1
|
Yang T, Li J, Jia Y, Yang C, Sang R, Zhu T, Xu M, Rong R, Yang C. Myeloid-derived suppressor cell (MDSC) key genes analysis in rat anti-CD28-induced immune tolerance kidney transplantation. Transl Androl Urol 2021; 10:204-214. [PMID: 33532310 PMCID: PMC7844524 DOI: 10.21037/tau-20-943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background In the field of transplantation, inducing immune tolerance in recipients is of great importance. Blocking co-stimulatory molecule using anti-CD28 antibody could induce tolerance in a rat kidney transplantation model. Myeloid-derived suppressor cells (MDSCs) reveals strong immune suppressive abilities in kidney transplantation. Here we analyzed key genes of MDSCs leading to transplant tolerance in this model. Methods Microarray data of rat gene expression profiles under accession number GSE28545 in the Gene Expression Omnibus (GEO) database were analyzed. Running the LIMMA package in R language, the differentially expressed genes (DEGs) were found. Enrichment analysis of the DEGs was conducted in the Database for Annotation, Visualization and Integrated Discovery (DAVID) database to explore gene ontology (GO) annotation and their Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Their protein-protein interactions (PPIs) were provided by STRING database and was visualized in Cytoscape. Hub genes were carried out by CytoHubba. Results Three hundred and thirty-eight DEGs were exported, including 27 upregulated and 311 downregulated genes. The functions and KEGG pathways of the DEGs were assessed and the PPI network was constructed based on the string interactions of the DEGs. The network was visualized in Cytoscape; the entire PPI network consisted of 192 nodes and 469 edges. Zap70, Cdc42, Stat1, Stat4, Ccl5 and Cxcr3 were among the hub genes. Conclusions These key genes, corresponding proteins and their functions may provide valuable background for both basic and clinical research and could be the direction of future studies in immune tolerance, especially those examining immunocyte-induced tolerance.
Collapse
Affiliation(s)
- Tianying Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yichen Jia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Chunchen Yang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruirui Sang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Fudan Zhangjiang Institute, Shanghai, China
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Pancreatic islet cell transplantation is currently the only curative cell therapy for type 1 diabetes mellitus. However, its potential to treat many more patients is limited by several challenges. The emergence of 3D bioprinting technology from recent advances in 3D printing, biomaterials, and cell biology has provided the means to overcome these challenges. RECENT FINDINGS 3D bioprinting allows for the precise fabrication of complex 3D architectures containing spatially distributed cells, biomaterials (bioink), and bioactive factors. Different strategies to capitalize on this ability have been investigated for the 3D bioprinting of pancreatic islets. In particular, with co-axial bioprinting technology, the co-printability of islets with supporting cells such as endothelial progenitor cells and regulatory T cells, which have been shown to accelerate revascularization of islets and improve the outcome of various transplantations, respectively, has been achieved. 3D bioprinting of islets for generation of an artificial pancreas is a newly emerging field of study with a vast potential to improve islet transplantation.
Collapse
Affiliation(s)
- Juewan Kim
- Department of Molecular & Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kyungwon Kang
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher J Drogemuller
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterial Science, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, 5000, Australia.
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
3
|
Landwehr-Kenzel S, Zobel A, Hoffmann H, Landwehr N, Schmueck-Henneresse M, Schachtner T, Roemhild A, Reinke P. Ex vivo expanded natural regulatory T cells from patients with end-stage renal disease or kidney transplantation are useful for autologous cell therapy. Kidney Int 2018; 93:1452-1464. [PMID: 29792274 DOI: 10.1016/j.kint.2018.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatrics, Division of Pneumonology and Immunology, Charité University Medicine Berlin, Berlin, Germany.
| | - Anne Zobel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Henrike Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Niels Landwehr
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Potsdam, Department for Computer Science, Potsdam, Germany
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany; Institute of Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas Schachtner
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
4
|
Chen YB, Kawai T, Spitzer TR. Combined Bone Marrow and Kidney Transplantation for the Induction of Specific Tolerance. Adv Hematol 2016; 2016:6471901. [PMID: 27239198 PMCID: PMC4867066 DOI: 10.1155/2016/6471901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/02/2022] Open
Abstract
The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the "Holy Grail" of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable.
Collapse
Affiliation(s)
- Yi-Bin Chen
- Bone Marrow Transplant Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tatsuo Kawai
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas R. Spitzer
- Bone Marrow Transplant Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
|
6
|
Morris H, DeWolf S, Robins H, Sprangers B, LoCascio SA, Shonts BA, Kawai T, Wong W, Yang S, Zuber J, Shen Y, Sykes M. Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med 2015; 7:272ra10. [PMID: 25632034 DOI: 10.1126/scitranslmed.3010760] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cell responses to allogeneic major histocompatibility complex antigens present a formidable barrier to organ transplantation, necessitating long-term immunosuppression to minimize rejection. Chronic rejection and drug-induced morbidities are major limitations that could be overcome by allograft tolerance induction. Tolerance was first intentionally induced in humans via combined kidney and bone marrow transplantation (CKBMT), but the mechanisms of tolerance in these patients are incompletely understood. We now establish an assay to identify donor-reactive T cells and test the role of deletion in tolerance after CKBMT. Using high-throughput sequencing of the T cell receptor B chain CDR3 region, we define a fingerprint of the donor-reactive T cell repertoire before transplantation and track those clones after transplant. We observed posttransplant reductions in donor-reactive T cell clones in three tolerant CKBMT patients; such reductions were not observed in a fourth, nontolerant, CKBMT patient or in two conventional kidney transplant recipients on standard immunosuppressive regimens. T cell repertoire turnover due to lymphocyte-depleting conditioning only partially accounted for the observed reductions in tolerant patients; in fact, conventional transplant recipients showed expansion of circulating donor-reactive clones, despite extensive repertoire turnover. Moreover, loss of donor-reactive T cell clones more closely associated with tolerance induction than in vitro functional assays. Our analysis supports clonal deletion as a mechanism of allograft tolerance in CKBMT patients. The results validate the contribution of donor-reactive T cell clones identified before transplant by our method, supporting further exploration as a potential biomarker of transplant outcomes.
Collapse
Affiliation(s)
- Heather Morris
- Columbia University Medical Center, New York, NY 10032, USA
| | - Susan DeWolf
- Columbia University Medical Center, New York, NY 10032, USA
| | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ben Sprangers
- Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Tatsuo Kawai
- Massachusetts General Hospital, Boston, MA 02114, USA
| | - Waichi Wong
- Columbia University Medical Center, New York, NY 10032, USA
| | - Suxiao Yang
- Columbia University Medical Center, New York, NY 10032, USA
| | - Julien Zuber
- Columbia University Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Columbia University Medical Center, New York, NY 10032, USA.
| | - Megan Sykes
- Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|