1
|
Harrison ND, Steven R, Phillips BL, Hemmi JM, Wayne AF, Mitchell NJ. Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:5. [PMID: 39294799 PMCID: PMC11378833 DOI: 10.1186/s13750-023-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Mammals, globally, are facing population declines. Protecting and breeding threatened populations inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and identifies assay types and predator cues that provoke the greatest behavioural responses. METHODS We retrieved articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article was screened against eligibility criteria determined using the PICO (Population-Intervention-Comparator-Outcome) framework. Using data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue types elicit the greatest behavioural responses based on standardised difference in response between treatment and control groups. REVIEW FINDINGS We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 'blank' control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to calculate measures of individual repeatability. CONCLUSIONS Our review highlights important aspects of experimental design and reporting that should be considered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males and females separately, and choose organic predator cues. Studies should also look to report the individual repeatability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust methodology, reveals promising techniques on which to focus future assay development, and collates relevant information for conservation managers.
Collapse
Affiliation(s)
- Natasha D Harrison
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Rochelle Steven
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Environmental and Conservation Sciences, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ben L Phillips
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Hemmi
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian F Wayne
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Manjimup, WA, 6258, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
2
|
Tissier ML, Bousquet CAH, Fleitz J, Habold C, Petit O, Handrich Y. Captive-reared European hamsters follow an offensive strategy during risk-assessment. PLoS One 2019; 14:e0210158. [PMID: 30640936 PMCID: PMC6331116 DOI: 10.1371/journal.pone.0210158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Understanding whether captive-reared animals destined to reintroduction are still able to discriminate predators has important implications for conservation biology. The endangered European hamster benefits from conservation programs throughout Europe, in which several thousand individuals are released into the wild every year. Despite this, the anti-predator strategy of hamsters and their ability to maintain predator discrimination in captivity remain to be investigated. Here, we explore the predator discrimination behaviour of captive-reared European hamsters and their response to different predation cues. When first exposed to the urine of cats and goats in a Y-maze test, hamsters spent more time close to the cat scent rather than to the goat scent. In a second experiment, during which hamsters were exposed to a non-mobile European ferret (inside a cage), hamsters significantly increased the time spent close to the ferret’s cage and displayed aggressive behaviour towards the ferret. Furthermore, they did not take refuge inside an anti-predation tube (APT), a device designed to upgrade wildlife underpasses and reconnect wild hamster populations. Finally, when exposed to a mobile ferret (but without physical contact), hamsters displayed mobbing and aggressive behaviours towards the ferret, before taking refuge inside the APT. Taken together, our results show that captive-reared hamsters are still able to detect and react to predation cues, but that they initially adopt an offensive strategy (grunting, spitting, mobbing) during the risk-assessment phase. After risk assessment, however, hamsters used the APT as a refuge. Our study provides important insights into the anti-predator behaviour of hamsters. Testing the efficacy of the APT, a device that will allow upgrading wildlife underpasses for the hamster and other rodents, is also of great importance and is instrumental in conservation efforts for these species.
Collapse
Affiliation(s)
| | | | - Julie Fleitz
- Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Odile Petit
- Université de Strasbourg, CNRS, Strasbourg, France
| | | |
Collapse
|
4
|
Scheibler E, Wollnik F, Brodbeck D, Hummel E, Yuan S, Zhang FS, Zhang XD, Fu HP, Wu XD. Species composition and interspecific behavior affects activity pattern of free-living desert hamsters in the Alashan Desert. J Mammal 2013. [DOI: 10.1644/12-mamm-a-115.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|