1
|
Alruwaili MK, Sugaya T, Morimoto Y, Nakanishi K, Akasaka T, Yoshida Y. Can a low dosage of recombinant human bone morphogenetic protein-2 loaded on collagen sponge induce ectopic bone? Dent Mater J 2023. [PMID: 37032102 DOI: 10.4012/dmj.2022-229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is one of the growth factors that may induce the formation of new bone. The aim was to determine the efficacy of low doses of rhBMP-2 for bone regeneration using a collagen sponge as a carrier. Three doses of rhBMP-2 (1.167, 0.117, and 0.039 mg/mL) were combined with an absorbable collagen sponge (ACS) as a delivery vehicle. The rhBMP-2/ACS implants were placed in the subcutaneous tissues of rat backs. X-ray microcomputed tomography (micro-CT) and histological analysis were used to evaluate bone formation. The samples treated with 1.167 mg/mL of rhBMP-2 showed greater bone formation than the samples treated with 0.117 mg/mL of rhBMP-2 four weeks after surgery. However, there was no evidence of bone formation in the samples that were treated with 0.039 mg/mL of rhBMP-2. It was found that rhBMP-2 was osteogenic even at one-tenth of its manufacturer's recommended concentration (1.167 mg/mL), indicating its potential for clinical use at lower concentrations.
Collapse
Affiliation(s)
- Mohammed Katib Alruwaili
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Preventive Dentistry, College of Dentistry, Jouf University
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhito Morimoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University
| | - Ko Nakanishi
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
2
|
Proposal for a New Bioactive Kinetic Screw in an Implant, Using a Numerical Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created by the first author, is presented using a bone dental implant screw, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant in the same implant site, aiming to obtain primary and secondary bone stability, simplifying the surgical procedure, and improving the healing process. The new BKS is based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant. To describe the drilling process, an explicit dynamic numerical model was created, where the results show a significant impact of the drilling process on the bone material. The simulation demonstrates that the space occupied by the screw causes stress and deformation in the bone during the perforation and removal of the particulate bone, resulting in the accumulation of material removed within the implant screw, filling the limit hole of the drill grooves present on the new BKS.
Collapse
|
3
|
Ying Y, Li B, Liu C, Xiong Z, Bai W, Ma P. Shape-Memory ECM-Mimicking Heparin-Modified Nanofibrous Gelatin Scaffold for Enhanced Bone Regeneration in Sinus Augmentation. ACS Biomater Sci Eng 2021; 8:218-231. [PMID: 34961309 DOI: 10.1021/acsbiomaterials.1c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomaterials with clinical maneuverability and predictable bone regeneration are needed in the field of maxillary sinus augmentation. Herein, gelatin was chemically modified with heparin that specifically interacted with and stabilized bone morphogenetic protein-2 (BMP-2). We then introduced thermally induced phase separation to form the injectable, shape-memory, highly porous scaffold for bone regeneration in sinus augmentation. The hydrated heparin-modified nanofibrous gelatin scaffolds (NH-GS) were demonstrated with high resilience and shape-memory property, both macroscopically and microscopically, making them injectable scaffolds and expected to be applied in sinus augmentation. This novel scaffold was verified to be biocompatible and an excellent matrix to support cell attachment, proliferation, and infiltration. Further, the growth factor-loaded NH-GS showed sustained release kinetics of BMP-2 through affinity-based scaffold-growth factor interaction, compared with BMP-2 loaded gelatin sponge (GS) and nanofibrous gelatin scaffold (NF). Both in vitro and in vivo experiments demonstrated that the BMP-2-loaded NH-GS exhibited the highest osteogenesis among the other groups. Taken together, this study introduces a new regenerative strategy in maxillary sinus augmentation, which is injectable with a predefined shape and structure and promotes bone regeneration through a more sustained BMP-2 release.
Collapse
Affiliation(s)
- Yiqian Ying
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Beibei Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zuochun Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Bai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
4
|
Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, Figueiredo de Brito Resende R, de Almeida Barros Mourão CF, de Albuquerque Calasans-Maia J, Martinez-Zelaya VR, Malta Rossi A, Granjeiro JM, Calasans-Maia MD, Seabra Louro R. Nanostructured Carbonated Hydroxyapatite Associated to rhBMP-2 Improves Bone Repair in Rat Calvaria. J Funct Biomater 2020; 11:jfb11040087. [PMID: 33291525 PMCID: PMC7768361 DOI: 10.3390/jfb11040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Many biomaterials are used for Bone Morphogenetic Proteins (BMPs) delivery in bone tissue engineering. The BMP carrier system's primary function is to hold these growth factors at the wound's site for a prolonged time and provide initial support for cells to attach and elaborate the extracellular matrix for bone regeneration. This study aimed to evaluate the nanostructured carbonated hydroxyapatite microspheres (nCHA) as an rhBMP-2 carrier on rats calvaria. A total of fifteen male Wistar rats were randomly divided into three groups (n = 5): clot (control group), rhBMP-2 associated with collagen membrane (COL/rhBMP-2) or associated with the microspheres (nCHA/rhBMP-2). After 45 days, the calvaria defect samples were evaluated through histological, histomorphometric, and SR-µCT analyses to investigate new-formed bone and connective tissue volume densities. The descriptive histological analysis showed that nCHA/rhBMP-2 improved bone formation compared to other groups. These results were confirmed by histomorphometric and SR-µCT analysis that showed substantially defect area filling with a higher percentage of newly formed (36.24 ± 6.68) bone than those with the COL/rhBMP-2 (0.42 ± 0.40) and Clot (3.84 ± 4.57) (p < 0.05). The results showed that nCHA is an effective carrier for rhBMP-2 encouraging bone healing and an efficient alternative to collagen membrane for rhBMP-2 delivery.
Collapse
Affiliation(s)
- Thiago Schneider Werner Vianna
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, Brazil;
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | | | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| | | | | | - Victor R. Martinez-Zelaya
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-970, Brazil;
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil;
| | - Jose Mauro Granjeiro
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias 25250-020, Brazil
| | - Monica Diuana Calasans-Maia
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
- Correspondence: ; Tel.: +55-21-981535884
| | - Rafael Seabra Louro
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| |
Collapse
|
5
|
Sinus Floor Augmentation Using Recombinant Human Bone Morphogenetic Protein-2 With Hydroxyapatite: Volume Assessment. J Craniofac Surg 2020; 31:912-915. [PMID: 32068727 DOI: 10.1097/scs.0000000000006251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The aim of this study was to assess the efficacy of using bone morphogenetic protein-2 with hydroxyapatite granules (BMP-2/hydroxyapatite) during augmentation of maxillary sinus floor, with respect to changes in volume, relative to conventional bone graft materials. METHOD AND MATERIALS Twenty of 25 patients in the BMP-2/hydroxyapatite group, and 16 of 33 patients in the conventional materials group met the criteria for inclusion in this study. Computed tomography scans were performed preoperatively, immediately postoperatively, and at follow-up, approximately 6 months postoperatively. Changes in volume and height of both grafted materials were measured using 3-dimensional reconstruction software; these changes were compared between groups. RESULTS The mean (standard deviation) volumetric changes were 0.25 (0.11) cc and -0.07 (0.35) cc, and the mean rates of volumetric changes were 26.44% (7.78%) and -2.92% (30.92%) in BMP-2/hydroxyapatite and conventional materials groups, respectively. The mean height changes were 0.34 (0.73) mm and -0.63 (1.07) mm, and the mean rates of height changes were 3.67% (7.57%) and -5.95% (9.98%) in BMP-2/hydroxyapatite and conventional materials groups, respectively. CONCLUSION Compared with the conventional materials group, the BMP-2/hydroxyapatite group showed better maxillary sinus floor augmentation results in terms of volumetric changes and grafted material densities, and can provide predictably reliable outcomes.
Collapse
|
6
|
Liu X, Chen J, Luo Y, Tang Z, He Y. Osteogenic inducer sustained-release system promotes the adhesion, proliferation, and differentiation of osteoblasts on titanium surface. Ann Anat 2020; 231:151523. [PMID: 32380194 DOI: 10.1016/j.aanat.2020.151523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Biomaterial can be locally applied to promote the osseointegration of dental implants. This study aimed to fabricate an osteogenic inducer (OI) sustained-release system and to evaluate its effects on the adhesion, proliferation, and differentiation of osteoblasts on titanium surfaces. METHODS First of all, different contents of OI solution were added to the poly (lactic-co-glycolic acid) (PLGA) gel individually to investigate the best physical properties and drug-release rate. Moreover, osteoblasts were isolated from the calvaria of two-month-old New Zealand rabbits through sequential enzymatic digestion. Osteoblasts were seeded onto the surface of Ti disks (control group), Ti coated with PLGA gel (PLGA group), and Ti coated with the OI sustained-release system (PLGA+OI group). Cell adhesion was observed by scanning electron microscopy. Cell proliferation was analyzed by cell counting kit-8. Cell differentiation was tested by alizarin red staining, alkaline phosphatase (ALP) activity and osteogenic-related gene expression. RESULTS The OI sustained-release system contained 15% OI solution had appropriate physical properties and drug-release rate. The osteoblasts in the PLGA+OI group were in a typical spindle shape with a considerable number indicating the promotion of adhesion and proliferation. The expression of early and late stage osteoblast differentiation genes in the PLGA+OI group were significantly higher than that of the control group and PLGA group at each time point. The PLGA group showed accelerated adhesion and differentiation but reduced proliferation compared with the control. CONCLUSION The OI sustained-release system promotes the adhesion, proliferation, and differentiation of osteoblasts on titanium surfaces. This system is a cost-effective osteoconductive biomaterial that might be promising for use in dental implantation.
Collapse
Affiliation(s)
- Xulin Liu
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yonghua Luo
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Ziqiao Tang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Um IW, Ku JK, Kim YK, Lee BK, Leem DH. Histological Review of Demineralized Dentin Matrix as a Carrier of rhBMP-2. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:284-293. [PMID: 31928139 PMCID: PMC7310192 DOI: 10.1089/ten.teb.2019.0291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In 2007, recombinant human bone morphogenetic protein-2 (rhBMP-2) was approved for use in humans at a concentration of 1.5 mg/mL with absorbable collagen sponges as an alternative to autogenous bone grafts for alveolar ridge augmentation, defects associated with extraction sockets, and sinus augmentation. However, the use of supraphysiological doses and the insufficient retention of rhBMP-2, when delivered through collagen sponge, result in dose-dependent side effects related to off-label use. Demineralized dentin matrix (DDM), an osteoinducing bone substrate, has been used as an rhBMP-2 carrier since 1998. In addition, DDM has both microparticle and nanoparticle structures, which do not undergo remodeling, unlike bone. In vitro, DDM is a suitable carrier for BMP-2, with the continued release over 30 days at concentrations sufficient to stimulate osteogenic differentiation. In this review, we discuss the histological outcomes of DDM loaded with rhBMP-2 to highlight the biological functions of exogenous rhBMP-2 associated with the DDM carrier in clinical applications in implant dentistry. Impact Statement Demineralized dentin matrix (DDM) has been used as an recombinant human bone morphogenetic protein (rhBMP-2) carrier and osteo-inducing bone substrate to facilitate continued release and stimulate osteogenic differentiation. In this review, we discuss the histological outcomes of DDM loaded with rhBMP-2 in order to highlight the biological functions of exogenous rhBMP-2 associated with the DDM carrier in clinical applications in implant dentistry.
Collapse
Affiliation(s)
- In-Woong Um
- R&D Institute, Korea Tooth Bank, Seoul, Republic of Korea
| | - Jeong-Kui Ku
- Section of Dentistry, Department of Oral and Maxillofacial Surgery, Armed Forces Capital Hospital, Seongnam, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Seoul Asan Medical Center, Seoul, Republic of Korea
- Address correspondence to: Jeong-Kui Ku, DDS, MMSc, FIBCOMS, Section of Dentistry, Department of Oral and Maxillofacial Surgery, Armed Forces Capital Hospital, 81, Saemaul-ro 117, Bundang-gu, Seongnam 13575, Republic of Korea
| | - Young-Kyun Kim
- Section of Dentistry, Department of Oral and Maxillofacial Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, Seoul Asan Medical Center, Seoul, Republic of Korea
| | - Dae Ho Leem
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
- Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Shibata M, Takagi G, Kudo M, Kurita J, Kawamoto Y, Miyagi Y, Kanazashi M, Sakatani T, Naito Z, Tabata Y, Miyamoto M, Nitta T. Enhanced Sternal Healing Through Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel. Tissue Eng Part A 2018; 24:1406-1412. [DOI: 10.1089/ten.tea.2017.0505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Masafumi Shibata
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Gen Takagi
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Jiro Kurita
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoko Kawamoto
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuo Miyagi
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mikimoto Kanazashi
- Kanagawa Dental University, Graduate School of Dentistry, Department of Oral Functional & Restoration, Division of Periodontology, Kanagawa, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaaki Miyamoto
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Nam JW, Kim HJ. Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model. J Korean Assoc Oral Maxillofac Surg 2017; 43:373-387. [PMID: 29333367 PMCID: PMC5756794 DOI: 10.5125/jkaoms.2017.43.6.373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/07/2022] Open
Abstract
Objectives The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.
Collapse
Affiliation(s)
- Jung-Woo Nam
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Hyung-Jun Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea.,Research Institute for Dental Biomaterials & Bioengineering, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
10
|
Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519439 DOI: 10.1016/j.msec.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (KD: 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles.
Collapse
|
11
|
Nam J, Khureltogtokh S, Choi H, Lee A, Park Y, Kim H. Randomised controlled clinical trial of augmentation of the alveolar ridge using recombinant human bone morphogenetic protein 2 with hydroxyapatite and bovine-derived xenografts: comparison of changes in volume. Br J Oral Maxillofac Surg 2017; 55:822-829. [DOI: 10.1016/j.bjoms.2017.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
|
12
|
Wang Z, Jia Z, Jiang Y, Li P, Han L, Lu X, Ren F, Wang K, Yuan H. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions. Biofabrication 2017; 9:035005. [DOI: 10.1088/1758-5090/aa7fdc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Endocultivation: continuous application of rhBMP-2 via mini-osmotic pumps to induce bone formation at extraskeletal sites. Int J Oral Maxillofac Surg 2017; 46:655-661. [DOI: 10.1016/j.ijom.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
14
|
Fujioka-Kobayashi M, Mottini M, Kobayashi E, Zhang Y, Schaller B, Miron RJ. An in vitro study of fibrin sealant as a carrier system for recombinant human bone morphogenetic protein (rhBMP)-9 for bone tissue engineering. J Craniomaxillofac Surg 2016; 45:27-32. [PMID: 27840120 DOI: 10.1016/j.jcms.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/27/2016] [Accepted: 10/04/2016] [Indexed: 01/29/2023] Open
Abstract
In the craniofacial bone field, fibrin sealants are used as coagulant and adhesive tools to stabilize grafts during surgery. Despite this, their exact role in osteogenesis is poorly characterized. In the present study, we aimed to characterize the osteogenic potential of TISSEEL fibrin sealant and used its technology to incorporate growth factors within its matrix. We focused on recombinant human bone morphogenetic protein (rhBMP)-9, which has previously been characterized as one of the strongest osteogenetic inducers in the BMP family. TISSEEL displayed an excellent ability to retain rhBMP9, which was gradually released over a 10-day period. Although TISSEEL decreased bone stromal ST2 cell attachment at 8 h, it displayed normal cell proliferation at 1, 3, and 5 days when compared to tissue culture plastic. Interestingly, TISSEEL had little influence on osteoblast differentiation; however its combination with rhBMP9 significantly increased ALP activity at 7 days, Alizarin Red staining at 14 days, and mRNA levels of osteoblast differentiation markers ALP, bone sialoprotein, and osteocalcin. In summary, although fibrin sealants were shown to have little influence on osteogenesis, their combination with bone-inducing growth factors such as rhBMP9 may serve as an attractive carrier/scaffold for future bone regenerative strategies. Future animal studies are now necessary.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland; Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, Japan.
| | - Matthias Mottini
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA
| |
Collapse
|
15
|
Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016; 3:56-71. [PMID: 27239485 PMCID: PMC4880030 DOI: 10.1016/j.gendis.2015.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials.
Collapse
Affiliation(s)
- Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| | - Zach J. Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Beck-Broichsitter BE, Becker ST, Seitz H, Wiltfang J, Warnke PH. Endocultivation: Histomorphological effects of repetitive rhBMP-2 application into prefabricated hydroxyapatite scaffolds at extraskeletal sites. J Craniomaxillofac Surg 2015; 43:981-8. [DOI: 10.1016/j.jcms.2015.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
|
17
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
18
|
Li N, Jiang C, Zhang X, Gu X, Zhang J, Yuan Y, Liu C, Shi J, Wang J, Li Y. Preparation of an rhBMP-2 loaded mesoporous bioactive glass/calcium phosphate cement porous composite scaffold for rapid bone tissue regeneration. J Mater Chem B 2015; 3:8558-8566. [PMID: 32262696 DOI: 10.1039/c5tb01423a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An rhBMP-2/MBG/CPC scaffold is beneficial for rapid bone tissue regeneration in the early stage.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chuan Jiang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Xingdi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinfeng Gu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
19
|
Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, Sun Y, Døskeland AP, Nickel J, Waag T, Lygre H, Finne-Wistrand A, Steinmüller-Nethl D, Krueger A, Mustafa K. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release 2014; 197:148-57. [PMID: 25445698 DOI: 10.1016/j.jconrel.2014.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 11/15/2022]
Abstract
A low dose of 1μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway.
| | - Zhe Xing
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Xujun Wu
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ying Xue
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Torbjorn O Pedersen
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Stockholm, Sweden
| | | | - Joachim Nickel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital of Würzburg, Germany; Fraunhofer Project Group Regenerative Technologies in Oncology, Würzburg, Germany
| | - Thilo Waag
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Henning Lygre
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Stockholm, Sweden
| | | | - Anke Krueger
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Kamal Mustafa
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway.
| |
Collapse
|
20
|
Cao L, Wang J, Hou J, Xing W, Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2013; 35:684-98. [PMID: 24140042 DOI: 10.1016/j.biomaterials.2013.10.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023]
Abstract
An ideal bone tissue engineering graft should have both excellent pro-osteogenesis and pro-angiogenesis to rapidly realize the bone regeneration in vivo. To meet this goal, 2-N,6-O-sulfated chitosan (26SCS) based nanoparticle (S-NP) was successfully developed and showed a dose-dependent enhancement on angiogenesis in vitro. For the repair of a critical sized defect in rabbit radius, we developed BMP-2 loaded S-NP (BMP-2/S-NP) with protein loading efficiency of 1.4 ± 0.2% and fabricated a gelatin sponge (G) based implant loaded with BMP-2/S-NP (BMP-2/S-NP/G). This implant exerted a delivery of BMP-2 with an initial burst release of 15.3 ± 4.1% in first 24 h and a gradual release for 21 days to 77.8 ± 3.6%. The in vitro ALP assay revealed that the activity of released BMP-2 from BMP-2/S-NP/G was maintained after 3-d and 7-d delivery and further enhanced after 14-d delivery compared with the original BMP-2. Furthermore, the in vivo effects of BMP-2/S-NP/G on the bone regeneration and vessel formation in the critical sized defect (18 mm) of rabbit radius were investigated by synchrotron radiation-based micro-computed tomography (SRμCT) imaging, three dimensional micro-computed tomographic (μCT) imaging, histological analysis, immunohistochemistry and biomechanical measurement. Based on the results, both peripheral vessel and new vessel formation were significantly increased by the BMP-2/S-NP/G treatment, along with the bridged defects at as early as 2 weeks, the healed defects at 8 weeks and the reunion of bone marrow cavity at 12 weeks. The results indicated that both controlled release of active BMP-2 and favorable vascularization at the defect site contributed by BMP-2/S-NP/G played a crucial role in accelerating and promoting bone augmentation. This study suggests that BMP-2/S-NP/G demonstrates promise for vascularization and bone regeneration in clinical case of large defect.
Collapse
Affiliation(s)
- Lingyan Cao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
21
|
Ono M, Sonoyama W, Nema K, Hara ES, Oida Y, Pham HT, Yamamoto K, Hirota K, Sugama K, Sebald W, Kuboki T. Regeneration of Calvarial Defects withEscherichia coli-Derived rhBMP-2 Adsorbed in PLGA Membrane. Cells Tissues Organs 2013; 198:367-76. [DOI: 10.1159/000356947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
|
22
|
Yang HS, La WG, Cho YM, Shin W, Yeo GD, Kim BS. Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration. Exp Mol Med 2012; 44:350-5. [PMID: 22322342 PMCID: PMC3366328 DOI: 10.3858/emm.2012.44.5.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is used to promote bone regeneration. However, the bone regeneration ability of BMP-2 relies heavily on the delivery vehicle. Previously, we have developed heparin- conjugated fibrin (HCF), a vehicle for long-term delivery of BMP-2 and demonstrated that long-term delivery of BMP-2 enhanced its osteogenic efficacy as compared to short-term delivery at an equivalent dose. The aim of this study was to compare the bone-forming ability of the BMP-2 delivered by HCF to that delivered by clinically utilized BMP-2 delivery vehicle collagen sponge. An in vitro release profile of BMP-2 showed that HCF released 80% of the loaded BMP-2 within 20 days, whereas collagen sponge released the same amount within the first 6 days. Moreover, the BMP-2 released from the HCF showed significantly higher alkaline phosphatase activity than the BMP-2 released from collagen sponge at 2 weeks in vitro. Various doses of BMP-2 were delivered with HCF or collagen sponge to mouse calvarial defects. Eight weeks after the treatment, bone regeneration was evaluated by computed tomography, histology, and histomorphometric analysis. The dose of BMP-2 delivered by HCF to achieve 100% bone formation in the defects was less than half of the BMP-2 dose delivered by collagen sponge to achieve a similar level of bone formation. Additionally, bone regenerated by the HCF-BMP-2 had higher bone density than bone regenerated by the collagen sponge-BMP-2. These data demonstrate that HCF as a BMP-2 delivery vehicle exerts better osteogenic ability of BMP-2 than collagen sponge, a clinically utilized delivery vehicle.
Collapse
Affiliation(s)
- Hee Seok Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea Bio-Max Institute, Institute of Chemical Process, Engineering Research Institute, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Chaudhari A, Cardoso MV, Martens J, Vandamme K, Naert I, Duyck J. Bone tissue response to BMP-2 adsorbed on amorphous microporous silica implants. J Clin Periodontol 2012; 39:1206-13. [PMID: 23038997 DOI: 10.1111/jcpe.12005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2012] [Indexed: 11/26/2022]
Abstract
AIM To evaluate bone regeneration potential of bone morphogenetic protein-2 (BMP-2) adsorbed on amorphous microporous silica (AMS). MATERIALS & METHODS Four implants [titanium as control (CTR); AMS-coated titanium (AMS), BMP-2 adsorbed on titanium (CTR+BMP) and AMS (AMS+BMP)] were implanted randomly in the tibiae of 20 New Zealand white rabbits. Bone specimens with implants were retrieved 2/4 weeks post implantation and analysed histologically and histomorphometrically. Bone fraction was measured in initial bone-free area (bone regeneration area, BRA) and in the area with initial bone-implant contact [bone adaptation area (BAA)] (BF(BRA) & BF(BAA) ). Bone-implant contact was measured in BRA (BIC(BRA) ). In vitro BMP-2 release profiles were determined to evaluate the impact of the carrier surface. Mixed models were used for statistical analysis. RESULTS BMP-2 release profiles were different for CTR+BMP and AMS+BMP. BIC(BRA) and BF(BRA) were significantly increased after 4 weeks compared to 2 weeks for AMS, CTR+BMP and AMS+BMP. However, no differences between the implant types were observed within both healing periods. BF(BAA) for CTR+BMP was smaller than that for CTR and AMS+BMP after 4 weeks. Despite slower BMP-2 release, AMS+BMP did not stimulate bone regeneration. CTR+BMP caused bone resorption at the bone-implant interface. CONCLUSIONS BMP-2 functionalized implant surfaces failed to stimulate bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Amol Chaudhari
- Department of Prosthetic Dentistry, BIOMAT Research Group, KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Beck-Broichsitter BE, Christofzik DW, Daschner F, Knöchel R, Smeets R, Warnke P, Wiltfang J, Becker ST. Endocultivation: Metabolism During Heterotopic Osteoinduction In Vivo—Monitoring with Fiber Optic Detection Devices. Tissue Eng Part C Methods 2012; 18:740-6. [DOI: 10.1089/ten.tec.2011.0641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - David W. Christofzik
- Department of Conservative Dentistry, Christian Albrechts University, Kiel, Germany
| | - Frank Daschner
- Microwave Laboratory, Faculty of Engineering, Christian Albrechts University, Kiel, Germany
| | - Reinhard Knöchel
- Microwave Laboratory, Faculty of Engineering, Christian Albrechts University, Kiel, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Hamburg University, Hamburg, Germany
| | - Patrick Warnke
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, Christian Albrechts University, Kiel, Germany
| | - Stephan T. Becker
- Department of Oral and Maxillofacial Surgery, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
25
|
Becker S, Bolte H, Schünemann K, Seitz H, Bara J, Beck-Broichsitter B, Russo P, Wiltfang J, Warnke P. Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int J Oral Maxillofac Surg 2012; 41:1153-60. [DOI: 10.1016/j.ijom.2012.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/16/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022]
|
26
|
Rahman CV, Ben-David D, Dhillon A, Kuhn G, Gould TWA, Müller R, Rose FRAJ, Shakesheff KM, Livne E. Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model. J Tissue Eng Regen Med 2012; 8:59-66. [DOI: 10.1002/term.1497] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Cheryl V. Rahman
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Dror Ben-David
- Department of Anatomy and Cell Biology; Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| | - Amritpaul Dhillon
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Gisela Kuhn
- Institute for Biomechanics; ETH Zurich; Switzerland
| | - Toby W. A. Gould
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Ralph Müller
- Institute for Biomechanics; ETH Zurich; Switzerland
| | | | - Kevin M. Shakesheff
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Erella Livne
- Department of Anatomy and Cell Biology; Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
27
|
Yang HS, La WG, Park J, Kim CS, Im GI, Kim BS. Efficient Bone Regeneration Induced by Bone Morphogenetic Protein-2 Released from Apatite-Coated Collagen Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1659-71. [DOI: 10.1163/092050611x589419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hee Seok Yang
- a Department of Bioengineering , Hanyang University , Seoul , 133-791 , South Korea
| | - Wan-Geun La
- b School of Chemical and Biological Engineering, Seoul National University , Seoul , 151-744 , South Korea
| | - Jooyeon Park
- b School of Chemical and Biological Engineering, Seoul National University , Seoul , 151-744 , South Korea
| | - Chang-Sung Kim
- c Department of Periodontology , College of Dentistry, Yonsei University , Seoul , 120-752 , South Korea
| | - Gun-Il Im
- d Department of Orthopaedics , Dongguk University International Hospital , Goyang , 411-773 , South Korea
| | - Byung-Soo Kim
- b School of Chemical and Biological Engineering, Seoul National University , Seoul , 151-744 , South Korea
| |
Collapse
|
28
|
Suárez-González D, Lee JS, Lan Levengood SK, Vanderby R, Murphy WL. Mineral coatings modulate β-TCP stability and enable growth factor binding and release. Acta Biomater 2012; 8:1117-24. [PMID: 22154864 DOI: 10.1016/j.actbio.2011.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/09/2011] [Accepted: 11/21/2011] [Indexed: 12/24/2022]
Abstract
β-Tricalcium phosphate (β-TCP) is an attractive ceramic for bone tissue repair because of its similar composition to bone mineral and its osteoconductivity. However, compared with other ceramics β-TCP has a rapid and uncontrolled rate of degradation. In the current study β-TCP granules were mineral coated with the aim of influencing the dissolution rate of β-TCP, and also to use the coating as a carrier for controlled release of the growth factors recombinant human vascular endothelial growth factor (rhVEGF), modular VEGF peptide (mVEGF), and modular bone morphogenetic protein 2 peptide (mBMP2). The biomineral coatings were formed by heterogeneous nucleation in aqueous solution using simulated body fluid solutions with varying concentrations of bicarbonate (HCO(3)). Our results demonstrate that we could coat β-TCP granules with mineral layers possessing different dissolution properties. The presence of a biomineral coating delays the dissolution rate of the β-TCP granules. As the carbonate (CO(3)(2-)) content in the coating was increased the dissolution rate of the coated β-TCP also increased, but remained slower than the dissolution of uncoated β-TCP. In addition, we showed sustained release of multiple growth factors, with release kinetics that were controllable by varying the identity of the growth factor or the CO(3)(2-) content in the mineral coating. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation, and mVEGF enhanced migration of mouse embryonic endothelial cells in a scratch wound healing assay, indicating that each released growth factor was biologically active.
Collapse
|
29
|
La WG, Kwon SH, Lee TJ, Yang HS, Park J, Kim BS. The Effect of the Delivery Carrier on the Quality of Bone Formed via Bone Morphogenetic Protein-2. Artif Organs 2012; 36:642-7. [DOI: 10.1111/j.1525-1594.2011.01420.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Strobel C, Bormann N, Kadow-Romacker A, Schmidmaier G, Wildemann B. Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants. J Control Release 2011; 156:37-45. [DOI: 10.1016/j.jconrel.2011.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/22/2011] [Accepted: 07/03/2011] [Indexed: 01/22/2023]
|
31
|
Yang HS, La WG, Bhang SH, Lee TJ, Lee M, Kim BS. Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery. Tissue Eng Part A 2011; 17:2153-64. [PMID: 21529263 DOI: 10.1089/ten.tea.2010.0702] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are the most potent osteoinductive growth factors. BMP-2 is clinically used for spine fusion and bone fracture healing. Commercially available BMP-2 uses a type I collagen scaffold as a carrier, but it only releases BMP-2 for a short period of time, which may release the bone formation efficacy. In the present study, we hypothesize that apatite coating of a collagen scaffold increases the release period as well as the osteogenic efficacy of BMP-2. Apatite coating was achieved by incubating collagen scaffolds in simulated body fluids (SBFs). Apatite coating on collagen scaffolds was confirmed by X-ray diffraction, electron spectroscopy for chemical analysis, attenuated total reflectance-Fourier transform infrared spectroscopy, and scanning electron microscopy. The rate and period of BMP-2 release from apatite-coated collagen scaffolds varied depending on the concentration of SBFs used. The 5× and 10× SBF apatite-coated collagen scaffolds released 91.8%±11.5% and 82.2%±13.1% of their loaded BMP-2 over 13 days in vitro, respectively, whereas noncoated collagen scaffold released 98.3%±2.2% over the initial one day. BMP-2 released from apatite-coated collagen scaffold significantly increased the alkaline phosphatase activity of cultured osteoblasts, compared with BMP-2 released from noncoated collagen scaffold. Computed tomography and histomorphometry showed that BMP-2 delivery using apatite-coated collagen scaffolds resulted in 2.5-fold higher bone formation volume and 4.0-fold higher bone formation area than BMP-2 delivery using noncoated collagen scaffolds. This study shows that simple apatite coating of a collagen scaffold results in a BMP-2 carrier that renders long-term release of BMP-2 and dramatically enhances osteogenic efficacy.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence. Injury 2011; 42:609-13. [PMID: 21489529 DOI: 10.1016/j.injury.2011.03.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/17/2011] [Indexed: 02/02/2023]
Abstract
Over the last decades, the medical world has advanced dramatically in the understanding of fracture repair. The three components needed for fracture healing are osteoconduction, osteoinduction and osteogenesis. With newly designed scaffolds, ex vivo produced growth factors and isolated stem cells, most of the challenges of critical size bone defects have been resolved in vitro, and in some cases in animal models as well. However, there are still challenges needed to be overcome before these technologies can be fully converted from the bench to the bedside. These technological and biological advancements need to be converted to mass production of affordable products that can be used in every part of the world. Vascularity, full substation of scaffolds by native bone, and bio-safety are the three most critical steps to be challenged before reaching the clinical setting.
Collapse
Affiliation(s)
- Josh E Schroeder
- Orthopedic Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
33
|
La WG, Kang SW, Yang HS, Bhang SH, Lee SH, Park JH, Kim BS. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery. Artif Organs 2011; 34:1150-3. [PMID: 20545667 DOI: 10.1111/j.1525-1594.2009.00988.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) induces bone regeneration in a dose-dependent manner, with higher doses of BMP-2 inducing greater bone formation. Previously, we showed that long-term delivery of BMP-2 provides better ectopic bone formation than short-term delivery of an equivalent dose. In the present study, we investigated the efficacy of orthotopic bone formation over a range of BMP-2 doses, using different delivery modes. Heparin-conjugated poly(lactic-co-glycolic acid) nanospheres suspended in fibrin gel were used as a long-term delivery system, and fibrin gel was used as a short-term delivery system. Different doses of BMP-2 were delivered to mouse calvarial defects using either long-term or short-term delivery systems. Eight weeks after treatment, bone regeneration was evaluated by histomorphometry. For both delivery systems, bone regeneration increased as the BMP-2 dose increased up to 1 µg and did not increase beyond this dose. Importantly, at BMP-2 doses higher than 1 µg, long-term delivery resulted in much greater bone formation than short-term delivery. This study shows that long-term delivery of BMP-2 is more effective at enhancing orthotopic bone formation than short-term delivery over a range of doses.
Collapse
Affiliation(s)
- Wan-Geun La
- Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, Okamoto R. The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials 2011; 32:3855-61. [PMID: 21376389 DOI: 10.1016/j.biomaterials.2011.01.076] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/31/2011] [Indexed: 11/26/2022]
Abstract
Bone formation in critical-sized calvaria defects is strongly dependent on the osteoconductive properties of grafts. It remains a matter of controversy whether biomaterials can replace autografts and whether the supplementation of biomaterials with Bone Morphogenetic Proteins (BMPs) is necessary to enhance bone formation. We examined rat calvaria critical-sized defects (5-mm-diameter) treated with β-tricalcium phosphate (TCP; Cerasorb® M), polylactic and polyglycolic acid gel (PLA/PGA; Fisiograft®) and calcium phosphate cement (CPC; Norian® CRS®), either alone or in the presence of 5 μg of BMP-2 after 45 days. Autografts and untreated defects served as controls. Bone formation was evaluated based on μCT analysis, histomorphometric analysis and fluorescence analysis. We report that TCP supported bone formation more efficiently than did autografts. Bone formation in the presence of TCP alone reached a maximal level, as BMP-2 supplementation failed to enhance bone formation. By contrast, no significant difference in bone formation was observed when PLA/PGA and CPC were compared to autografts. Moreover, the presence of BMP-2 did not substantially change the osteoconductive properties of PLA/PGA or CPC. We conclude that the osteoconductive properties of TCP are superior to those of autografts and that TCP does not require BMP-2 supplementation. Our findings also show that the decreased osteoconductive properties of PLA/PGA and CPC cannot be overcome by BMP-2 supplementation in rat calvaria defects.
Collapse
Affiliation(s)
- Eloa R Luvizuto
- Department of Oral Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Guda T, Walker JA, Pollot BE, Appleford MR, Oh S, Ong JL, Wenke JC. In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:647-56. [PMID: 21287244 DOI: 10.1007/s10856-011-4241-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/14/2011] [Indexed: 05/12/2023]
Abstract
The objective of this study was to investigate the in vivo biomechanical performance of bone defects implanted with novel bilayer hydroxyapatite (HAp) scaffolds that mimic the cortical and cancellous organization of bone. The scaffolds maintained architectural continuity in a rabbit radius segmental defect model and were compared to an untreated defect group (negative control) and autologous bone grafts (positive control). Micro-CT evaluations indicated total bone and scaffold volume in the experimental group was significantly greater than the defect group but lesser than the autologous bone graft treatment. The flexural toughness of the scaffold and the autograft groups was significantly greater than the flexural toughness of the defect group. Interestingly, the absolute density of the bone mineral as well as calcium to phosphorus (Ca/P) ratio in that mineral for the scaffold and autograft contralateral bones was significantly higher than those for the defect contralaterals suggesting that the scaffolds contributed to calcium homeostasis. It was concluded from this study that new bone regenerated in the bilayer HAp scaffolds was comparable to the empty defects and while the HAp scaffolds provided significant increase in modulus when compared to empty defect and their flexural toughness was comparable to autografts after 8 weeks of implantation.
Collapse
Affiliation(s)
- Teja Guda
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, 3400 Rawley E. Chambers Ave., Fort Sam Houston, TX 78234, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Peres JA, Lamano T. Strategies for stimulation of new bone formation: a critical review. Braz Dent J 2011; 22:443-8. [DOI: 10.1590/s0103-64402011000600001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/05/2011] [Indexed: 01/08/2023] Open
Abstract
Large bone defects, congenital or caused by diseases, trauma or surgery, do not heal spontaneously and are usually a clinical challenge in the orthopedic and dental practices. A critical review concerning strategies to substitute lost bone or stimulate osteogenesis was undertaken. Pivotal concepts ranging from traditional bone grafting and use of biomaterials to local application of growth factors and gene therapy were addressed, including critical comments on the efficacy and safety, difficulties, advantages and disadvantages of each method. The most predictable results are still obtained with autogenous bone graft, despite the inconveniences of morbidity and limited availability of graft material. Satisfactory results have been reported for recombinant bone morphogenetic proteins (rhBMPs)-2 and -7, which distinguish for their osteoinductive property, the difficulty being the need for a degradable carrier that allows its continuous release in a rate compatible to that of new bone formation. Other bone growth factors are currently under evaluation in preclinical models of bone defects; however their efficacy is also dependent on the competence of a delivery strategy and on an appropriate delineation of “which one”, “which dose” and “when”. Parameters of efficiency and safety for gene therapy are still being established. In conclusion, given the variety of growth factors involved in the complex cascade of bone repair and the biological interactions between them, it remains a challenge to accomplish the ideal strategy to stimulate reparational bone formation in specific conditions of the medical as in the dental practices.
Collapse
|
37
|
Abstract
Growth factors are low molecular peptides active in the stimulation of cell proliferation and in the regulation of embryonic development and cellular differentiation. Significant progress has been made in developing effective strategies to treat human malignancies with new chemical compounds based on a rationale directed against various components of signaling pathways. Many of these drugs target a growth factor receptor--for instance, in the form of monoclonal antibodies or inhibitors of tyrosine kinases, such as monoclonal antibodies against epidermal growth factor receptors used in treating certain types of breast cancer. Imatinib mesylate [Gleevec]) is an excellent example of mediators of signal transduction, such as tyrosine kinases. Growth factors proper are used to ameliorate various and sometimes fatal side effects of cytotoxic and/or myelosuppressive chemotherapy. Basic characteristics of several growth families are discussed with therapeutic modalities based on growth factor activity or, more often, inhibition of such activity.
Collapse
Affiliation(s)
- J Halper
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7388, USA.
| |
Collapse
|
38
|
Endocultivation: Does delayed application of BMP improve intramuscular heterotopic bone formation? J Craniomaxillofac Surg 2010; 38:54-9. [DOI: 10.1016/j.jcms.2009.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
|
39
|
Sawada Y, Hokugo A, Nishiura A, Hokugo R, Matsumoto N, Morita S, Tabata Y. A trial of alveolar cleft bone regeneration by controlled release of bone morphogenetic protein: an experimental study in rabbits. ACTA ACUST UNITED AC 2009; 108:812-20. [DOI: 10.1016/j.tripleo.2009.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/25/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
40
|
Boraiah S, Paul O, Hawkes D, Wickham M, Lorich DG. Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res 2009; 467:3257-62. [PMID: 19693635 PMCID: PMC2772910 DOI: 10.1007/s11999-009-1039-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 07/29/2009] [Indexed: 01/31/2023]
Abstract
UNLABELLED Bone morphogenic proteins (BMPs) are potent osteoinductive agents. Their use in fracture surgery is still being studied and the clinical indications are evolving. Heterotopic bone after BMP use in spine surgery is a known complication. While some literature describes the ability of BMP to enhance fracture healing, few articles describe complications of BMP. In tibial plateau fractures, after elevating the cartilage en mass, a subchondral void may be created in these fractures. Structural support provided by bone void-filling agents can be augmented with osteoinduction achieved by BMP. We asked whether heterotopic bone formation would occur more frequently with BMP-2 when used in tibial plateau fractures and whether BMP-2 enhanced the ability to maintain surgically restored subchondral bone integrity. Heterotopic bone developed more frequently in patients receiving BMP (10 of 17) than in patients not receiving BMP (one of 23). Four patients receiving BMP and no patients not receiving BMP underwent removal of heterotopic bone. Maintenance of subchondral bone integrity was similar without and with the use of BMP. BMP is a potent osteoinductive agent; however, when used for an off-label indication in periarticular situations, complications such as heterotopic bone are common and increase reoperation rates. LEVEL OF EVIDENCE Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Sreevathsa Boraiah
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 520 East 70th Street, New York, NY 10021 USA
| | - Omesh Paul
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 520 East 70th Street, New York, NY 10021 USA
| | - David Hawkes
- University of Liverpool Medical School, Liverpool, UK
| | | | - Dean G. Lorich
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 520 East 70th Street, New York, NY 10021 USA
| |
Collapse
|
41
|
A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc 2009; 17:1326-31. [PMID: 19633829 DOI: 10.1007/s00167-009-0881-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
Osteochondral defects are frequent, painful, debilitating and expensive to treat, often resulting in poor results. The goal of the present study was to synthesize and characterize a novel biocompatible and biodegradable hydrogel comprised of poly(ethylene glycol), gelatin, and genipin, and examine the hydrogel as an injectable biomaterial in combination with a cyanoacrylate-based surgical sealant for cartilage repair. An osteochondral knee defect was generated in 24 rats, then the hydrogel, with or without a surgical sealant, was injected into the defect and followed for 14 days. The results demonstrated that the hydrogel is biocompatible and biodegradable, and that the cyanoacrylate-based surgical sealant is a relatively safe option for maintaining the hydrogel in the defect. This is the first study describing a cyanoacrylate-based surgical sealant in combination with a polymer hydrogel for cartilage repair.
Collapse
|
42
|
Becker ST, Bolte H, Krapf O, Seitz H, Douglas T, Sivananthan S, Wiltfang J, Sherry E, Warnke PH. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol 2009; 45:e181-8. [DOI: 10.1016/j.oraloncology.2009.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
43
|
Impact of rhBMP-2 on regeneration of buccal alveolar defects during the osseointegration of transgingival inserted implants. ACTA ACUST UNITED AC 2009; 108:e3-e12. [DOI: 10.1016/j.tripleo.2009.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 05/07/2009] [Accepted: 05/21/2009] [Indexed: 01/20/2023]
|
44
|
Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol Lett 2009; 31:1817-24. [PMID: 19690804 DOI: 10.1007/s10529-009-0099-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/27/2022]
Abstract
Recombinant human bone morphogenetic proteins (rhBMPs) have been extensively investigated for developing therapeutic strategies aimed at the restoration and treatment of orthopaedic as well as craniofacial conditions. In this first part of the review, we discuss the rationale for the necessary use of carrier systems to deliver rhBMP-2 and rhBMP-7 to sites of bone tissue regeneration and repair. General requirements for growth factor delivery systems emphasizing the distinction between localized and release-controlled delivery strategies are presented highlighting the current limitations in the development of an effective rhBMP delivery system applicable in clinical bone tissue engineering.
Collapse
|