1
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Schweinfurth MK, Taborsky M. Rats play tit-for-tat instead of integrating social experience over multiple interactions. Proc Biol Sci 2020; 287:20192423. [PMID: 31937222 PMCID: PMC7003459 DOI: 10.1098/rspb.2019.2423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/29/2019] [Indexed: 01/09/2023] Open
Abstract
Theoretical models of cooperation typically assume that agents use simple rules based on last encounters, such as 'tit-for-tat', to reciprocate help. By contrast, empiricists generally suppose that animals integrate multiple experiences over longer timespans. Here, we compared these two alternative hypotheses by exposing Norway rats to partners that cooperated on three consecutive days but failed to cooperate on the fourth day, and to partners that did the exact opposite. In additional controls, focal rats experienced cooperating and defecting partners only once. In a bar-pulling setup, focal rats based their decision to provide partners with food on last encounters instead of overall cooperation levels. To check whether this might be owing to a lack of memory capacity, we tested whether rats remember the outcome of encounters that had happened three days before. Cooperation was not diminished by the intermediate time interval. We conclude that rats reciprocate help mainly based on most recent encounters instead of integrating social experience over longer timespans.
Collapse
Affiliation(s)
- Manon K. Schweinfurth
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, St Andrews KY16 9JP, UK
- Behavioural Ecology, University of Bern, Wohlenstr. 50a, 3032 Hinterkappelen, Switzerland
| | - Michael Taborsky
- Behavioural Ecology, University of Bern, Wohlenstr. 50a, 3032 Hinterkappelen, Switzerland
| |
Collapse
|
3
|
Schweinfurth MK, Call J. Reciprocity: Different behavioural strategies, cognitive mechanisms and psychological processes. Learn Behav 2019; 47:284-301. [PMID: 31676946 PMCID: PMC6877494 DOI: 10.3758/s13420-019-00394-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reciprocity is probably one of the most debated theories in evolutionary research. After more than 40 years of research, some scientists conclude that reciprocity is an almost uniquely human trait mainly because it is cognitively demanding. Others, however, conclude that reciprocity is widespread and of great importance to many species. Yet, it is unclear how these species reciprocate, given its apparent cognitive complexity. Therefore, our aim was to unravel the psychological processes underlying reciprocity. By bringing together findings from studies investigating different aspects of reciprocity, we show that reciprocity is a rich concept with different behavioural strategies and cognitive mechanisms that require very different psychological processes. We reviewed evidence from three textbook examples, i.e. the Norway rat, common vampire bat and brown capuchin monkey, and show that the species use different strategies and mechanisms to reciprocate. We continue by examining the psychological processes of reciprocity. We show that the cognitive load varies between different forms of reciprocity. Several factors can lower the memory demands of reciprocity such as distinctiveness of encounters, memory of details and network size. Furthermore, there are different information operation systems in place, which also vary in their cognitive load due to assessing the number of encounters and the quality and quantity of help. We conclude that many species possess the psychological processes to show some form of reciprocity. Hence, reciprocity might be a widespread phenomenon that varies in terms of strategies and mechanisms.
Collapse
Affiliation(s)
- Manon K Schweinfurth
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, KY16 9JP, St Andrews, Scotland.
| | - Josep Call
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, KY16 9JP, St Andrews, Scotland
| |
Collapse
|
4
|
Raulo A, Dantzer B. Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior. Ecol Evol 2018; 8:7697-7716. [PMID: 30151183 PMCID: PMC6106170 DOI: 10.1002/ece3.4059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA-axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair-bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group-level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA-axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA-axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA-axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA-axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co-evolve.
Collapse
Affiliation(s)
- Aura Raulo
- Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
- Zoology DepartmentUniversity of OxfordOxfordUK
| | - Ben Dantzer
- Department of PsychologyUniversity of MichiganAnn ArborMichigan
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
5
|
Chia C, Dubois F. Impulsiveness does not prevent cooperation from emerging but reduces its occurrence: an experiment with zebra finches. Sci Rep 2017; 7:8544. [PMID: 28819131 PMCID: PMC5561265 DOI: 10.1038/s41598-017-09072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
Reciprocal altruism, the most probable mechanism for cooperation among unrelated individuals, can be modelled as a Prisoner's Dilemma. This game predicts that cooperation should evolve whenever the players, who expect to interact repeatedly, make choices contingent to their partner's behaviour. Experimental evidence, however, indicates that reciprocity is rare among animals. One reason for this would be that animals are very impulsive compared to humans. Several studies have reported that temporal discounting (that is, strong preferences for immediate benefits) has indeed a negative impact on the occurrence of cooperation. Yet, the role of impulsive action, another facet of impulsiveness, remains unexplored. Here, we conducted a laboratory experiment in which male and female zebra finches (Taenyopigia guttata) were paired assortatively with respect to their level of impulsive action and then played an alternating Prisoner's Dilemma. As anticipated, we found that self-controlled pairs achieved high levels of cooperation by using a Generous Tit-for-Tat strategy, while impulsive birds that cooperated at a lower level, chose to cooperate with a fixed probability. If the inability of impulsive individuals to use reactive strategies are due to their reduced working memory capacity, thus our findings might contribute to explaining interspecific differences in cooperative behaviour.
Collapse
Affiliation(s)
- Camille Chia
- Département de Sciences Biologiques, Université de Montréal, Montréal, Qc, Canada
| | - Frédérique Dubois
- Département de Sciences Biologiques, Université de Montréal, Montréal, Qc, Canada.
| |
Collapse
|
6
|
Kasper C, Vierbuchen M, Ernst U, Fischer S, Radersma R, Raulo A, Cunha-Saraiva F, Wu M, Mobley KB, Taborsky B. Genetics and developmental biology of cooperation. Mol Ecol 2017. [PMID: 28626971 DOI: 10.1111/mec.14208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.
Collapse
Affiliation(s)
- Claudia Kasper
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ulrich Ernst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Fischer
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Aura Raulo
- Department of Zoology, University of Oxford, Oxford, UK
| | - Filipa Cunha-Saraiva
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, Vetmeduni Vienna, Vienna, Austria
| | - Min Wu
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
| | - Kenyon B Mobley
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Barbara Taborsky
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
The extended reciprocity: Strong belief outperforms persistence. J Theor Biol 2017; 421:16-27. [DOI: 10.1016/j.jtbi.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022]
|
8
|
Taborsky M, Frommen JG, Riehl C. Correlated pay-offs are key to cooperation. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150084. [PMID: 26729924 PMCID: PMC4760186 DOI: 10.1098/rstb.2015.0084] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
The general belief that cooperation and altruism in social groups result primarily from kin selection has recently been challenged, not least because results from cooperatively breeding insects and vertebrates have shown that groups may be composed mainly of non-relatives. This allows testing predictions of reciprocity theory without the confounding effect of relatedness. Here, we review complementary and alternative evolutionary mechanisms to kin selection theory and provide empirical examples of cooperative behaviour among unrelated individuals in a wide range of taxa. In particular, we focus on the different forms of reciprocity and on their underlying decision rules, asking about evolutionary stability, the conditions selecting for reciprocity and the factors constraining reciprocal cooperation. We find that neither the cognitive requirements of reciprocal cooperation nor the often sequential nature of interactions are insuperable stumbling blocks for the evolution of reciprocity. We argue that simple decision rules such as 'help anyone if helped by someone' should get more attention in future research, because empirical studies show that animals apply such rules, and theoretical models find that they can create stable levels of cooperation under a wide range of conditions. Owing to its simplicity, behaviour based on such a heuristic may in fact be ubiquitous. Finally, we argue that the evolution of exchange and trading of service and commodities among social partners needs greater scientific focus.
Collapse
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Joachim G Frommen
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Christina Riehl
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
dos Santos M, Braithwaite VA, Wedekind C. Exposure to superfluous information reduces cooperation and increases antisocial punishment in reputation-based interactions. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|