10.1155/2011/532127] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023] Open
Abstract
Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge of graft recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation and marginal donor models facilitating data extrapolation to human conditions.
Collapse
|